2022 USGS CoNED Topobathy DEM (1851 - 2020): Coastal Carolinas | referenceSystemInfo|
---|---|
(MI_Metadata) fileIdentifier: gov.noaa.nmfs.inport:67013 language: LanguageCode: eng characterSet: (MD_CharacterSetCode) UTF8 hierarchyLevel: (MD_ScopeCode) dataset hierarchyLevelName: Elevation contact: (CI_ResponsibleParty) organisationName: OCM Partners contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (missing) address: (CI_Address) role: (CI_RoleCode) resourceProvider contact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact dateStamp: DateTime: 2023-01-31T15:52:39 metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data metadataStandardVersion: ISO 19115-2:2009(E) return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) code: EPSG::5703 return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) code: EPSG::6346 return to top identificationInfo: (MD_DataIdentification) citation: (CI_Citation) title: 2022 USGS CoNED Topobathy DEM (1851 - 2020): Coastal Carolinas alternateTitle: coned_carolinas_dem_m9484 date: (CI_Date) date: 2022 dateType: (CI_DateTypeCode) creation date: (CI_Date) date: 2022-03-17 dateType: (CI_DateTypeCode) publication identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: Anchor: InPort Catalog ID 67013 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inport/item/67013 protocol: WWW:LINK-1.0-http--link name: Full Metadata Record description: View the complete metadata record on InPort for more information about this dataset. function: (CI_OnLineFunctionCode) information role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/ protocol: WWW:LINK-1.0-http--link name: NOAA's Office for Coastal Management (OCM) website description: Information on the NOAA Office for Coastal Management (OCM) function: (CI_OnLineFunctionCode) download role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/raster5/elevation/CoNED_Carolinas_DEM_2022_9484/supplemental/ protocol: WWW:LINK-1.0-http--link name: Spatial Metadata description: Link to the spatial metadata gdbs and data dictionary for North Carolina and South Carolina. function: (CI_OnLineFunctionCode) download role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/ protocol: WWW:LINK-1.0-http--link name: NOAA's Office for Coastal Management (OCM) Data Access Viewer (DAV) description: The Data Access Viewer (DAV) allows a user to search for and download elevation, imagery, and land cover data for the coastal U.S. and its territories. The data, hosted by the NOAA Office for Coastal Management, can be customized and requested for free download through a checkout interface. An email provides a link to the customized data, while the original data set is available through a link within the viewer. function: (CI_OnLineFunctionCode) download role: (inapplicable) presentationForm: (unknown) abstract: To support Hurricane Florence impact modeling of storm-induced flooding and sediment transport, the U.S. Geological Survey (USGS) Coastal National Elevation Database (CoNED) Applications Project has created an integrated 1-meter topobathymetric digital elevation model (TBDEM) for coastal North Carolina, and South Carolina. High-resolution coastal topobathymetric data are required to characterize flooding, storms, and sea-level rise inundation hazard zones and other earth science applications, such as the development of sediment transport and storm surge models. This TBDEM consists of the best available multi-source topographic and bathymetric elevation data for the Coastal Carolinas including neighboring bays, estuaries, waterways, inlets, and islands. The Coastal Carolinas TBDEM integrates 28 different data sources including topographic and bathymetric data, such as lidar point clouds and multi-beam acoustic surveys obtained from USGS, the National Oceanic and Atmospheric Administration, the U.S. Army Corps of Engineers, South Carolina Lidar Consortium, and the South Carolina Department of Natural Resources. The topographic and bathymetric surveys were sorted and prioritized based on survey date, accuracy, spatial distribution, and point density to develop a model based on the best available elevation and bathymetric data. Because bathymetric data are typically referenced to tidal datums, such as Mean High Water or Mean Low Water, all tidally referenced heights were transformed into orthometric heights based on the GEOID12B geoid, which is normally used for mapping elevation on land using the North American Vertical Datum of 1988. The spatial horizontal resolution is 1-meter with the general location ranging from the Virginia/North Carolina border to the South Carolina/Georgia border in the south and extending offshore past Cape Hatteras. The overall temporal range of the input topography and bathymetry is 1851 to 2020 with a maximum depth extending to 66 meters. The topography surveys are from 1999-2020. The bathymetry surveys were acquired between 1851 and 2020.This data release was