

PROJECT REPORT

For the

Louisa, Virginia LiDAR Project

USGS Contract: G10PC00013

Task Order Number: G12PD00264

> Prepared for: USGS

Prepared by: Dewberry 1000 Ashley Blvd., Suite 801 Tampa, Florida 33602-3718

Report Date: August 03, 2012

Table of Contents

1	Exe	ecutive Summary	3
2	Pro	ject Tiling Footprints	5
	2.1	UTM Tiling Footprints	5
	2.2 Lis	st of delivered UTM tiles (797):	6
	2.3	State Plane Tiling Footprints	13
	2.4	List of delivered State Plane tiles (1, 338):	14
3	LiD	DAR Acquisition	25
	3.1	Flight Layout	25
	3.2	LiDAR Flight Parameters	25
	3.3	LiDAR Surveys	26
	3.4	LiDAR Survey Coverage Check	27
	3.5	GPS Surveys	27
	3.6	Acquisition Summary	27
4	LiD	DAR Calibration	27
	4.1	LiDAR Data Processing	28
	4.1. 4.1. 4.1. 4.1. 4.1.	 <i>Generation and Calibration of Laser Points (raw data)</i> <i>Vertical Bias Resolution</i> 	29 29 29
	4.2. 4.2. 4.2. 4.2.	1 Calibration Setup and Data Inventory	29 30 30
5	LiD	DAR Processing & Qualitative Assessment	31
	5.1	Data Classification and Editing	31
:	5.2	Qualitative Assessment	34
:	5.3	Analysis	35
	5.4	Conclusion	46
6	Sur	vey Vertical Accuracy Checkpoints	47
7	LiD	DAR Vertical Accuracy Statistics & Analysis	48
,	7.1	Background	48

7	7.2	Vertical Accuracy Test Procedures	50
7	7.3	Vertical Accuracy Testing Steps	51
7	7.4	Vertical Accuracy Results	53
7	7.5	Conclusion	55
8	Bre	eakline Production & Qualitative Assessment Report	56
8	3.1	Breakline Production Methodology	56
8	3.2	Breakline Qualitative Assessment	56
8	3.3	Breakline Topology Rules	56
8	3.4	Breakline QA/QC Checklist	57
8	3.5	LiDARgrammetry Data Dictionary & Stereo Compilation Rules	59
ł	Horizo	ontal and Vertical Datum	59
		inate System and Projection	
		Streams and Rivers	
1		cription	
		le Definition	
		ture Definition	
Ι		Ponds and Lakes	
	Des	cription	61
		le Definition	
		ture Definition	
1	Fidal '	Waters	63
		cription	
		le Definition	
		ture Definition	
C		ct Information	
9	DE	M Production & Qualitative Assessment	65
9	9.1	DEM Production Methodology	65
9	9.2	DEM Qualitative Assessment	66
9	9.3	DEM Vertical Accuracy Results	66
9	9.4	DEM QA/QC Checklist	68

1 Executive Summary

The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR) technology for the USGS Louisa, Virginia Project Area.

The LiDAR data were processed to a bare-earth digital terrain model (DTM). Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Deliverables were produced in both UTM and State Plane coordinates. The data was formatted according to tiles with each UTM tile covering an area of 1,000 meters by 1,000 meters and each State Plane tile covering an area of 2,500 feet by 2,500 feet. A total of 797 UTM tiles and 1,338 State Plane tiles were produced for the project encompassing an area of approximately 277 sq. miles.

The Project Team

Dewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all LiDAR products, breakline production, Digital Elevation Model (DEM) production, and quality assurance.

Dewberry's Gary Simpson completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the LiDAR-derived surface model. He also verified the GPS base station coordinates used during LiDAR data acquisition to ensure that the base station coordinates were accurate. Note that a separate Survey Report was created for this portion of the project.

Laser Mapping Specialist, Inc (LMSI) completed LiDAR data acquisition and data calibration for the project area.

Survey Area

The project area addressed by this report falls within the Virginia counties of Fluvanna, Goochland, Louisa, and Spotsylvania.

Date of Survey

The LiDAR aerial acquisition was conducted from March 9, 2012 thru March 13, 2012.

Datum Reference

Data produced for the project were delivered in both of the following reference systems.

Horizontal Datum: North American Datum of 1983 (NAD 83)
Vertical Datum: North American Vertical Datum of 1988 (NAVD88)
Coordinate System: UTM Zone 18
Units: Horizontal units are in meters, Vertical units are in meters.
Geoid Model: Geoid09 (Geoid 09 was used to convert ellipsoid heights to orthometric heights).

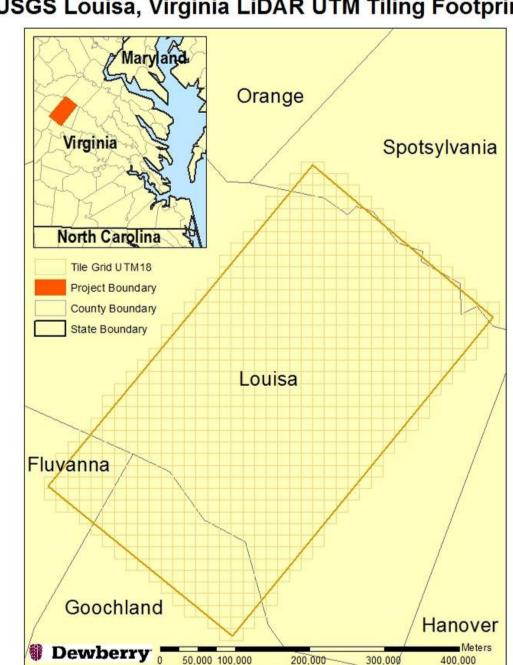
Horizontal Datum: North American Datum of 1983 HARN (NAD83 HARN)
Vertical Datum: North American Vertical Datum of 1988 (NAVD88)
Coordinate System: Virginia State Plane South
Units: Horizontal units are in U.S. Survey feet, Vertical units are in feet.
Geoid Model: Geoid09 (Geoid 09 was used to convert ellipsoid heights to orthometric heights).

