2010 U.S. Department of Agriculture- Natural Resources Conservation Service (USDA-NRCS) Topographic Lidar: Eastern Connecticut | spatialRepresentationInfo|
---|---|
(MI_Metadata) fileIdentifier: gov.noaa.nmfs.inport:49655 language: LanguageCode: eng characterSet: (MD_CharacterSetCode) UTF8 hierarchyLevel: (MD_ScopeCode) dataset contact: (CI_ResponsibleParty) organisationName: OCM Partners contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (missing) address: (CI_Address) role: (CI_RoleCode) resourceProvider contact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact dateStamp: DateTime: 2022-08-09T17:11:37 metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data metadataStandardVersion: ISO 19115-2:2009(E) return to top spatialRepresentationInfo: return to top referenceSystemInfo: return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) authority: (CI_Citation) title: NAD83(NSRS2007) date: (CI_Date) date: 2008-11-12 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: European Petroleum Survey Group contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://apps.epsg.org/api/v1/CoordRefSystem/4759/export/?format=gml role: (missing) code: urn:ogc:def:crs:EPSG:4759 version: 6.18.3 return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) authority: (CI_Citation) title: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters alternateTitle: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters citedResponsibleParty: (CI_ResponsibleParty) organisationName: (withheld) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://apps.epsg.org/api/v1/VerticalCoordRefSystem/5703/?api_key=gml name: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters description: Link to Geographic Markup Language (GML) description of reference system. function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) resourceProvider citedResponsibleParty: (CI_ResponsibleParty) organisationName: European Petroleum Survey Group contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.epsg.org/ name: European Petroleum Survey Group Geodetic Parameter Registry description: Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. function: (CI_OnLineFunctionCode) search role: (CI_RoleCode) publisher VerticalCS: metaDataProperty: CommonMetaData: type: vertical informationSource: OGP revisionDate: 2006-11-28 isDeprecated: false identifier: urn:ogc:def:cs:EPSG::6499 name: Vertical CS. Axis: height (H). Orientation: up. UoM: meter. remarks: Used in vertical coordinate reference systems. axis: CoordinateSystemAxis: descriptionReference: urn:ogc:def:axis-name:EPSG::9904 identifier: urn:ogc:def:axis:EPSG::114 axisAbbrev: H axisDirection: up code: urn:ogc:def:crs:EPSG::5703 return to top identificationInfo: (MD_DataIdentification) citation: (CI_Citation) title: 2010 U.S. Department of Agriculture- Natural Resources Conservation Service (USDA-NRCS) Topographic Lidar: Eastern Connecticut alternateTitle: ct2010_usda_east_m2598_metadata date: (CI_Date) date: 2013-11 dateType: (CI_DateTypeCode) publication identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: Anchor: InPort Catalog ID 49655 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inport/item/49655 protocol: WWW:LINK-1.0-http--link name: Full Metadata Record description: View the complete metadata record on InPort for more information about this dataset. function: (CI_OnLineFunctionCode) information role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer protocol: WWW:LINK-1.0-http--link name: Citation URL description: Online Resource function: (CI_OnLineFunctionCode) download role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: Citation URL description: Online Resource function: (CI_OnLineFunctionCode) download role: (inapplicable) presentationForm: (unknown) abstract: Earth Eye collected LiDAR data for approximately 4,589 square kilometers that partially cover the Connecticut counties of Hartford, Tolland, Windham, Middlesex and New London. The nominal pulse spacing for this project was no greater than 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 1-Unclassified, 2-Ground, 7-Noise, 9-Water. Dewberry produced 3D breaklines and combined these with the final LiDAR data to produce seamless hydro flattened DEMs for the 4,840 tiles (1000 m x 1000 m) that cover the project area. This data set is an LAZ (compressed LAS) format file containing LIDAR point cloud data. purpose: The purpose of this LiDAR data was to produce high accuracy 3D elevation products, including tiled LiDAR in LAS 1.2 format, 3D breaklines, and 1 m cell size hydro flattened Digital Elevation Models (DEMs). This data was produced for the U.S. Corp of Engineers and USDA-NRCS Connecticut for use in projects dealing with conservation planning, design, research, floodplain mapping, dam safety assessments, and