funded by the Additional Supplemental Appropriations for Disaster Relief Act of 2019 (H.R. 2157) for North Carolina and South Carolina. purpose: As a collaboration between the U.S. Geological Survey (USGS) Coastal and Marine Hazards and Resources Program, the USGS National Geospatial Program, and the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information, the USGS Coastal National Elevation Database (CoNED) Applications Project integrates disparate light detection and ranging (lidar) and bathymetric data sources into a common three-dimensional (3D) database aligned both vertically and horizontally to a common reference system. The CoNED ProjectâÂÂs topobathymetric digital elevation model (TBDEM) development is focused on select regions around the United States Coast, such as the Northern Gulf of Mexico, Coastal Carolinas, Northeast, California Coast, Pacific Northwest, and the North Slope of Alaska. CoNED Project TBDEMs provide a required seamless elevation product for several science application studies, such as shoreline delineation, coastal inundation mapping, sediment-transport, sea-level rise, storm surge models, tsunami impact assessment, and to analyze the impact of various climate change scenarios on coastal regions. The raster TBDEM product in Cloud Optimized GeoTIFF (COG) format, the Federal Geographic Data Committee (FGDC) formatted metadata, spatially referenced metadata, and the spatial metadata data dictionary are contained in the downloadable bundle. Spatially referenced metadata are contained within a geodatabase that contains footprints for each of the input source areas. References: Danielson, J.J., Poppenga, S.K., Brock, J.C., Evans, G.A., Tyler, D.J., Gesch, D.B., Thatcher, C.A., and Barras, J.A., 2016, Topobathymetric elevation model development using a new methodology-Coastal National Elevation Database: Journal of Coastal Research, SI no. 76, p. 75-89, at http://dx.doi.org/10.2112/SI76-008. Thatcher, C.A., Brock, J.C., Danielson, J.J., Poppenga, S.K., Gesch, D.B., Palaseanu-Lovejoy, M.E., Barras, J.A., Evans, G.A., and Gibbs, A.E., 2016, Creating a Coastal National Elevation Database (CoNED) for science and conservation applications: Journal of Coastal Research, SI no. 76, p. 64-74, at http://dx.doi.org/10.2112/SI76-007. Gesch, Dean B., Oimoen, Michael J., and Evans, Gayla A., 2014, Accuracy assessment of the U.S. Geological Survey National Elevation Dataset, and comparison with other large-area elevation datasets-SRTM and ASTER: U.S. Geological Survey Open-File Report 2014-1008, 10 p., at http://dx.doi.org/10.3133/ofr20141008. Sugarbaker, L.J., Constance, E.W., Heidemann, H.K., Jason, A.L., Lukas, Vicki, Saghy, D.L., and Stoker, J.M., 2014, The 3D Elevation Program initiativeâÂÂA call for action: U.S. Geological Survey Circular 1399, 35 p Carswell, W.J., Jr., 2013, The 3D Elevation ProgramâÂÂSummary for California: U.S. Geological Survey Fact Sheet 2013âÂÂ3056, 2 p., http://pubs.usgs.gov/fs/2013/3056/ credit: Please refer to the Data Quality Section, Source Citations for original source data information., Dean Tyler (ORCID: 0000-0002-1542-7539) W. Matthew Cushing (ORCID: 0000-0001-5209-6006) Jeff Danielson (ORCID: 0000-0003-0907-034X) Sandra Poppenga (ORCID: 0000-0002-2846-6836) Sean Beverly (ORCID: 0000-0002-4825-4056) Rakibul Shogib (ORCID: 0000-0001-6524-7838) status: (MD_ProgressCode) completed pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) custodian resourceMaintenance: (MD_MaintenanceInformation) maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded descriptiveKeywords: (MD_Keywords) keyword: EARTH SCIENCE > LAND SURFACE > TOPOGRAPHY > TERRAIN ELEVATION keyword: EARTH SCIENCE > LAND SURFACE > TOPOGRAPHY > TERRAIN ELEVATION > DIGITAL ELEVATION/TERRAIN MODEL (DEM) keyword: EARTH SCIENCE > OCEANS > BATHYMETRY/SEAFLOOR TOPOGRAPHY > BATHYMETRY > COASTAL BATHYMETRY keyword: EARTH SCIENCE > OCEANS > COASTAL PROCESSES > COASTAL ELEVATION type: (MD_KeywordTypeCode) theme thesaurusName: (CI_Citation) title: Global Change Master Directory (GCMD) Science Keywords date: (missing) edition: 12.3 descriptiveKeywords: (MD_Keywords) keyword: CONTINENT > NORTH AMERICA > UNITED STATES OF AMERICA keyword: CONTINENT > NORTH AMERICA > UNITED STATES OF AMERICA > NORTH CAROLINA keyword: CONTINENT > NORTH AMERICA > UNITED STATES OF AMERICA > SOUTH CAROLINA keyword: VERTICAL LOCATION > LAND SURFACE keyword: VERTICAL LOCATION > SEA FLOOR type: (MD_KeywordTypeCode) place thesaurusName: (CI_Citation) title: Global Change Master Directory (GCMD) Location Keywords date: (missing) edition: 12.3 descriptiveKeywords: (MD_Keywords) keyword: LIDAR > Light Detection and Ranging type: (MD_KeywordTypeCode) instrument thesaurusName: (CI_Citation) title: Global Change Master Directory (GCMD) Instrument Keywords date: (missing) edition: 10.3 descriptiveKeywords: (MD_Keywords) keyword: AIRCRAFT type: (MD_KeywordTypeCode) platform thesaurusName: (CI_Citation) title: Global Change Master Directory (GCMD) Platform Keywords date: (missing) edition: 10.3 descriptiveKeywords: (MD_Keywords) keyword: USGS:5d7641bee4b0c4f70d01f564 type: (MD_KeywordTypeCode) theme thesaurusName: (CI_Citation) title: USGS Metadata Identifier date: (missing) descriptiveKeywords: (MD_Keywords) keyword: County of Allendale, SC keyword: County of Beaufort, NC keyword: County of Beaufort, SC keyword: County of Berkeley, SC keyword: County of Bertie, NC keyword: County of Bladen, NC keyword: County of Brunswick, NC keyword: County of Camden, NC keyword: County of Carteret, NC keyword: County of Charleston, SC keyword: County of Chowan, NC keyword: County of Clarendon, SC keyword: County of Colleton, SC keyword: County of Columbus, NC keyword: County of Craven, NC keyword: County of Currituck, NC keyword: County of Dare, NC keyword: County of Dorchester, SC keyword: County of Duplin, NC keyword: County of Edgecombe, NC keyword: County of Florence, SC keyword: County of Gates, NC keyword: County of Georgetown, SC keyword: County of Greene, NC keyword: County of Halifax, NC keyword: County of Hampton, SC keyword: County of Hertford, NC keyword: County of Horry, SC keyword: County of Hyde, NC keyword: County of Jasper, SC keyword: County of Jones, NC keyword: County of Lenoir, NC keyword: County of Marion, SC keyword: County of Martin, NC keyword: County of New Hanover, NC keyword: County of Northampton, NC keyword: County of Onslow, NC keyword: County of Pamlico, NC keyword: County of Pasquotank, NC keyword: County of Pender, NC keyword: County of Perquimans, NC keyword: County of Pitt, NC keyword: County of Sampson, NC keyword: County of Tyrrell, NC keyword: County of Washington, NC keyword: County of Wayne, NC keyword: County of Williamsburg, SC type: (MD_KeywordTypeCode) place thesaurusName: (CI_Citation) title: Geographic Names Information System date: (missing) descriptiveKeywords: (MD_Keywords) keyword: 3D Elevation Program keyword: 3DEP keyword: CoNED keyword: Coastal National Elevation Database keyword: Coastal Zone keyword: Coastal and Marine Hazards and Resources Program keyword: Flood Inundation Modeling keyword: Hurricane Florence keyword: Hydrologic Modeling keyword: National Standards for Spatial Digital Accuracy keyword: Topobathymetric keyword: U.S. Geological Survey keyword: USGS type: (MD_KeywordTypeCode) theme descriptiveKeywords: (MD_Keywords) keyword: DEMs - partner (no harvest) type: (MD_KeywordTypeCode) project thesaurusName: (CI_Citation) title: InPort date: (inapplicable) resourceConstraints: (MD_LegalConstraints) useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Cite As: OCM Partners, [Date of Access]: 2022 USGS CoNED Topobathy DEM (1851 - 2020): Coastal Carolinas [Data Date Range], https://www.fisheries.noaa.gov/inport/item/67013. resourceConstraints: (MD_Constraints) useLimitation: NOAA provides no warranty, nor accepts any liability occurring from any incomplete, incorrect, or misleading data, or from any incorrect, incomplete, or misleading use of the data. It is the responsibility of the user to determine whether or not the data is suitable for the intended purpose. resourceConstraints: (MD_LegalConstraints) accessConstraints: (MD_RestrictionCode) otherRestrictions useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Access Constraints: None | Use Constraints: Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. | Distribution Liability: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty. Any conclusions drawn from the analysis of this information are not the responsibility of NOAA, the Office for Coastal Management or its partners. resourceConstraints: (MD_SecurityConstraints) classification: (MD_ClassificationCode) unclassified classificationSystem: (missing) handlingDescription: (missing) aggregationInfo: (MD_AggregateInformation) aggregateDataSetName: (CI_Citation) title: NOAA Data Management Plan (DMP) date: (unknown) identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: 67013 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inportserve/waf/noaa/nos/ocmp/dmp/pdf/67013.pdf protocol: WWW:LINK-1.0-http--link name: NOAA Data Management Plan (DMP) description: NOAA Data Management Plan for this record on InPort. function: (CI_OnLineFunctionCode) information role: (inapplicable) associationType: (DS_AssociationTypeCode) crossReference spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid language: eng; US topicCategory: (MD_TopicCategoryCode) elevation environmentDescription: For usability, Esri ArcGIS 10.8, Esri ArcGIS Pro, GeoCue LP360, VDatum, Global Mapper, Geospatial Data Abstraction Library (GDAL), or equivalent GIS processing software and supporting operating systems are suggested for viewing the spatial metadata. extent: (EX_Extent) geographicElement: (EX_GeographicBoundingBox) westBoundLongitude: -81.437 eastBoundLongitude: -75.356 southBoundLatitude: 31.91 northBoundLatitude: 36.579 