LiDAR Vertical Accuracy

For the Louisa, Virginia LiDAR Project, all checkpoints were located in Open Terrain land cover type. The tested $RMSE_z$ for checkpoints in open terrain equaled **0.07 m** compared with the 0.125 m specification; and the FVA computed using $RMSE_z \ge 1.9600$ was equal to **0.13 m**, compared with the 0.245 m specification.

For the Louisa, Virginia LiDAR Project, the tested CVA computed using the 95th percentile was equal to **0.12 m**, compared with the 0.363 m specification.

Project Deliverables


The deliverables for the project are listed below.

- 1. Raw Point Cloud Data (Swaths) in UTM coordinates
- 2. Classified Point Cloud Data (Tiled) in both UTM and State Plane coordinates
- 3. Bare Earth Surface (Raster DEM IMG Format) in both UTM and State Plane coordinates
- 4. Intensity Images (8-bit gray scale, tiled, GeoTIFF format) in both UTM and State Plane coordinates
- 5. Breakline Data (File GDB) in both UTM and State Plane coordinates
- 6. Control & Accuracy Checkpoint Report & Points
- 7. Metadata
- 8. Project Report (Acquisition, Processing, QC)
- 9. Project Extents in both UTM and State Plane coordinates, Including a shapefile derived from the LiDAR Deliverable

2 **Project Tiling Footprints**

UTM Tiling Footprints 2.1

Seven hundred ninety seven (797) UTM tiles were delivered for the project. Each tile's extent is 1,000 meters by 1,000 meters.

USGS Louisa, Virginia LiDAR UTM Tiling Footprint

Figure 1: UTM Project Map

2.2 List of delivered UTM tiles (797):

v		
18STH381841	18STG391891	17SQB301921
18STH391841	18STG401891	17SQB311921
18STH371851	18STG411891	17SQB321921
18STH381851	18STH421891	17SQB331921
18STH391851	18STH431891	17SQB341921
18STH401851	17SQB301901	17SQB351921
17SQB351861	17SQB311901	18STH361921
18STH361861	17SQB321901	18STH371921
18STH371861	17SQB331901	18STH381921
18STH381861	17SQB341901	18STH391921
18STH391861	17SQB351901	18STH401921
18STH401861	18STH361901	18STH411921
18STH411861	18STH371901	18STH421921
17SQB341871	18STH381901	18STH431921
17SQB351871	18STH391901	18STH441921
18STH361871	18STH401901	18STH451921
18STH371871	18STH411901	18STH461921
18STH381871	18STH421901	17SQB271931
18STH391871	18STH431901	17SQB281931
18STH401871	18STH441901	17SQB291931
18STH411871	17SQB291911	17SQB301931
18STH421871	17SQB301911	17SQB311931
17SQB331881	17SQB311911	17SQB321931
17SQB341881	17SQB321911	17SQB331931
17SQB351881	17SQB331911	17SQB341931
18STH361881	17SQB341911	17SQB351931
18STH371881	17SQB351911	18STH361931
18STH381881	18STH361911	18STH371931
18STG391881	18STH371911	18STH381931
18STG401881	18STH381911	18STH391931
18STG411881	18STH391911	18STH401931
18STH421881	18STH401911	18STH411931
17SQB321891	18STH411911	18STH421931
17SQB331891	18STH421911	18STH431931
17SQB341891	18STH431911	18STH441931
17SQB351891	18STH441911	18STH451931
18STH361891	18STH451911	18STH461931
18STH371891	17SQB281921	17SQB261941
18STH381891	17SQB291921	17SQB271941

17SQB281941	18STH461951	17SQB351971
17SQB291941	18STH471951	17SQB361971
17SQB301941	18STH481951	18STG371971
17SQB311941	17SQB231961	18STG381971
17SQB321941	17SQB241961	18STG391971
17SQB331941	17SQB251961	18STG401971
17SQB341941	17SQB261961	18STG411971
17SQB351941	17SQB271961	18STG421971
18STH361941	17SQB281961	18STG431971
18STH371941	17SQB291961	18STG441971
18STH381941	17SQB301961	18STG451971
18STH391941	17SQB311961	18STG461971
18STH401941	17SQB321961	18STG471971
18STH411941	17SQB331961	18STG481971
18STH421941	17SQB341961	18STG491971
18STH431941	17SQB351961	18STG501971
18STH441941	17SQB361961	17SQB241981
18STH451941	18STH371961	17SQB251981
18STH461941	18STH381961	17SQB261981
18STH471941	18STH391961	17SQB271981
17SQB241951	18STH401961	17SQB281981
17SQB251951	18STH411961	17SQB291981
17SQB261951	18STH421961	17SQB301981
17SQB271951	18STH431961	17SQB311981
17SQB281951	18STG441961	17SQB321981
17SQB291951	18STG451961	17SQB331981
17SQB301951	18STG461961	17SQB341981
17SQB311951	18STG471961	17SQB351981
17SQB321951	18STG481961	17SQB361981
17SQB331951	18STG491961	18STG371981
17SQB341951	17SQB231971	18STG381981
17SQB351951	17SQB241971	18STG391981
17SQB361951	17SQB251971	18STG401981
18STH371951	17SQB261971	18STG411981
18STH381951	17SQB271971	18STG421981
18STH391951	17SQB281971	18STG431981
18STH401951	17SQB291971	18STG441981
18STH411951	17SQB301971	18STG451981
18STH421951	17SQB311971	18STG461981
18STH431951	17SQB321971	18STG471981
18STH441951	17SQB331971	18STH481981
18STH451951	17SQB341971	18STH491981

