spatialRepresentationInfo
referenceSystemInfo
referenceSystemInfo
referenceSystemInfo
identificationInfo
distributionInfo
dataQualityInfo

2006 MDEQ-FEMA Hinds County Lidar Survey
 (MI_Metadata)
    fileIdentifier:  gov.noaa.nmfs.inport:49817
    language:
      LanguageCode:  eng
    characterSet:  (MD_CharacterSetCode) UTF8
    hierarchyLevel:  (MD_ScopeCode) dataset
    contact:  (CI_ResponsibleParty)
        organisationName:  OCM Partners
        contactInfo:  (CI_Contact)
            phone:  (CI_Telephone)
                voice: (missing)
            address:  (CI_Address)
        role:  (CI_RoleCode) resourceProvider
    contact:  (CI_ResponsibleParty)
        organisationName:  NOAA Office for Coastal Management
        contactInfo:  (CI_Contact)
            phone:  (CI_Telephone)
                voice:  (843) 740-1202
            address:  (CI_Address)
                deliveryPoint:  2234 South Hobson Ave
                city:  Charleston
                administrativeArea:  SC
                postalCode:  29405-2413
                country: (missing)
                electronicMailAddress:  coastal.info@noaa.gov
            onlineResource:  (CI_OnlineResource)
                linkage: https://coast.noaa.gov
                protocol:  WWW:LINK-1.0-http--link
                name:  NOAA Office for Coastal Management Website
                description:  NOAA Office for Coastal Management Home Page
                function:  (CI_OnLineFunctionCode) information
        role:  (CI_RoleCode) pointOfContact
    dateStamp:
      DateTime:  2022-08-09T17:11:36
    metadataStandardName:  ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
    metadataStandardVersion:  ISO 19115-2:2009(E)
return to top
    spatialRepresentationInfo:
return to top
    referenceSystemInfo:
return to top
      referenceSystemInfo:  (MD_ReferenceSystem)
          referenceSystemIdentifier:  (RS_Identifier)
              authority:  (CI_Citation)
                  title:  NAD83(HARN)
                  date:  (CI_Date)
                      date:  2008-11-12
                      dateType:  (CI_DateTypeCode) publication
                  citedResponsibleParty:  (CI_ResponsibleParty)
                      organisationName:  European Petroleum Survey Group
                      contactInfo:  (CI_Contact)
                          onlineResource:  (CI_OnlineResource)
                              linkage: https://apps.epsg.org/api/v1/CoordRefSystem/4152/export/?format=gml
                      role: (missing)
              code:  urn:ogc:def:crs:EPSG:4152
              version:  6.18.3
return to top
      referenceSystemInfo:  (MD_ReferenceSystem)
          referenceSystemIdentifier:  (RS_Identifier)
              authority:  (CI_Citation)
                  title:  North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters
                  alternateTitle:  North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters
                  citedResponsibleParty:  (CI_ResponsibleParty)
                      organisationName: (withheld)
                      contactInfo:  (CI_Contact)
                          onlineResource:  (CI_OnlineResource)
                              linkage: https://apps.epsg.org/api/v1/VerticalCoordRefSystem/5703/?api_key=gml
                              name:  North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters
                              description:  Link to Geographic Markup Language (GML) description of reference system.
                              function:  (CI_OnLineFunctionCode) information
                      role:  (CI_RoleCode) resourceProvider
                  citedResponsibleParty:  (CI_ResponsibleParty)
                      organisationName:  European Petroleum Survey Group
                      contactInfo:  (CI_Contact)
                          onlineResource:  (CI_OnlineResource)
                              linkage: https://www.epsg.org/
                              name:  European Petroleum Survey Group Geodetic Parameter Registry
                              description:  Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations.