temporalElement: (EX_TemporalExtent) extent: TimePeriod: description: | Currentness: Ground Condition beginPosition: 1851 endPosition: 2020 supplementalInformation: The data obtained through ScienceBase at https://www.sciencebase.gov/catalog/item/618e83cad34ec04fc9caa715 are considered to be the "best available" data from the USGS. For questions on distribution, please refer to the Distribution Section, Contact Information. For processing, please refer to the Data Quality Section, Processing Step, Contact Information. return to top contentInfo: (MD_FeatureCatalogueDescription) complianceCode: false language: LanguageCode: eng includedWithDataset: false featureCatalogueCitation: (CI_Citation) title: Tyler, D.J., W. Matthew Cushing, Danielson, J.J., Sandra Poppenga, Sean Beverly, Rakibul Shogib, 2021, Topobathymetric Model of the Coastal Carolinas, 1851 to 2020: U.S. Geological Survey data release, at https://doi.org/10.5066/P9MPA8K0 date: (unavailable) return to top distributionInfo: (MD_Distribution) distributionFormat: (MD_Format) name: Zip version: (missing) fileDecompressionTechnique: Zip distributionFormat: (MD_Format) name: GeoTIFF version: (missing) distributor: (MD_Distributor) distributorContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) distributor transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=9484/details/9484 protocol: WWW:LINK-1.0-http--link name: Customized Download description: Create custom data files by choosing data area, map projection, file format, etc. A new metadata will be produced to reflect your request using this record as a base. function: (CI_OnLineFunctionCode) download transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://chs.coast.noaa.gov/htdata/raster5/elevation/CoNED_Carolinas_DEM_2022_9484 protocol: WWW:LINK-1.0-http--link name: Bulk Download description: Bulk download of data files in the original coordinate system. function: (CI_OnLineFunctionCode) download return to top dataQualityInfo: (DQ_DataQuality) scope: (DQ_Scope) level: (MD_ScopeCode) dataset report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Horizontal Positional Accuracy evaluationMethodDescription: The horizontal accuracy for the integrated topobathymetric digital elevation model (TBDEM) was not assessed quantitatively. result: (missing) report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Vertical Positional Accuracy evaluationMethodDescription: Integrated TBDEM Vertical Accuracy Assessment (GEOID12B). The TBDEM root mean square error (RMSE) over the land and nearshore area is 0.35 meters versus 1,531 National Oceanic and Atmospheric Administration (NOAA) National Geodetic Survey (NGS) Global Positioning System (GPS) on Benchmarks (GPSonBM) control points and 9,120 USGS field survey control points distributed throughout the study area Irwin, J.R., Danielson, J.J., and Robbins, T.J., 2021, Coastal Carolinas Topobathymetric Model: Field Validation Data, 2021: U.S. Geological Survey data release, https://doi.org/10.5066/P902W30G result: (missing) report: (DQ_CompletenessCommission) nameOfMeasure: Completeness Report evaluationMethodDescription: Data set is considered complete for the information presented, as described in the abstract. Users are advised to read the rest of the metadata record carefully for additional details result: (missing) report: (DQ_ConceptualConsistency) nameOfMeasure: Conceptual Consistency evaluationMethodDescription: No formal logical accuracy tests were conducted. result: (missing) lineage: (LI_Lineage) statement: Data processed by the USGS from many sources. processStep: (LI_ProcessStep) description: The principal methodology for developing the integrated topobathymetric digital elevation model (TBDEM) can be organized into three main components. The "topography component" consists of the land-based elevation data, which is primarily comprised from high-density lidar data. The topographic source data will include lidar data from different sensors (Topographic, Bathymetric) with distinct spectral wavelengths (NIR-1064nm, Green-532nm). The "bathymetry component" consists of hydrographic sounding (acoustic) data collected using watercraft rather than bathymetry acquired from green laser lidar within an airborne platform. The most common forms of bathymetric acquisitions include are multi-beam, single-beam, and swath. The final component, "integration", encompasses the assimilation of the topographic and bathymetric data along the near-shore based on a predefined set of priorities. The land/water interface (+1 m- -1.5 m elevation) is the most critical area, and green laser systems, such as the Experimental Advanced Airborne Research lidar (EAARL-B) and the Coastal Zone Mapping and Imaging Lidar (CZMIL) that cross the near-shore interface are valuable in developing a seamless transition. The TBDEM created from the topography and bathymetry components is a raster with associated spatial masks and metadata that