18STH501981	18STH371001	18STH521011
18STH511981	18STH381001	18STH531011
17SQB241991	18STH391001	17SQC271021
17SQB251991	18STH401001	17SQC281021
17SQB261991	18STH411001	17SQC291021
17SQB271991	18STH421001	17SQC301021
17SQB281991	18STH431001	17SQC311021
17SQB291991	18STH441001	17SQC321021
17SQB301991	18STH451001	17SQC331021
17SQB311991	18STH461001	17SQC341021
17SQB321991	18STH471001	17SQC351021
17SQC331991	18STH481001	17SQC361021
17SQC341991	18STH491001	18STH371021
17SQC351991	18STH501001	18STH381021
17SQC361991	18STH511001	18STH391021
18STG371991	18STH521001	18STH401021
18STG381991	17SQC261011	18STH411021
18STG391991	17SQC271011	18STH421021
18STG401991	17SQC281011	18STH431021
18STG411991	17SQC291011	18STH441021
18STG421991	17SQC301011	18STH451021
18STG431991	17SQC311011	18STH461021
18STG441991	17SQC321011	18STH471021
18STG451991	17SQC331011	18STH481021
18STG461991	17SQC341011	18STH491021
18STG471991	17SQC351011	18STH501021
18STH481991	17SQC361011	18STH511021
18STH491991	18STH371011	18STH521021
18STH501991	18STH381011	18STH531021
18STH511991	18STH391011	18STH541021
17SQC251001	18STH401011	17SQC281031
17SQC261001	18STH411011	17SQC291031
17SQC271001	18STH421011	17SQC301031
17SQC281001	18STH431011	17SQC311031
17SQC291001	18STH441011	17SQC321031
17SQC301001	18STH451011	17SQC331031
17SQC311001	18STH461011	17SQC341031
17SQC321001	18STH471011	17SQC351031
17SQC331001	18STH481011	17SQC361031
17SQC341001	18STH491011	18STH371031
17SQC351001	18STH501011	18STH381031
17SQC361001	18STH511011	18STH391031

18STH401031	18STH541041	18STH421061
18STH411031	18STH551041	18STH431061
18STH421031	17SQC291051	18STH441061
18STH431031	17SQC301051	18STH451061
18STH441031	17SQC311051	18STH461061
18STH451031	17SQC321051	18STH471061
18STH461031	17SQC331051	18STH481061
18STH471031	17SQC341051	18STH491061
18STH481031	17SQC351051	18STH501061
18STH491031	17SQC361051	18STH511061
18STH501031	18STH371051	18STH521061
18STH511031	18STH381051	18STH531061
18STH521031	18STH391051	18STH541061
18STH531031	18STH401051	18STH551061
18STH541031	18STH411051	18STH561061
18STH551031	18STH421051	18STH571061
17SQC281041	18STH431051	17SQC311071
17SQC291041	18STH441051	17SQC321071
17SQC301041	18STH451051	17SQC331071
17SQC311041	18STH461051	17SQC341071
17SQC321041	18STH471051	17SQC351071
17SQC331041	18STH481051	17SQC361071
17SQC341041	18STH491051	18STH371071
17SQC351041	18STH501051	18STH381071
17SQC361041	18STH511051	18STH391071
18STH371041	18STH521051	18STH401071
18STH381041	18STH531051	18STH411071
18STH391041	18STH541051	18STH421071
18STH401041	18STH551051	18STH431071
18STH411041	18STH561051	18STH441071
18STH421041	17SQC301061	18STH451071
18STH431041	17SQC311061	18STH461071
18STH441041	17SQC321061	18STH471071
18STH451041	17SQC331061	18STH481071
18STH461041	17SQC341061	18STH491071
18STH471041	17SQC351061	18STH501071
18STH481041	17SQC361061	18STH511071
18STH491041	18STH371061	18STH521071
18STH501041	18STH381061	18STH531071
18STH511041	18STH391061	18STH541071
18STH521041	18STH401061	18STH551071
18STH531041	18STH411061	18STH561071

18STH571071	18STH451091	18STH591101
18STH581071	18STH461091	18STH601101
17SQC321081	18STH471091	17SQC341111
17SQC331081	18STH481091	17SQC351111
17SQC341081	18STH491091	17SQC361111
17SQC351081	18STH501091	18STH371111
17SQC361081	18STH511091	18STH381111
18STH371081	18STH521091	18STH391111
18STH381081	18STH531091	18STH401111
18STH391081	18STH541091	18STH411111
18STH401081	18STH551091	18STH421111
18STH411081	18STH561091	18STH431111
18STH421081	18STH571091	18STH441111
18STH431081	18STH581091	18STH451111
18STH441081	18STH591091	18STH461111
18STH451081	18STH601091	18STH471111
18STH461081	17SQC331101	18STH481111
18STH471081	17SQC341101	18STH491111
18STH481081	17SQC351101	18STH501111
18STH491081	17SQC361101	18STH511111
18STH501081	18STH371101	18STH521111
18STH511081	18STH381101	18STH531111
18STH521081	18STH391101	18STH541111
18STH531081	18STH401101	18STH551111
18STH541081	18STH411101	18STH561111
18STH551081	18STH421101	18STH571111
18STH561081	18STH431101	18STH581111
18STH571081	18STH441101	18STH591111
18STH581081	18STH451101	18STH601111
18STH591081	18STH461101	18STH611111
17SQC331091	18STH471101	17SQC351121
17SQC341091	18STH481101	17SQC361121
17SQC351091	18STH491101	18STH371121
17SQC361091	18STH501101	18STH381121
18STH371091	18STH511101	18STH391121
18STH381091	18STH521101	18STH401121
18STH391091	18STH531101	18STH411121
18STH401091	18STH541101	18STH421121
18STH411091	18STH551101	18STH431121
18STH421091	18STH561101	18STH441121
18STH431091	18STH571101	18STH451121
18STH441091	18STH581101	18STH461121