                              function:  (CI_OnLineFunctionCode) search
                      role:  (CI_RoleCode) publisher
                  VerticalCS:
                    metaDataProperty:
                      CommonMetaData:
                        type:  vertical
                        informationSource:  OGP
                        revisionDate:  2006-11-28
                        isDeprecated:  false
                    identifier:  urn:ogc:def:cs:EPSG::6499
                    name:  Vertical CS. Axis: height (H). Orientation: up. UoM: meter.
                    remarks:  Used in vertical coordinate reference systems.
                    axis:
                      CoordinateSystemAxis:
                        descriptionReference:  urn:ogc:def:axis-name:EPSG::9904
                        identifier:  urn:ogc:def:axis:EPSG::114
                        axisAbbrev:  H
                        axisDirection:  up
              code:  urn:ogc:def:crs:EPSG::5703
return to top
    identificationInfo:  (MD_DataIdentification)
        citation:  (CI_Citation)
            title:  2006 MDEQ-FEMA Hinds County Lidar Survey
            alternateTitle:  ms2006_mdeq_fema_hindscounty_m2562_metadata
            date:  (CI_Date)
                date:  2013-09-19
                dateType:  (CI_DateTypeCode) publication
            identifier:  (MD_Identifier)
                authority:  (CI_Citation)
                    title:  NOAA/NMFS/EDM
                    date: (inapplicable)
                code:
                  Anchor:  InPort Catalog ID 49817
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName: (inapplicable)
                contactInfo:  (CI_Contact)
                    onlineResource:  (CI_OnlineResource)
                        linkage: https://www.fisheries.noaa.gov/inport/item/49817
                        protocol:  WWW:LINK-1.0-http--link
                        name:  Full Metadata Record
                        description:  View the complete metadata record on InPort for more information about this dataset.
                        function:  (CI_OnLineFunctionCode) information
                role: (inapplicable)
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName: (inapplicable)
                contactInfo:  (CI_Contact)
                    onlineResource:  (CI_OnlineResource)
                        linkage: https://coast.noaa.gov
                        protocol:  WWW:LINK-1.0-http--link
                        name:   Citation URL
                        description:  Online Resource
                        function:  (CI_OnLineFunctionCode) download
                role: (inapplicable)
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName: (inapplicable)
                contactInfo:  (CI_Contact)
                    onlineResource:  (CI_OnlineResource)
                        linkage: https://coast.noaa.gov/dataviewer
                        protocol:  WWW:LINK-1.0-http--link
                        name:   Citation URL
                        description:  Online Resource
                        function:  (CI_OnLineFunctionCode) download
                role: (inapplicable)
        abstract:  This metadata record describes the acquisition and processing of bare earth lidar data, raw point cloud lidar data, lidar intensity data, and floodmap breaklines consisting of a total of 203 sheets for Hinds County, MS. The post-spacing for this project is 4-meter. This project was tasked by Mississippi Geographic Information, LLC (MGI); Work Order No. ED-6. EarthData International, Inc. is a member of MGI and was authorized to undertake this project in accordance with the terms and conditions of the Professional Services Agreement between MGI and the Mississippi Department of Environmental Quality (MDEQ), dated February 17, 2004, and in accordance with MGI Task Order No. 18a. Original contact information: Contact Name: Becky Jordan Contact Org: EarthData International, Inc. Title: Project Manager Phone: 301-948-8550 x121 Email: bjordan@earthdata.com This data set is an LAZ (compressed LAS) format file containing LIDAR point cloud data.
        purpose:  The acquisition, processing, and delivery of bare earth lidar data, raw point cloud lidar data, lidar intensity data, and floodmap breaklines covering Hinds County, MS was a coordinated effort between EarthData International, Inc. and MGI, LLC to support MDEM and FEMA flood mapping requirements. Floodmap breaklines are intended to support DFIRM modeling and update only, and will be delivered to MDEQ for use on the DFIRM program.