can be passed to the integration component for final model incorporation. Topo/Bathy Creation Steps: Topography Processing Component: a) Quality control check the vertical and horizontal datum and projection information of the input lidar source to ensure the data is referenced to the North American Vertical Datum of 1988 (NAVD88), the North American Datum of 1983 (NAD83), and the Universal Transverse Mercator (UTM) projection. If the source data is not NAVD88, transform the input lidar data to NAVD88 reference frame using current National Geodetic Survey (NGS) geoid models and NOAA’s Vertical Datums Transformation (VDatum) software. Likewise, if required, convert the input source data to NAD83 and reproject to UTM. b) Check the classification of the topographic lidar data to verify the data are classified with the appropriate classes. If the data have not been classified, then classify the raw point cloud data to non-ground (class 1) ground (class 2), and water (class 9) classes using LP360-Classify. c) Derive associated breaklines from the classified lidar to capture internal water bodies, such as lakes and ponds and inland waterways. Inland waterways and water bodies will be hydro-flattened where no bathymetry is present. d) Extract the ground returns from the classified lidar data and randomly spatial subset the points into two-point sets based on the criteria of 95 percent of the points for the "Actual Selected" set and the remaining 5 percent for the "Test Control" set. The "Actual Selected" points will be gridded in the terrain model along with associated breaklines and masks to generate the topographic surface, while the "Test Control" points will be used to compute the interpolation accuracy, Root Mean Square Error (RMSE) from the derived surface. e) Generate the minimum convex hull boundary from the classified ground lidar points that creates a mask that extracts the perimeter of the exterior lidar points. The mask is then applied in the terrain to remove extraneous terrain artifacts outside of the extent of the ground lidar points. f) Using a terrain model based on triangulated irregular networks (TINs), grid the "Actual Selected" ground points using breaklines and the minimum convex hull boundary mask at a 1-meter spatial resolution using a natural neighbor interpolation algorithm. g) Compute the interpolation accuracy by comparing elevation values in the "Test Control" points to values extracted from the derived gridded surface; report the results in terms of RMSE. dateTime: DateTime: 2021-11-08T00:00:00 processStep: (LI_ProcessStep) description: Bathymetry Processing Component: a) Quality control check the vertical and horizontal datum and projection information of the input bathymetric source to ensure the data is referenced to NAVD88 and NAD83, UTM. If the source data are not NAVD88, transform the input bathymetric data to NAVD88 reference frame using VDatum. Likewise, if required, convert the input source data to NAD83 and reproject to UTM. b) Prioritize and spatially sort the bathymetry based on date of acquisition, spatial distribution, accuracy, and point density to eliminate any outdated or erroneous points and to minimize interpolation artifacts. c) Randomly subset the bathymetric points into two-point sets based on the criteria of 95 percent of the points for the "Actual Selected" set and the remaining 5 percent for the "Test Control" set. The "Actual Selected" points will be gridded in the empirical Bayesian krigging model along with associated masks to generate the bathymetric surface, while the "Test Control" points will be used to compute the interpolation accuracy (RMSE) from the derived surface. d) Spatially interpolate bathymetric single-beam, multi-beam, and hydrographic survey source data using an empirical Bayesian krigging gridding algorithm. This approach uses a geostatistical interpolation method that accounts for the error in estimating the underlying semivariogram (data structure - variance) through repeated simulations. e) Cross validation - Compare the predicted value in the geostatistical model to the actual observed value to assess the accuracy and effectiveness of model parameters by removing each data location one at a time and predicting the associated data value. The results will be reported in terms of RMSE. f) Compute the interpolation accuracy by comparing elevation values in the "Test Control" points to values extracted from the derived gridded surface; report the results in terms of RMSE. dateTime: DateTime: 2021-11-08T00:00:00 processStep: (LI_ProcessStep) description: Integration Component: a.) Analyze the input data priority based on project characteristics, including acquisition dates, cell size, retention of features, water surface treatment, visual inspection, and presence of artifacts. b.) Prioritize and spatially sort the input topographic, topobathymetric, and bathymetric raster layers based on date of