18STH471121	18STH401141	18STH411161
18STH481121	18STH411141	18STH421161
18STH491121	18STH421141	18STH431161
18STH501121	18STH431141	18STH441161
18STH511121	18STH441141	18STH451161
18STH521121	18STH451141	18STH461161
18STH531121	18STH461141	18STH471161
18STH541121	18STH471141	18STH481161
18STH551121	18STH481141	18STH491161
18STH561121	18STH491141	18STH501161
18STH571121	18STH501141	18STH511161
18STH581121	18STH511141	18STH521161
18STH591121	18STH521141	18STH531161
18STH601121	18STH531141	18STH541161
18STH611121	18STH541141	18STH551161
17SQC361131	18STH551141	18STH561161
18STH371131	18STH561141	18STH391171
18STH381131	18STH571141	18STH401171
18STH391131	18STH581141	18STH411171
18STH401131	18STH381151	18STH421171
18STH411131	18STH391151	18STH431171
18STH421131	18STH401151	18STH441171
18STH431131	18STH411151	18STH451171
18STH441131	18STH421151	18STH461171
18STH451131	18STH431151	18STH471171
18STH461131	18STH441151	18STH481171
18STH471131	18STH451151	18STH491171
18STH481131	18STH461151	18STH501171
18STH491131	18STH471151	18STH511171
18STH501131	18STH481151	18STH521171
18STH511131	18STH491151	18STH531171
18STH521131	18STH501151	18STH541171
18STH531131	18STH511151	18STH551171
18STH541131	18STH521151	18STH401181
18STH551131	18STH531151	18STH411181
18STH561131	18STH541151	18STH421181
18STH571131	18STH551151	18STH431181
18STH581131	18STH561151	18STH441181
18STH591131	18STH571151	18STH451181
18STH371141	18STH381161	18STH461181
18STH381141	18STH391161	18STH471181
18STH391141	18STH401161	18STH481181

18STH491181	18STH491221
18STH501181	18STH441231
18STH511181	18STH451231
18STH521181	18STH461231
18STH531181	18STH471231
18STH411191	18STH481231
18STH421191	18STH451241
18STH431191	18STH461241
18STH441191	
18STH451191	
18STH461191	
18STH471191	
18STH481191	
18STH491191	
18STH501191	
18STH511191	
18STH521191	
18STH421201	
18STH431201	
18STH441201	
18STH451201	
18STH461201	
18STH471201	
18STH481201	
18STH491201	
18STH501201	
18STH511201	
18STH421211	
18STH431211	
18STH441211	
18STH451211	
18STH461211	
18STH471211	
18STH481211	
18STH491211	
18STH501211	
18STH431221	
18STH441221	
18STH451221	
18STH461221	
18STH471221	
18STH481221	

2.3 State Plane Tiling Footprints

One thousand three hundred and thirty eight (1,338) State Plane tiles were delivered for the project. Each tile's extent is 2,500 feet by 2,500 feet.

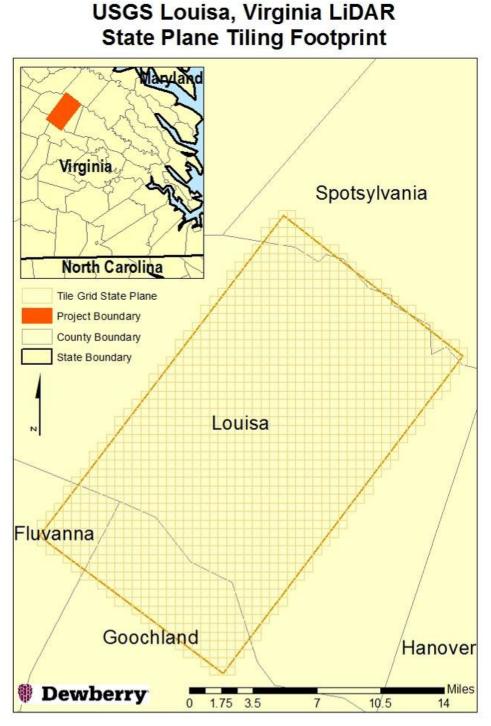


Figure 2: State Plane Project Map

2.4 List of delivered State Plane tiles (1, 338):

v		
18STG350043	18STG300168	18STG525218
18STG375043	18STG325168	17SQB075243
18STG400043	18STG350168	17SQB100243
18STG325068	18STG375168	17SQB125243
18STG350068	18STG400168	17SQB150243
18STG375068	18STG425168	17SQB175243
18STG400068	18STG450168	17SQB200243
18STG275093	18STG475168	17SQB225243
18STG300093	17SQB150193	17SQB250243
18STG325093	17SQB175193	18STG275243
18STG350093	17SQB200193	18STG300243
18STG375093	17SQB225193	18STG325243
18STG400093	17SQB250193	18STG350243
18STG425093	18STG275193	18STG375243
17SQB250118	18STG300193	18STG400243
18STG275118	18STG325193	18STG425243
18STG300118	18STG350193	18STG450243
18STG325118	18STG375193	18STG475243
18STG350118	18STG400193	18STG500243
18STG375118	18STG425193	18STG525243
18STG400118	18STG450193	18STG550243
18STG425118	18STG475193	17SQB050268
18STG450118	18STG500193	17SQB075268
17SQB225143	17SQB125218	17SQB100268
17SQB250143	17SQB150218	17SQB125268
18STG275143	17SQB175218	17SQB150268
18STG300143	17SQB200218	17SQB175268
18STG325143	17SQB225218	17SQB200268
18STG350143	17SQB250218	17SQB225268
18STG375143	18STG275218	17SQB250268
18STG400143	18STG300218	18STG275268
18STG425143	18STG325218	18STG300268
18STG450143	18STG350218	18STG325268
18STG475143	18STG375218	18STG350268
17SQB175168	18STG400218	18STG375268
17SQB200168	18STG425218	18STG400268
17SQB225168	18STG450218	18STG425268
17SQB250168	18STG475218	18STG450268
18STG275168	18STG500218	18STG475268