hydrologic modeling. status: (MD_ProgressCode) completed pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) custodian resourceMaintenance: (MD_MaintenanceInformation) maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded graphicOverview: (MD_BrowseGraphic) fileName: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/2598/supplemental/ct2010_usda_east.KMZ fileDescription: This graphic shows the lidar coverage for Hartford, Tolland, Windham, Middlesex and New London Counties, Connecticut. fileType: kmz descriptiveKeywords: (MD_Keywords) keyword: Bare earth keyword: Light Detection and Ranging type: (MD_KeywordTypeCode) theme descriptiveKeywords: (MD_Keywords) keyword: Lidar - partner (no harvest) type: (MD_KeywordTypeCode) project thesaurusName: (CI_Citation) title: InPort date: (inapplicable) resourceConstraints: (MD_LegalConstraints) useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Cite As: OCM Partners, [Date of Access]: 2010 U.S. Department of Agriculture- Natural Resources Conservation Service (USDA-NRCS) Topographic Lidar: Eastern Connecticut [Data Date Range], https://www.fisheries.noaa.gov/inport/item/49655. resourceConstraints: (MD_Constraints) useLimitation: NOAA provides no warranty, nor accepts any liability occurring from any incomplete, incorrect, or misleading data, or from any incorrect, incomplete, or misleading use of the data. It is the responsibility of the user to determine whether or not the data is suitable for the intended purpose. resourceConstraints: (MD_LegalConstraints) accessConstraints: (MD_RestrictionCode) otherRestrictions useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Access Constraints: None | Use Constraints: Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. These data depict the heights at the time of the survey and are only accurate for that time. | Distribution Liability: Any conclusions drawn from the analysis of this information are not the responsibility of USDA-NRCS, USACE, Earth Eye, Dewberry, NOAA, the Office for Coastal Management or its partners. resourceConstraints: (MD_SecurityConstraints) classification: (MD_ClassificationCode) unclassified classificationSystem: (missing) handlingDescription: (missing) aggregationInfo: (MD_AggregateInformation) aggregateDataSetName: (CI_Citation) title: NOAA Data Management Plan (DMP) date: (unknown) identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: 49655 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inportserve/waf/noaa/nos/ocmp/dmp/pdf/49655.pdf protocol: WWW:LINK-1.0-http--link name: NOAA Data Management Plan (DMP) description: NOAA Data Management Plan for this record on InPort. function: (CI_OnLineFunctionCode) information role: (inapplicable) associationType: (DS_AssociationTypeCode) crossReference spatialRepresentationType: (MD_SpatialRepresentationTypeCode) vector language: eng; US topicCategory: (MD_TopicCategoryCode) elevation extent: (EX_Extent) geographicElement: (EX_GeographicBoundingBox) westBoundLongitude: -72.645174 eastBoundLongitude: -71.787609 southBoundLatitude: 41.296986 northBoundLatitude: 42.034505 temporalElement: (EX_TemporalExtent) extent: TimePeriod: description: | Currentness: Ground Condition beginPosition: 2010-11-03 endPosition: 2010-12-11 supplementalInformation: A complete description of this dataset is available in the Final Project Report submitted to the both the U.S. Corp of Engineers and USDA-NRCS Connecticut. A copy of this report can be found here: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/2598/supplemental/ct2010_usda_east.pdf A footprint of this data set may be viewed in Google Earth at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/2598/supplemental/ct2010_usda_east.KMZ return to top contentInfo: (MD_FeatureCatalogueDescription) complianceCode: false language: LanguageCode: eng includedWithDataset: false featureCatalogueCitation: (CI_Citation) title: none date: (unavailable) return to top distributionInfo: (MD_Distribution) distributor: (MD_Distributor) distributorContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) distributor transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=2598 protocol: WWW:LINK-1.0-http--link name: Customized Download description: Create custom data files by choosing data area, product type, map projection, file format, datum, etc. function: (CI_OnLineFunctionCode) download transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/2598/index.html protocol: WWW:LINK-1.0-http--link name: Bulk Download description: Simple download of data files. function: (CI_OnLineFunctionCode) download return to top dataQualityInfo: (DQ_DataQuality) scope: (DQ_Scope) level: (MD_ScopeCode) dataset report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Horizontal Positional Accuracy evaluationMethodDescription: Lidar