        status:  (MD_ProgressCode) completed
        pointOfContact:  (CI_ResponsibleParty)
            organisationName:  NOAA Office for Coastal Management
            contactInfo:  (CI_Contact)
                phone:  (CI_Telephone)
                    voice:  (843) 740-1202
                address:  (CI_Address)
                    deliveryPoint:  2234 South Hobson Ave
                    city:  Charleston
                    administrativeArea:  SC
                    postalCode:  29405-2413
                    country: (missing)
                    electronicMailAddress:  coastal.info@noaa.gov
                onlineResource:  (CI_OnlineResource)
                    linkage: https://coast.noaa.gov
                    protocol:  WWW:LINK-1.0-http--link
                    name:  NOAA Office for Coastal Management Website
                    description:  NOAA Office for Coastal Management Home Page
                    function:  (CI_OnLineFunctionCode) information
            role:  (CI_RoleCode) pointOfContact
        pointOfContact:  (CI_ResponsibleParty)
            organisationName:  NOAA Office for Coastal Management
            contactInfo:  (CI_Contact)
                phone:  (CI_Telephone)
                    voice:  (843) 740-1202
                address:  (CI_Address)
                    deliveryPoint:  2234 South Hobson Ave
                    city:  Charleston
                    administrativeArea:  SC
                    postalCode:  29405-2413
                    country: (missing)
                    electronicMailAddress:  coastal.info@noaa.gov
                onlineResource:  (CI_OnlineResource)
                    linkage: https://coast.noaa.gov
                    protocol:  WWW:LINK-1.0-http--link
                    name:  NOAA Office for Coastal Management Website
                    description:  NOAA Office for Coastal Management Home Page
                    function:  (CI_OnLineFunctionCode) information
            role:  (CI_RoleCode) custodian
        resourceMaintenance:  (MD_MaintenanceInformation)
            maintenanceAndUpdateFrequency:  (MD_MaintenanceFrequencyCode) unknown
        descriptiveKeywords:  (MD_Keywords)
            keyword:  Bare earth
            keyword:  Bare ground
            keyword:  DOGAMI
            keyword:  High-resolution
            keyword:  Light Detection and Ranging
            type:  (MD_KeywordTypeCode) theme
        descriptiveKeywords:  (MD_Keywords)
            keyword:  Lidar - partner (no harvest)
            type:  (MD_KeywordTypeCode) project
            thesaurusName:  (CI_Citation)
                title:  InPort
                date: (inapplicable)
        resourceConstraints:  (MD_LegalConstraints)
            useConstraints:  (MD_RestrictionCode) otherRestrictions
            otherConstraints:  Cite As: OCM Partners, [Date of Access]: 2006 MDEQ-FEMA Hinds County Lidar Survey [Data Date Range], https://www.fisheries.noaa.gov/inport/item/49817.
        resourceConstraints:  (MD_Constraints)
            useLimitation:  NOAA provides no warranty, nor accepts any liability occurring from any incomplete, incorrect, or misleading data, or from any incorrect, incomplete, or misleading use of the data. It is the responsibility of the user to determine whether or not the data is suitable for the intended purpose.
        resourceConstraints:  (MD_LegalConstraints)
            accessConstraints:  (MD_RestrictionCode) otherRestrictions
            useConstraints:  (MD_RestrictionCode) otherRestrictions
            otherConstraints:  Access Constraints: None | Use Constraints: Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. | Distribution Liability: Any conclusions drawn from the analysis of this information are not the responsibility of MDEQ, FEMA, NOAA, the Office for Coastal Management or its partners.
        resourceConstraints:  (MD_SecurityConstraints)
            classification:  (MD_ClassificationCode) unclassified
            classificationSystem: (missing)
            handlingDescription: (missing)
        aggregationInfo:  (MD_AggregateInformation)
            aggregateDataSetName:  (CI_Citation)
                title:  NOAA Data Management Plan (DMP)
                date: (unknown)
                identifier:  (MD_Identifier)
                    authority:  (CI_Citation)
                        title:  NOAA/NMFS/EDM
                        date: (inapplicable)
                    code:  49817
                citedResponsibleParty:  (CI_ResponsibleParty)
                    organisationName: (inapplicable)
                    contactInfo:  (CI_Contact)
                        onlineResource:  (CI_OnlineResource)
                            linkage: https://www.fisheries.noaa.gov/inportserve/waf/noaa/nos/ocmp/dmp/pdf/49817.pdf
                            protocol:  WWW:LINK-1.0-http--link
                            name:  NOAA Data Management Plan (DMP)
                            description:  NOAA Data Management Plan for this record on InPort.