18STG500268	18STG375318	17SQB025368
18STG525268	18STG400318	17SQB050368
18STG550268	18STG425318	17SQB075368
17SQB025293	18STG450318	17SQB100368
17SQB050293	18STG475318	17SQB125368
17SQB075293	18STG500318	17SQB150368
17SQB100293	18STG525318	17SQB175368
17SQB125293	18STG550318	17SQB200368
17SQB150293	18STG575318	17SQB225368
17SQB175293	18STG600318	17SQB250368
17SQB200293	17SQB950343	18STG275368
17SQB225293	17SQB975343	18STG300368
17SQB250293	17SQB000343	18STG325368
18STG275293	17SQB025343	18STG350368
18STG300293	17SQB050343	18STG375368
18STG325293	17SQB075343	18STG400368
18STG350293	17SQB100343	18STG425368
18STG375293	17SQB125343	18STG450368
18STG400293	17SQB150343	18STG475368
18STG425293	17SQB175343	18STG500368
18STG450293	17SQB200343	18STG525368
18STG475293	17SQB225343	18STG550368
18STG500293	17SQB250343	18STG575368
18STG525293	18STG275343	18STG600368
18STG550293	18STG300343	18STG625368
18STG575293	18STG325343	17SQB875393
17SQB975318	18STG350343	17SQB900393
17SQB000318	18STG375343	17SQB925393
17SQB025318	18STG400343	17SQB950393
17SQB050318	18STG425343	17SQB975393
17SQB075318	18STG450343	17SQB000393
17SQB100318	18STG475343	17SQB025393
17SQB125318	18STG500343	17SQB050393
17SQB150318	18STG525343	17SQB075393
17SQB175318	18STG550343	17SQB100393
17SQB200318	18STG575343	17SQB125393
17SQB225318	18STG600343	17SQB150393
17SQB250318	18STG625343	17SQB175393
18STG275318	17SQB925368	17SQB200393
18STG300318	17SQB950368	17SQB225393
18STG325318	17SQB975368	17SQB250393
18STG350318	17SQB000368	18STG275393

18STG300393	18STG525418	17SQB850468
18STG325393	18STG550418	17SQB875468
18STG350393	18STG575418	17SQB900468
18STG375393	18STG600418	17SQB925468
18STG400393	18STG625418	17SQB950468
18STG425393	18STG650418	17SQB975468
18STG450393	18STG675418	17SQB000468
18STG475393	17SQB850443	17SQB025468
18STG500393	17SQB875443	17SQB050468
18STG525393	17SQB900443	17SQB075468
18STG550393	17SQB925443	17SQB100468
18STG575393	17SQB950443	17SQB125468
18STG600393	17SQB975443	17SQB150468
18STG625393	17SQB000443	17SQB175468
18STG650393	17SQB025443	17SQB200468
17SQB850418	17SQB050443	17SQB225468
17SQB875418	17SQB075443	17SQB250468
17SQB900418	17SQB100443	18STG275468
17SQB925418	17SQB125443	18STG300468
17SQB950418	17SQB150443	18STG325468
17SQB975418	17SQB175443	18STG350468
17SQB000418	17SQB200443	18STG375468
17SQB025418	17SQB225443	18STG400468
17SQB050418	17SQB250443	18STG425468
17SQB075418	18STG275443	18STG450468
17SQB100418	18STG300443	18STG475468
17SQB125418	18STG325443	18STG500468
17SQB150418	18STG350443	18STG525468
17SQB175418	18STG375443	18STG550468
17SQB200418	18STG400443	18STG575468
17SQB225418	18STG425443	18STG600468
17SQB250418	18STG450443	18STG625468
18STG275418	18STG475443	18STG650468
18STG300418	18STG500443	18STG675468
18STG325418	18STG525443	18STG700468
18STG350418	18STG550443	18STG725468
18STG375418	18STG575443	17SQB875493
18STG400418	18STG600443	17SQB900493
18STG425418	18STG625443	17SQB925493
18STG450418	18STG650443	17SQB950493
18STG475418	18STG675443	17SQB975493
18STG500418	18STG700443	17SQB000493

17SQB025493	17SQB225518	18STG425543
17SQB050493	17SQB250518	18STG450543
17SQB075493	18STG275518	18STG475543
17SQB100493	18STG300518	18STG500543
17SQB125493	18STG325518	18STG525543
17SQB150493	18STG350518	18STG550543
17SQB175493	18STG375518	18STG575543
17SQB200493	18STG400518	18STG600543
17SQB225493	18STG425518	18STG625543
17SQB250493	18STG450518	18STG650543
18STG275493	18STG475518	18STG675543
18STG300493	18STG500518	18STG700543
18STG325493	18STG525518	18STG725543
18STG350493	18STG550518	18STG750543
18STG375493	18STG575518	18STG775543
18STG400493	18STG600518	17SQC925568
18STG425493	18STG625518	17SQC950568
18STG450493	18STG650518	17SQC975568
18STG475493	18STG675518	17SQC000568
18STG500493	18STG700518	17SQC025568
18STG525493	18STG725518	17SQC050568
18STG550493	18STG750518	17SQC075568
18STG575493	17SQC925543	17SQC100568
18STG600493	17SQC950543	17SQC125568
18STG625493	17SQC975543	17SQC150568
18STG650493	17SQC000543	17SQC175568
18STG675493	17SQC025543	17SQC200568
18STG700493	17SQC050543	17SQC225568
18STG725493	17SQC075543	17SQC250568
17SQB900518	17SQC100543	18STH275568
17SQB925518	17SQC125543	18STH300568
17SQB950518	17SQC150543	18STH325568
17SQB975518	17SQC175543	18STH350568
17SQB000518	17SQC200543	18STH375568
17SQB025518	17SQC225543	18STH400568
17SQB050518	17SQC250543	18STH425568
17SQB075518	18STG275543	18STH450568
17SQB100518	18STG300543	18STH475568
17SQB125518	18STG325543	18STH500568
17SQB150518	18STG350543	18STH525568
17SQB175518	18STG375543	18STH550568
17SQB200518	18STG400543	18STH575568