source compiled to meet 1 meter horizontal accuracy.; Quantitative Value: 1.0 meters, Test that produced the value: Dewberry does not perform independent horizontal accuracy testing on the LiDAR. LiDAR vendors perform calibrations on the LiDAR sensor and compare data to adjoining flight lines to ensure LiDAR meets the 1 meter horizontal accuracy standard at the 95% confidence level. Please see the final project report delivered to the US Corp of Engineers for more details. Units in meters. result: (missing) report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Vertical Positional Accuracy evaluationMethodDescription: The vertical accuracy of the LiDAR was tested by Dewberry with 62 independent survey checkpoints comprised of the following land cover classes: open terrain (22), grass/weeds/crops (20) and forest (20). Checkpoints in open terrain were used to compute the Fundamental Vertical Accuracy (FVA). Project specifications required a FVA of 0.185 m based on a RMSEz (0.0925 m) x 1.9600. All checkpoints were used to compute the Consolidated Vertical Accuracy (CVA). ; Quantitative Value: 0.09 meters, Test that produced the value: Based on the vertical accuracy testing conducted by Dewberry, using NSSDA and FEMA methodology, vertical accuracy at the 95% confidence level (called Accuracyz) is computed by the formula RMSEz x 1.9600. The dataset for the Connecticut LiDAR project satisfies the criteria: Lidar dataset tested 0.09 m vertical accuracy at 95% confidence level in open terrain, based on RMSEz (0.0925 m) x 1.9600. Based on the vertical accuracy testing conducted by Dewberry, using NDEP and ASPRS methodology, consolidated vertical accuracy at the 95% confidence level is computed using the 95th percentile method. The dataset for the Connecticut LiDAR project tested 0.17 m vertical accuracy at 95% confidence level in all land cover categories combined. result: (missing) report: (DQ_CompletenessCommission) nameOfMeasure: Completeness Report evaluationMethodDescription: A visual qualitative assessment was performed to ensure data completeness and bare earth data cleanliness. No void or missing data, the bare earth surface is of good quality and data passes vertical accuracy specifications. result: (missing) report: (DQ_ConceptualConsistency) nameOfMeasure: Conceptual Consistency evaluationMethodDescription: Data covers the tile scheme provided for the project area. result: (missing) lineage: (LI_Lineage) statement: (missing) processStep: (LI_ProcessStep) description: Data for the U.S. Corp of Engineers High Resolution LiDAR Data Acquisition & Processing for Portions of Connecticut project was acquired by Earth Eye, LLC. The project area included approximately 1,741 contiguous square miles for portions of Connecticut including a buffer of 200 meters. LiDAR sensor data were collected with an Leica ALS60 sn146 LIDAR System. No imagery was requested or delivered. The data was delivered in the UTM coordinate system, meters, zone 18, horizontal datum NAD83, vertical datum NGVD88, Geoid 09. Deliverables for the project included a raw (unclassified) calibrated LiDAR point cloud, survey control, and a final control report. The calibration process considered all errors inherent with the equipment including errors in GPS, IMU, and sensor specific parameters. Adjustments were made to achieve a flight line to flight line data match (relative calibration) and subsequently adjusted to control for absolute accuracy. Process steps to achieve this are as follows: Rigorous LiDAR calibration: all sources of error such as the sensor's ranging and torsion parameters, atmospheric variables, GPS conditions, and IMU offsets were analyzed and removed to the highest level possible. This method addresses all errors, both vertical and horizontal in nature. Ranging, atmospheric variables, and GPS conditions affect the vertical position of the surface, whereas IMU offsets and torsion parameters affect the data horizontally. The horizontal accuracy is proven through repeatability: when the position of features remains constant no matter what direction the plane was flying and no matter where the feature is positioned within the swath, relative horizontal accuracy is achieved. Absolute horizontal accuracy is achieved through the use of differential GPS with base lines shorter than 25 miles. The base station is set at a temporary monument that is 'tied-in' to the CORS network. The same position is used for every lift, ensuring that any errors in its position will affect all data equally and can therefore be removed equally. Vertical accuracy is achieved through the adjustment to ground control survey points within the finished product. Although the base station has absolute vertical accuracy, adjustments to sensor parameters introduces vertical error