                            function:  (CI_OnLineFunctionCode) information
                    role: (inapplicable)
            associationType:  (DS_AssociationTypeCode) crossReference
        spatialRepresentationType:  (MD_SpatialRepresentationTypeCode) vector
        language:  eng; US
        topicCategory:  (MD_TopicCategoryCode) elevation
        extent:  (EX_Extent)
            geographicElement:  (EX_GeographicBoundingBox)
                westBoundLongitude:  -90.728886
                eastBoundLongitude:  -90.066405
                southBoundLatitude:  32.048026
                northBoundLatitude:  32.564414
            temporalElement:  (EX_TemporalExtent)
                extent:
                  TimePeriod:
                    description:   | Currentness: Publication Date
                    beginPosition:  2006-04-11
                    endPosition:  2006-04-12
        supplementalInformation:  The final LiDAR Report for the Hinds county study area may be accessed at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/2562/supplemental/ms2006_mdeq_fema_hindscounty.pdf A footprint of this data set may be viewed in Google Earth at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/2562/supplemental/ms2006_mdeq_fema_hindscounty.KMZ
return to top
    distributionInfo:  (MD_Distribution)
        distributor:  (MD_Distributor)
            distributorContact:  (CI_ResponsibleParty)
                organisationName:  NOAA Office for Coastal Management
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  (843) 740-1202
                    address:  (CI_Address)
                        deliveryPoint:  2234 South Hobson Ave
                        city:  Charleston
                        administrativeArea:  SC
                        postalCode:  29405-2413
                        country: (missing)
                        electronicMailAddress:  coastal.info@noaa.gov
                    onlineResource:  (CI_OnlineResource)
                        linkage: https://coast.noaa.gov
                        protocol:  WWW:LINK-1.0-http--link
                        name:  NOAA Office for Coastal Management Website
                        description:  NOAA Office for Coastal Management Home Page
                        function:  (CI_OnLineFunctionCode) information
                role:  (CI_RoleCode) distributor
        transferOptions:  (MD_DigitalTransferOptions)
            onLine:  (CI_OnlineResource)
                linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=2562
                protocol:  WWW:LINK-1.0-http--link
                name:  Customized Download
                description:  Create custom data files by choosing data area, product type, map projection, file format, datum, etc.
                function:  (CI_OnLineFunctionCode) download
        transferOptions:  (MD_DigitalTransferOptions)
            onLine:  (CI_OnlineResource)
                linkage: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/2562/index.html
                protocol:  WWW:LINK-1.0-http--link
                name:  Bulk Download
                description:  Simple download of data files.
                function:  (CI_OnLineFunctionCode) download
return to top
    dataQualityInfo:  (DQ_DataQuality)
        scope:  (DQ_Scope)
            level:  (MD_ScopeCode) dataset
        report:  (DQ_QuantitativeAttributeAccuracy)
            nameOfMeasure:  Accuracy
            evaluationMethodDescription:  Airborne lidar data was acquired at an altitude of 9,500' (2896 m) above mean terrain with a swath width of 7870.12 ft (2398.82 m), which yields an average post spacing of lidar points of no greater than 13.12 ft (4 m). The project was designed to achieve a vertical accuracy of the lidar points at 7.28 in (18.5 cm) root mean square error (RMSE).
            result: (missing)
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Horizontal Positional Accuracy
            evaluationMethodDescription:  The lidar data fully comply with FEMA guidance as published in Appendix A, April, 2003.