survey acquisition date, accuracy, spatial distribution, and point density to sequence the raster data in the integrated elevation model. c.) Develop an ArcGIS geodatabase (Mosaic Dataset) and spatial seamlines for each individual topographic, topobathymetric, and bathymetric raster layer included in the integrated elevation model. d.) Create an overview project masking polygon (based on final pilot study AOI) e.) Using Grid Index Features, create a 6000x6000 fishnet feature class for tile-based integration processing f.) Create simple raster (vector) boundaries (custom simple_raster_bnd_batch tool) from the final set of input rasters based on the input priority. The rasters should be prioritized with the highest priority ranking on top and so forth. g.) Generate spatially referenced metadata for each input raster (custom make spatial metadata tool) from the simple raster boundary files, based on the input priority. The boundaries should be prioritized with the lowest priority (input raster layer) ranking on top and so forth. The spatially referenced metadata consists of the group of geospatial polygons that represent the spatial footprint of each data source used in the generation of the TBDEM. Each polygon is populated with raster metadata attributes that describe the source data, such as, resolution, acquisition date, source name, source organization, source contact, source project, source URL, and data type (topographic lidar, topobathymetric lidar, multibeam bathymetry, single-beam bathymetry, etc.). h.) Generalize seamline edges to smooth transition boundaries between neighboring raster layers and split complex raster datasets with isolated regions into individual unique raster groups. i.) Using the spatial metadata and tile fishnet, spatially mosaic (custom make micro mosaic dataset tool) the input raster data sources based on priority to create a seamless topobathymetric composite at a cell size of 1-meter using a linear spatial blending (ten pixel overlapping area) technique between input source layers. j.) Perform a visual quality assurance (Q/A) assessment on the output TBDEM composite to review the integrated mosaic for artifacts and anomalies. dateTime: DateTime: 2021-11-08T00:00:00 processStep: (LI_ProcessStep) description: The NOAA Office for Coastal Management (OCM) received two GeoTiff format files from USGS for the North and South Carolina project area. The bare earth raster files were at a 1 m grid spacing. The data were in UTM Zone 17 NAD83(2011), meters coordinates and NAVD88 (Geoid12B) elevations in meters. OCM assigned the appropriate EPSG codes (Horiz - 6346, Vert - 5703) and copied the raster files to https for Digital Coast storage and provisioning purposes. dateTime: DateTime: 2022-04-15T00:00:00 processor: (CI_ResponsibleParty) organisationName: Office for Coastal Management role: (CI_RoleCode) processor processStep: (LI_ProcessStep) description: In January 2023 the Office for Coastal Management (OCM) received a replacement tiff from USGS for the NC portion of this data. The new NC tiff (named version 20) includes the following: 1. Additional bathymetry in Neuse, Pamlico, and Chowan Rivers 2. Lowered inappropriately elevated channels 3. Replaced an input project formerly processed with a nearest-neighbor resampling with bilinear. The bare earth raster file was at a 1 m grid spacing. The data were in UTM Zone 17 NAD83(2011), meters coordinates and NAVD88 (Geoid12B) elevations in meters. OCM assigned the appropriate EPSG codes (Horiz - 6346, Vert - 5703) and copied the raster files to https for Digital Coast storage and provisioning purposes. The earlier version of the NC tiff was deleted. dateTime: DateTime: 2023-01-31T00:00:00 processor: (CI_ResponsibleParty) organisationName: Office for Coastal Management role: (CI_RoleCode) processor source: (LI_Source) description: Source Contribution: Dorchester County, SC sourceCitation: (CI_Citation) title: 2007 South Carolina DNR Lidar: Dorchester County date: (CI_Date) date: 2016-10-17 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/lidar1_z/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2007-03-05 endPosition: 2007-03-07 source: (LI_Source) description: Source Contribution: Charleston, Colleton, Jasper Counties, SC sourceCitation: (CI_Citation) title: 2007 South Carolina LiDAR: Charleston (partial), Jasper, and Colleton Counties date: (CI_Date) date: 2008-03-26 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://chs.coast.noaa.gov/htdata/raster2/elevation/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2007 source: (LI_Source) description: Source Contribution: Marion County, SC sourceCitation: (CI_Citation) title: 2008 Marion County, SC DNR lidar date: (CI_Date) date: 2009-01-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://chs.coast.noaa.gov/htdata/raster2/elevation/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2008 source: (LI_Source) description: Source Contribution: Florence County, SC sourceCitation: (CI_Citation) title: 2009 Florence County, SC DNR lidar date: (CI_Date) date: 2015-05-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA/SC DNR contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/lidar1_z/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2009 source: (LI_Source) description: Source Contribution: Allendale county SC, USA sourceCitation: (CI_Citation) title: 2010 ARRA Lidar: Allendale County (SC) date: (CI_Date) date: 2011-05-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/lidar1_z/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2010 source: (LI_Source) description: Source Contribution: Hampton County SC sourceCitation: (CI_Citation) title: 2010 ARRA Lidar: Hampton County (SC) date: (CI_Date) date: 2011-05-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://chs.coast.noaa.gov/htdata/lidar1_z/geoid18/data/4803/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2010-03-14 endPosition: 2010-03-20 source: (LI_Source) description: Source Contribution: SC Beaufort County sourceCitation: (CI_Citation) title: 2013 South Carolina Lidar Consortium Lidar: Beaufort County date: (CI_Date) date: 2013-01-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/lidar1_z/geoid12b/data/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2013 source: (LI_Source) description: Source Contribution: Horry County, NC sourceCitation: (CI_Citation) title: 2014 Horry County, South Carolina Lidar date: (CI_Date) date: 2014-01-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/lidar1_z/geoid12b/data/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2014-01-22 endPosition: 2014-01-26 source: (LI_Source) description: Source Contribution: VA, NC, SC, GA and FL sourceCitation: (CI_Citation) title: 2016 USACE Post-Matthew Topobathy Lidar: Southeast Coast (VA, NC, SC, GA and FL) date: (CI_Date) date: 2017-02-15 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/raster2/elevation/USACE_post_matthew_DEM_2016_6234 protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2016-10-01 endPosition: 2016-12-01 source: (LI_Source) description: Source Contribution: Coastal SC sourceCitation: (CI_Citation) title: 2016-2017 NOAA NGS Topobathy: Coastal South Carolina date: (CI_Date) date: 2018-08-24 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/lidar1_z/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2016 source: (LI_Source) description: Source Contribution: South Carolina Georgetown County sourceCitation: (CI_Citation) title: 2017 South Carolina Lidar Consortium Lidar: Georgetown County date: (CI_Date) date: 2017-01-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA/SC DNG contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/lidar1_z/geoid12b/data/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2016 source: (LI_Source) description: Source Contribution: East Central SC sourceCitation: (CI_Citation) title: 2017 USGS Lidar Point Cloud for East Central SC date: (CI_Date) date: 2019-06-25 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: USGS contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/OPR/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2018-04-11 endPosition: 2018-04-18 source: (LI_Source) description: Source Contribution: Southern Coast (VA, NC, SC) sourceCitation: (CI_Citation) title: 2018 USACE NCMP Post-Florence Topobathy Lidar (NC, SC, VA) date: (CI_Date) date: 2019-08-09 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: USACE JALBTCX contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/lidar1_z/geoid12b/data/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2018 source: (LI_Source) description: Source Contribution: NC, SC Coast sourceCitation: (CI_Citation) title: 2019 NOAA NGS Topobathy Lidar: Hurricane Florence (Deliveries 1-6) date: (CI_Date) date: 2021-02-12 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2019 source: (LI_Source) description: Source Contribution: East Coast (NC, VA) sourceCitation: (CI_Citation) title: 2019 USACE NCMP DUNEX Topobathy Lidar: East Coast (NC, VA) date: (CI_Date) date: 2019-01-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: USACE JALBTCX contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/lidar1_z/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2019 source: (LI_Source) description: Source Contribution: NC sourceCitation: (CI_Citation) title: 2019 USACE NCMP Topobathy Lidar: East Coast (NC) date: (CI_Date) date: 2020-01-24 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: USACE JALBTCX contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/raster2/elevation/USACE_Topobathy_NC_DEM_2019_9001/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2019 source: (LI_Source) description: Source Contribution: NC sourceCitation: (CI_Citation) title: 2020 NOAA NGS topobathy lidar for NC date: (CI_Date) date: 2020-12-30 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2019-12-08 endPosition: 2020-08-25 