that must be normalized in the final (mean) adjustment. The minimum expected horizontal accuracy was tested during the boresight process to meet or exceed the National Standard for Spatial Data Accuracy (NSSDA) for a Horizontal accuracy of 1 meter RMSE or better and a Vertical Accuracy of RMSE(z) = 9.25 cm. dateTime: DateTime: 2011-12-01T00:00:00 processStep: (LI_ProcessStep) description: Earth Eye delivered LiDAR swaths to Dewberry that were calibrated and projected to project specifications. Dewberry processed the data using GeoCue and TerraScan software. The initial step is the setup of the GeoCue project, which is done by importing a project defined tile boundary index encompassing the entire project area. The acquired 3D laser point clouds, in LAS binary format, were imported into the GeoCue project and tiled according to the project tile grid. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine removes any obvious outliers from the dataset following which the ground layer is extracted from the point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model. This surface model is generated using three main parameters: building size, iteration angle and iteration distance. The initial model is based on low points being selected by a "roaming window" with the assumption is that these are the ground points. The size of this roaming window is determined by the building size parameter. The low points are triangulated and the remaining points are evaluated and subsequently added to the model if they meet the iteration angle and distance constraints. This process is repeated until no additional points are added within iterations. A second critical parameter is the maximum terrain angle constraint, which determines the maximum terrain angle allowed within the classification model. Dewberry utilizes a variety of software suites for data processing. After the initial ground classification, each tile was imported into Terrascan and a surface model was created to examine the ground classification. Dewberry analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present following the initial processing. Dewberry analysts employ 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points are removed from the ground classification. After the ground classification corrections were completed, the dataset was processed through a water classification routine that utilizes breaklines compiled by Dewberry to automatically classify hydro features. The water classification routine selects ground points within the breakline polygons and re-classifies them as class 9, water. The data was classified as follows: Class 1 = Unclassified. This class includes vegetation, buildings, noise etc. Class 2 = Ground Class 7= Noise Class 9 = Water The LAS header information was verified to contain the following: Class (Integer) GPS Week Time (0.0001 seconds) Easting (0.01 foot) Northing (0.01 foot) Elevation (0.01 foot) Echo Number (Integer 1 to 4) Echo (Integer 1 to 4) Intensity (8 bit integer) Flight Line (Integer) Scan Angle (Integer degree) dateTime: DateTime: 2012-01-01T00:00:00 processStep: (LI_ProcessStep) description: The NOAA Office for Coastal Management (OCM) received topographic files in LAS V1.2 format. The files contained lidar elevation measurements, intensity values, scan angle values, return information, flightline information, and adjusted standard GPS time. The data were received in UTM Zone 18N, NAD83 coordinates and were vertically referenced to NAVD88 using the Geoid09 model. The vertical units of the data were meters. OCM performed the following processing for data storage and Digital Coast provisioning purposes: 1. The topographic las files were converted from orthometric (NAVD88) heights to ellipsoidal heights using Geoid09. 2. The topographic las files were converted from a Projected Coordinate System (UTM Zone 18N) to a Geographic Coordinate System (NAD83). 3. The topographic las files' horizontal units were converted from meters to decimal degrees. dateTime: DateTime: 2013-11-01T00:00:00 processStep: (LI_ProcessStep) description: The vertical values in this data set have been converted to reference North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters, using the GEOID18 grids provided by the National Geodetic Survey. Any datum and projection transformations were then done with the Office for Coastal Management 'datum_shift' program. Compression to an LAZ file was done with the LAStools 'laszip' program and can be unzipped with the same free program (laszip.org) Processing notes: dateTime: DateTime: 2023-07-01T06:27:19 processor: (CI_ResponsibleParty) individualName: NOAA Office for Coastal Management contactInfo: (CI_Contact) address: (CI_Address) electronicMailAddress: coastal.info@noaa.gov role: (CI_RoleCode) processor |