            result: (missing)
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Vertical Positional Accuracy
            evaluationMethodDescription:  The lidar data fully comply with FEMA guidance as published in Appendix A, April 2003. When compared to GPS survey grade points in generally flat non-vegetated areas, at least 95% of the positions have an error less than or equal to 37 cm (equivalent to root mean square error of 18.5 cm if errors were normally distributed).
            result: (missing)
        report:  (DQ_CompletenessCommission)
            nameOfMeasure:  Completeness Measure
            evaluationMethodDescription:  Cloud Cover: 0
            result: (missing)
        report:  (DQ_CompletenessCommission)
            nameOfMeasure:  Completeness Report
            evaluationMethodDescription:  1. EarthData's proprietary software, Checkedb, for verification against ground survey points. 2. Terrascan, for verification of automated and manual editing and final QC of products.
            result: (missing)
        report:  (DQ_ConceptualConsistency)
            nameOfMeasure:  Conceptual Consistency
            evaluationMethodDescription:  Compliance with the accuracy standard was ensured by the placement of GPS ground control after the acquisition 1. The ground control and airborne GPS data stream were validated through a fully analytical boresight adjustment. 2. The digital terrain model (DTM) data were checked against the project control. 3. Lidar elevation data was validated through an inspection of edge matching and visual inspection for quality (artifact removal). https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/2562/supplemental/ms2006_mdeq_hindscounty.pdf
            result: (missing)
        lineage:  (LI_Lineage)
            statement: (missing)
            processStep:  (LI_ProcessStep)
                description:  EarthData has developed a unique method for processing lidar data to identify and remove elevation points falling on vegetation, buildings, and other aboveground structures. The algorithms for filtering data were utilized within EarthData's proprietary software and commercial software written by TerraSolid. This software suite of tools provides efficient processing for small to large-scale, projects and has been incorporated into ISO 9001 compliant production work flows. The following is a 1. The technician performs calibrations on the data set. 2. The technician performed a visual inspection of the data to verify that the flight lines overlap correctly. The technician also verified that there were no voids, and that the data covered the project limits. The technician then selected a series of areas from the data set and inspected them where adjacent flight lines overlapped. These overlapping areas were merged and a process which utilizes 3-D Analyst and EarthData's proprietary software was run to detect and color code the differences in elevation values and profiles. The technician reviewed these plots and located the areas that contained systematic errors or distortions that were introduced by the lidar sensor. 3. Systematic distortions highlighted in step 2 were removed and the data was re-inspected. Corrections and adjustments can involve the application of angular deflection or compensation for curvature of the ground surface that can be introduced by crossing from one type of land cover to another. 4. The lidar data for each flight line was trimmed in batch for the removal of the overlap areas between flight lines. The data was checked against a control network to ensure that vertical requirements were maintained. Conversion to the client-specified datum and projections were then completed. The lidar flight line data sets were then segmented into adjoining tiles for batch processing and data management. 5. The initial batch-processing run removed 95% of points falling on vegetation. The algorithm also removed the points that fell on the edge of hard features such as structures, elevated roadways and bridges. 6. The operator interactively processed the data using lidar editing tools. During this final phase the operator generated a TIN based on a desired thematic layers to evaluate the automated classification performed in step 5. This allowed the operator to quickly re-classify points from one layer to another and recreate the TIN surface to see the effects of edits. Geo-referenced images were toggled on or off to aid the operator in identifying problem areas. The data was also examined with an automated profiling tool to aid the operator in the reclassification. 7. The final bare earth was written to an LAS 1.0 format and also converted to ASCII. 8. The point cloud data were delivered in LAS 1.0 format.