18STH600568	18STH775593	17SQC125643
18STH625568	18STH800593	17SQC150643
18STH650568	17SQC975618	17SQC175643
18STH675568	17SQC000618	17SQC200643
18STH700568	17SQC025618	17SQC225643
18STH725568	17SQC050618	17SQC250643
18STG750568	17SQC075618	18STH275643
18STG775568	17SQC100618	18STH300643
18STG800568	17SQC125618	18STH325643
17SQC950593	17SQC150618	18STH350643
17SQC975593	17SQC175618	18STH375643
17SQC000593	17SQC200618	18STH400643
17SQC025593	17SQC225618	18STH425643
17SQC050593	17SQC250618	18STH450643
17SQC075593	18STH275618	18STH475643
17SQC100593	18STH300618	18STH500643
17SQC125593	18STH325618	18STH525643
17SQC150593	18STH350618	18STH550643
17SQC175593	18STH375618	18STH575643
17SQC200593	18STH400618	18STH600643
17SQC225593	18STH425618	18STH625643
17SQC250593	18STH450618	18STH650643
18STH275593	18STH475618	18STH675643
18STH300593	18STH500618	18STH700643
18STH325593	18STH525618	18STH725643
18STH350593	18STH550618	18STH750643
18STH375593	18STH575618	18STH775643
18STH400593	18STH600618	18STH800643
18STH425593	18STH625618	18STH825643
18STH450593	18STH650618	18STH850643
18STH475593	18STH675618	17SQC000668
18STH500593	18STH700618	17SQC025668
18STH525593	18STH725618	17SQC050668
18STH550593	18STH750618	17SQC075668
18STH575593	18STH775618	17SQC100668
18STH600593	18STH800618	17SQC125668
18STH625593	18STH825618	17SQC150668
18STH650593	17SQC000643	17SQC175668
18STH675593	17SQC025643	17SQC200668
18STH700593	17SQC050643	17SQC225668
18STH725593	17SQC075643	17SQC250668
18STH750593	17SQC100643	18STH275668

18STH300668	18STH475693	18STH675718
18STH325668	18STH500693	18STH700718
18STH350668	18STH525693	18STH725718
18STH375668	18STH550693	18STH750718
18STH400668	18STH575693	18STH775718
18STH425668	18STH600693	18STH800718
18STH450668	18STH625693	18STH825718
18STH475668	18STH650693	18STH850718
18STH500668	18STH675693	18STH875718
18STH525668	18STH700693	18STH900718
18STH550668	18STH725693	17SQC075743
18STH575668	18STH750693	17SQC100743
18STH600668	18STH775693	17SQC125743
18STH625668	18STH800693	17SQC150743
18STH650668	18STH825693	17SQC175743
18STH675668	18STH850693	17SQC200743
18STH700668	18STH875693	17SQC225743
18STH725668	17SQC050718	17SQC250743
18STH750668	17SQC075718	18STH275743
18STH775668	17SQC100718	18STH300743
18STH800668	17SQC125718	18STH325743
18STH825668	17SQC150718	18STH350743
18STH850668	17SQC175718	18STH375743
18STH875668	17SQC200718	18STH400743
17SQC025693	17SQC225718	18STH425743
17SQC050693	17SQC250718	18STH450743
17SQC075693	18STH275718	18STH475743
17SQC100693	18STH300718	18STH500743
17SQC125693	18STH325718	18STH525743
17SQC150693	18STH350718	18STH550743
17SQC175693	18STH375718	18STH575743
17SQC200693	18STH400718	18STH600743
17SQC225693	18STH425718	18STH625743
17SQC250693	18STH450718	18STH650743
18STH275693	18STH475718	18STH675743
18STH300693	18STH500718	18STH700743
18STH325693	18STH525718	18STH725743
18STH350693	18STH550718	18STH750743
18STH375693	18STH575718	18STH775743
18STH400693	18STH600718	18STH800743
18STH425693	18STH625718	18STH825743
18STH450693	18STH650718	18STH850743

18STH875743	17SQC175793	18STH375818
18STH900743	17SQC200793	18STH400818
18STH925743	17SQC225793	18STH425818
17SQC075768	178QC250793	18STH450818
17SQC100768	18STH275793	18STH475818
17SQC125768	18STH300793	18STH500818
17SQC150768	18STH325793	18STH525818
17SQC175768	18STH350793	18STH550818
17SQC200768	18STH375793	18STH575818
17SQC225768	18STH400793	18STH600818
17SQC250768	18STH425793	18STH625818
18STH275768	18STH450793	18STH650818
18STH300768	18STH475793	18STH675818
18STH325768	18STH500793	18STH700818
18STH350768	18STH525793	18STH725818
18STH375768	18STH550793	18STH750818
18STH400768	18STH575793	18STH775818
18STH425768	18STH600793	18STH800818
18STH450768	18STH625793	18STH825818
18STH475768	18STH650793	18STH850818
18STH500768	18STH675793	18STH875818
18STH525768	18STH700793	18STH900818
18STH550768	18STH725793	18STH925818
18STH575768	18STH750793	18STH950818
18STH600768	18STH775793	18STH975818
18STH625768	18STH800793	17SQC150843
18STH650768	18STH825793	17SQC175843
18STH675768	18STH850793	17SQC200843
18STH700768	18STH875793	17SQC225843
18STH725768	18STH900793	17SQC250843
18STH750768	18STH925793	18STH275843
18STH775768	18STH950793	18STH300843
18STH800768	17SQC125818	18STH325843
18STH825768	17SQC150818	18STH350843
18STH850768	17SQC175818	18STH375843
18STH875768	17SQC200818	18STH400843
18STH900768	17SQC225818	18STH425843
18STH925768	17SQC250818	18STH450843
18STH950768	18STH275818	18STH475843
17SQC100793	18STH300818	18STH500843
17SQC125793	18STH325818	18STH525843
17SQC150793	18STH350818	18STH550843