source: (LI_Source) description: Source Contribution: Coast of NC, SC, GA and FL sourceCitation: (CI_Citation) title: Continuously Updated Digital Elevation Model (CUDEM) - Ninth Arc-Second Resolution Bathymetric-Topographic Tiles date: (CI_Date) date: 2019-01-24 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/raster2/elevation/NCEI_ninth_Topobathy_2014_8483/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 1851 endPosition: 2018 source: (LI_Source) description: Source Contribution: Coast of NC, SC, GA and FL sourceCitation: (CI_Citation) title: Continuously Updated Digital Elevation Model (CUDEM) - Third Arc-Second Resolution Bathymetric-Topographic Tiles date: (CI_Date) date: 2019-01-24 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/raster2/elevation/NCEI_third_Topobathy_2014_8580/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 1851 endPosition: 2018 source: (LI_Source) description: Source Contribution: NC, SC, and GA sourceCitation: (CI_Citation) title: Elevation Void Fill (method used to interpolate elevation in cases where no-data gap occurs) date: (CI_Date) date: 2021-01-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: USGS contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/elevation-void-fill-function.htm protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2021 source: (LI_Source) description: Source Contribution: Coastal counties of NC sourceCitation: (CI_Citation) title: Hurricane Sandy NC 2014 - 2016 (Phases 1,2 and 3) date: (CI_Date) date: 2016-01-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: USGS contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/OPR/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2014 endPosition: 2016 source: (LI_Source) description: Source Contribution: Georgetown County SC sourceCitation: (CI_Citation) title: South Carolina Georgetown County Lidar Hydro-Flattened Digital Elevation Models (DEMs) date: (CI_Date) date: 2018-06-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA/SC DNG contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/OPR/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2016-12-16 endPosition: 2017-03-09 source: (LI_Source) description: Source Contribution: NY, NJ, DE, MD, VA, NC, SC, and GA sourceCitation: (CI_Citation) title: USACE NCMP Topobathy Lidar East Coast (NY, NJ, DE, MD, VA, NC, SC, GA) date: (CI_Date) date: 2017-01-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: USACE JALBTCX contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/htdata/lidar1_z/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2017 source: (LI_Source) description: Source Contribution: Coverage DC, DE, MD, PA, and VA sourceCitation: (CI_Citation) title: USGS CONED Chesapeake Bay Topobathy date: (CI_Date) date: 2016-05-01 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: USGS contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://chs.coast.noaa.gov/htdata/raster2/elevation/Chesapeake_Coned_update_DEM_2016_8656/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 1859-01-01 endPosition: 2015-01-31 source: (LI_Source) description: Source Contribution: Berkeley County, SC sourceCitation: (CI_Citation) title: USGS Lidar Point Cloud Berkeley County, SC 2016; LAS 2019 date: (CI_Date) date: 2019-08-29 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: USGS/SC DNR contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/OPR/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2016-12-16 endPosition: 2017-03-09 source: (LI_Source) description: Source Contribution: Charleston County, SC sourceCitation: (CI_Citation) title: USGS Lidar Point Cloud Charleston County, SC 2016 LAS 2019 date: (CI_Date) date: 2019-08-22 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: USGS/SC DNR contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/OPR/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2016-12-17 endPosition: 2017-03-09 source: (LI_Source) description: Source Contribution: Williamburg County, SC sourceCitation: (CI_Citation) title: USGS Lidar Point Cloud Williamburg County, SC 2016; LAS 2019 date: (CI_Date) date: 2019-09-03 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: USGS/SC DNR contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/OPR/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2016-12-12 endPosition: 2017-03-03 source: (LI_Source) description: Source Contribution: NC sourceCitation: (CI_Citation) title: USGS Original Project Resolution NC Hurricane Florence 2020 D20 17SPT67127995 date: (CI_Date) date: 2021-05-28 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: USGS contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/OPR/Projects/NC_HurricaneFlorence_2020_D20/ protocol: WWW:LINK-1.0-http--link name: Source Citation URL description: Source Citation URL function: (CI_OnLineFunctionCode) information role: (inapplicable) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2019-12-10 endPosition: 2020-01-08 |