                dateTime:
                  DateTime:  2006-12-18T00:00:00
            processStep:  (LI_ProcessStep)
                description:  EarthData utilizes a combination of proprietary and COTS processes to generate intensity images from the lidar data. Intensity images are generated from the full points cloud (minus noise points) and the pixel width is typically matched to the post spacing of the lidar data to achieve the best resolution. The following steps are used to 1. Lidar point cloud is tiled to the deliverable tile layout. 2. All noise points, spikes, and wells are deleted out of the tiles. 3. An EarthData proprietary piece of software, EEBN2TIF is then used to process out the intensity values of the lidar. At this point, the pixel size is selected based on best fit or to match the client specification if noted in the SOW. 4. The software then generates TIF and TFW files for each tile. 5. ArcView is used to review and QC the tiles before delivery. 6. The lidar intensity data were delivered in TIF format.
                dateTime:
                  DateTime:  2006-12-18T00:00:00
            processStep:  (LI_ProcessStep)
                description:  It should be noted that the breaklines developed for use in the H&H modeling should not be confused with traditional stereo-graphic or field survey derived breaklines. The elevation component of the 3D streamlines (breaklines) is derived from the lowest adjacent bare earth lidar point and adjusted to ensure that the streams flow downstream. The best elevation that can be derived for the 3D streamlines will be the water surface elevation on the date that the lidar data was acquired. The elevations in the 3D streamlines will not represent the underwater elevations for streams due to the fact that lidar data cannot collect bathymetry information. Watershed Concepts and EarthData have done considerable research generating breaklines from lidar data. Current H&H modeling practices rely heavily on mass points and breaklines to create a realistic TIN surface for hydrologic and hydraulic modeling. Lidar data consists only of points, which are not suited to defining sharp breaks on terrain. The problem is most pronounced across stream channels, where lidar is not able to define the stream banks clearly. Furthermore lidar does not reflect off water; therefore, no reliable elevation points will exist within the stream channel itself. The TIN surface generated from lidar data alone is unsuitable for H&H modeling. Watershed Concepts engineers have studied the sensitivity of the 100-year flood boundary to the definition of stream channel geometry. The surface created with both lidar points and breaklines improves channel definitions for hydraulic cross section takeoffs and better defines the stream invert. It is not necessary to create breaklines on the top and bottom of stream banks; minor modifications to the cross sections and stream inverts can be made based on field survey data as necessary. In the 100-year flood, most of the flooded cross sectional area occurs in the overbank; therefore, creating a more refined channel definition from the lidar data is not cost effective. The lidar TIN is used simply as the basis for the overbank definition. Our research indicates that breaklines are required at the stream centerline for smaller streams with widths less than 50 feet. For larger streams (widths greater than 50 feet, breaklines are needed on the left and right water edge lines. Collection of photography and stereo compilation of the breaklines is not cost-effective for this purpose. Watershed Concepts and EarthData have developed techniques to synthesize 3D breaklines using digital orthophotos and lidar data. These breaklines can be digitized in 2D from orthophotos, approximating the stream bank in areas of significant tree overhang. A bounding polygon, created from the edge of bank lines, is used to remove all points within the channel. Automatic processes assign elevations to the vertices of the centerline based on surrounding lidar points. The lines are then smoothed to ensure a continuous downhill flow. Edge-of-bank vertices are adjusted vertically to match the stream centerline vertices. A new TIN can then be created from the remaining lidar points and newly created breaklines. The new TIN clearly defines the stream channel. For this project, breaklines were generated in the matter described above for all streams draining greater than approximately one square mile. 2D lines defining the centerline and banks of those streams were manually digitized into ESRI shape file format from 2005 imagery. The streamlines were then processed against the bare earth lidar as described above. The new 3D lines were then viewed in profile to correct any anomalous vertices or remove errant points from the lidar DTM, which cause unrealistic "spikes" or "dips" in the breakline. The 3D breaklines were delivered in ESRI shapefile format.