18STH575843	18STH775868	18STH950893
18STH600843	18STH800868	18STH975893
18STH625843	18STH825868	18STH000893
18STH650843	18STH850868	18STH025893
18STH675843	18STH875868	17SQC200918
18STH700843	18STH900868	17SQC225918
18STH725843	18STH925868	17SQC250918
18STH750843	18STH950868	18STH275918
18STH775843	18STH975868	18STH300918
18STH800843	18STH000868	18STH325918
18STH825843	18STH025868	18STH350918
18STH850843	17SQC175893	18STH375918
18STH875843	17SQC200893	18STH400918
18STH900843	17SQC225893	18STH425918
18STH925843	17SQC250893	18STH450918
18STH950843	18STH275893	18STH475918
18STH975843	18STH300893	18STH500918
18STH000843	18STH325893	18STH525918
17SQC175868	18STH350893	18STH550918
17SQC200868	18STH375893	18STH575918
17SQC225868	18STH400893	18STH600918
17SQC250868	18STH425893	18STH625918
18STH275868	18STH450893	18STH650918
18STH300868	18STH475893	18STH675918
18STH325868	18STH500893	18STH700918
18STH350868	18STH525893	18STH725918
18STH375868	18STH550893	18STH750918
18STH400868	18STH575893	18STH775918
18STH425868	18STH600893	18STH800918
18STH450868	18STH625893	18STH825918
18STH475868	18STH650893	18STH850918
18STH500868	18STH675893	18STH875918
18STH525868	18STH700893	18STH900918
18STH550868	18STH725893	18STH925918
18STH575868	18STH750893	18STH950918
18STH600868	18STH775893	18STH975918
18STH625868	18STH800893	18STH000918
18STH650868	18STH825893	18STH025918
18STH675868	18STH850893	18STH050918
18STH700868	18STH875893	17SQC225943
18STH725868	18STH900893	17SQC250943
18STH750868	18STH925893	18STH275943

18STH300943	18STH500968	18STH700993
18STH325943	18STH525968	18STH725993
18STH350943	18STH550968	18STH750993
18STH375943	18STH575968	18STH775993
18STH400943	18STH600968	18STH800993
18STH425943	18STH625968	18STH825993
18STH450943	18STH650968	18STH850993
18STH475943	18STH675968	18STH875993
18STH500943	18STH700968	18STH900993
18STH525943	18STH725968	18STH925993
18STH550943	18STH750968	18STH950993
18STH575943	18STH775968	18STH975993
18STH600943	18STH800968	18STH000993
18STH625943	18STH825968	18STH025993
18STH650943	18STH850968	18STH050993
18STH675943	18STH875968	18STH275018
18STH700943	18STH900968	18STH300018
18STH725943	18STH925968	18STH325018
18STH750943	18STH950968	18STH350018
18STH775943	18STH975968	18STH375018
18STH800943	18STH000968	18STH400018
18STH825943	18STH025968	18STH425018
18STH850943	18STH050968	18STH450018
18STH875943	18STH075968	18STH475018
18STH900943	17SQC250993	18STH500018
18STH925943	18STH275993	18STH525018
18STH950943	18STH300993	18STH550018
18STH975943	18STH325993	18STH575018
18STH000943	18STH350993	18STH600018
18STH025943	18STH375993	18STH625018
18STH050943	18STH400993	18STH650018
18STH075943	18STH425993	18STH675018
17SQC250968	18STH450993	18STH700018
18STH275968	18STH475993	18STH725018
18STH300968	18STH500993	18STH750018
18STH325968	18STH525993	18STH775018
18STH350968	18STH550993	18STH800018
18STH375968	18STH575993	18STH825018
18STH400968	18STH600993	18STH850018
18STH425968	18STH625993	18STH875018
18STH450968	18STH650993	18STH900018
18STH475968	18STH675993	18STH925018

18STH950018	18STH600068	18STH400118
18STH975018	18STH625068	18STH425118
18STH000018	18STH650068	18STH450118
18STH300043	18STH675068	18STH475118
18STH325043	18STH700068	18STH500118
18STH350043	18STH725068	18STH525118
18STH375043	18STH750068	18STH550118
18STH400043	18STH775068	18STH575118
18STH425043	18STH800068	18STH600118
18STH450043	18STH825068	18STH625118
18STH475043	18STH850068	18STH650118
18STH500043	18STH875068	18STH675118
18STH525043	18STH900068	18STH700118
18STH550043	18STH925068	18STH725118
18STH575043	18STH950068	18STH750118
18STH600043	18STH325093	18STH775118
18STH625043	18STH350093	18STH800118
18STH650043	18STH375093	18STH825118
18STH675043	18STH400093	18STH850118
18STH700043	18STH425093	18STH875118
18STH725043	18STH450093	18STH375143
18STH750043	18STH475093	18STH400143
18STH775043	18STH500093	18STH425143
18STH800043	18STH525093	18STH450143
18STH825043	18STH550093	18STH475143
18STH850043	18STH575093	18STH500143
18STH875043	18STH600093	18STH525143
18STH900043	18STH625093	18STH550143
18STH925043	18STH650093	18STH575143
18STH950043	18STH675093	18STH600143
18STH975043	18STH700093	18STH625143
18STH325068	18STH725093	18STH650143
18STH350068	18STH750093	18STH675143
18STH375068	18STH775093	18STH700143
18STH400068	18STH800093	18STH725143
18STH425068	18STH825093	18STH750143
18STH450068	18STH850093	18STH775143
18STH475068	18STH875093	18STH800143
18STH500068	18STH900093	18STH825143
18STH525068	18STH925093	18STH850143
18STH550068	18STH350118	18STH400168
18STH575068	18STH375118	18STH425168