                dateTime:
                  DateTime:  2007-01-04T00:00:00
            processStep:  (LI_ProcessStep)
                description:  The NOAA Office for Coastal Management (OCM) received the files in las format. The files contained LiDAR elevation and intensity measurements. The data were in Mississippi State Plane West (2301, feet) coordinates and NAVD88 (Geoid03) vertical datum (feet). OCM performed the following processing for data storage and Digital Coast provisioning purposes: 1. The data were converted from State Plane (2301) coordinates to geographic coordinates. 2. The data were converted from NAVD88 (orthometric) heights to GRS80 (ellipsoid) heights using Geoid03. 3. 8 laz tiles had coordinates falling outside of the header boundary. These tiles were re-tiled to remove any data points falling outside of the header boundary. 4. All laz tiles were received with all points classed as Class 1 (unclassified); the laz tiles were put through lasground.exe (lastools) which uses an algorithm to define which points fall as class 2 (Ground). 5. The data were sorted by time and zipped to laz format.
                dateTime:
                  DateTime:  2013-09-19T00:00:00
            source:  (LI_Source)
                description:  Source Contribution: MGI requested the collection of lidar data over Hinds County, MS. In response EarthData International, Inc. acquired the data on April 11 and 12, 2006 using its aircraft with tail number N62912. Lidar data was captured using an ALS50 lidar system, including an inertial measuring unit (IMU) and a dual frequency GPS receiver. An additional GPS receiver was in constant operation over a temporary control point set by EarthData International, Inc. at Hawkins Airport which was later tied into a local network by Waggoner Engineering, Inc. During the data acquisition, the receivers collected phase data at an epoch rate of 1 Hz. The solution from Hinds County, MS was found to be of high integrity and met the accuracy requirements for the project. These accuracy checks also verified that the data meets the guidelines outlined in FEMA's Guidelines and Specifications for Flood Hazard Mapping Partners and Appendix A, section 8, Airborne Light Detection and Ranging (LIDAR) Surveys. Airspeed - 160 knots Laser Pulse Rate - 32900 kHz Field of View - 45 degrees Scan Rate - 18 Hz | Source Geospatial Form: model | Type of Source Media: firewire
                sourceCitation:  (CI_Citation)
                    title:  Aerial Acquisition of Lidar Data for Hinds County, MS
                    date:  (CI_Date)
                        date:  2006-04-12
                        dateType:  (CI_DateTypeCode) publication
                sourceExtent:  (EX_Extent)
                    temporalElement:  (EX_TemporalExtent)
                        extent:
                          TimeInstant:
                            timePosition:  2006-04-11
            source:  (LI_Source)
                description:  Source Contribution: Waggoner Engineering, Inc., under contract to EarthData International, Inc. successfully established ground control for Hinds County, MS. A total of 16 ground control points in Hinds County, MS were acquired. GPS was used to establish the control network. The horizontal datum was the North American Datum of 1983 (NAD83). The vertical datum was the North American Vertical Datum of 1988 (NAVD88). | Source Geospatial Form: diagram | Type of Source Media: electronic mail system
                sourceCitation:  (CI_Citation)
                    title:  Hinds County, Mississippi - Lidar Control
                    date:  (CI_Date)
                        date:  2006-09-18
                        dateType:  (CI_DateTypeCode) publication
                sourceExtent:  (EX_Extent)
                    temporalElement:  (EX_TemporalExtent)
                        extent:
                          TimeInstant:
                            timePosition:  2006-09-18
            processStep:  (LI_ProcessStep)
                description:   The vertical values in this data set have been converted to reference North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters, using the GEOID18 grids provided by the National Geodetic Survey. Any datum and projection transformations were then done with the Office for Coastal Management 'datum_shift' program. Compression to an LAZ file was done with the LAStools 'laszip' program and can be unzipped with the same free program (laszip.org) Processing notes:
                dateTime:
                  DateTime:  2023-07-01T06:20:26
                processor:  (CI_ResponsibleParty)
                    individualName:  NOAA Office for Coastal Management
                    contactInfo:  (CI_Contact)
                        address:  (CI_Address)
                            electronicMailAddress:  coastal.info@noaa.gov
                    role:  (CI_RoleCode) processor