18STH450168	18STH675218
18STH475168	18STH700218
18STH500168	18STH725218
18STH525168	18STH750218
18STH550168	18STH450243
18STH575168	18STH475243
18STH600168	18STH500243
18STH625168	18STH525243
18STH650168	18STH550243
18STH675168	18STH575243
18STH700168	18STH600243
18STH725168	18STH625243
18STH750168	18STH650243
18STH775168	18STH675243
18STH800168	18STH700243
18STH825168	18STH725243
18STH400193	18STH475268
18STH425193	18STH500268
18STH450193	18STH525268
18STH475193	18STH550268
18STH500193	18STH575268
18STH525193	18STH600268
18STH550193	18STH625268
18STH575193	18STH650268
18STH600193	18STH675268
18STH625193	18STH700268
18STH650193	18STH500293
18STH675193	18STH525293
18STH700193	18STH550293
18STH725193	18STH575293
18STH750193	18STH600293
18STH775193	18STH625293
18STH425218	18STH650293
18STH450218	18STH500318
18STH475218	18STH525318
18STH500218	18STH550318
18STH525218	18STH575318
18STH550218	18STH600318
18STH575218	18STH625318
18STH600218	18STH525343
18STH625218	18STH550343
18STH650218	18STH575343

18STH600343 18STH550368 18STH575368

3 LiDAR Acquisition

Louisa, VA LiDAR ALTM NAV Flight Plan – Optech ALTM3100EA LiDAR system. Piper Navajo Aircraft.

3.1 Flight Layout

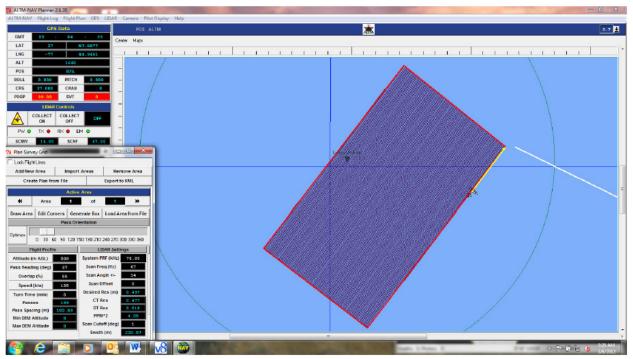


Figure 3: Flight Layout

3.2 LiDAR Flight Parameters

Laser Firing Rate:	70000
Altitude (mtr. AGL):	500
Swath Overlap (%):	55
Approx. Ground Speed (kts):	135
Scan Rate (Hz):	67
Scan Angle (°±):	14
Computed Along Track Spacing (mtr):	0.5
Computed Cross track Spacing (mtr.):	0.5
Computed Swath Width (mtr.):	230
Number of Lines Req'd:	199
Line Spacing (mtr.)	104

Table 1: Flight Parameters

3.3 LiDAR Surveys

LIDAR acquisition began on March 10, 2012 (julian day 069) and was completed on March 14, 2012 (julian day 073). A total of 11 survey missions were flown to complete the project. LMSI utilized an Optech ALTM3100EA for the acquisition. The flight plan was flown as planned with no modifications. There were no unusual occurrences during the acquisition and the sensor performed within specifications. There were 198 flight lines required to complete the project.

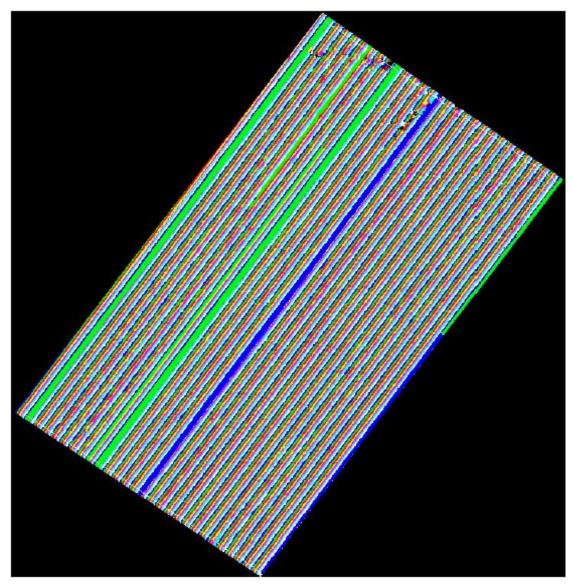


Figure 4: LiDAR coverage map

3.4 LiDAR Survey Coverage Check

Project coverage was checked on site with no data gaps except for water features.

3.5 GPS Surveys

Base Stations

Three base stations were utilized, LKU_A, LKU_B, and VA_21. The base station coordinates are set forth below:

LKU_A
 Latitude: 28 00 28.8599
 Longitude: -77 57 52.49022
 Ellipsoid Height: 116.4462
 Orthometric Height: 148.7701
 LKU_B
 Latitude: 28 00 24.09984
 Longitude: -77 58 28.25092
 Ellipsoid Height: 110.0956
 Orthometric Height: 142.4221
 VA_21
 Latitude: 28 00 25.25513
 Longitude: -77 58 24.21356
 Ellipsoid Height: 112.472
 Orthometric Height: 144.7978

Ground Control/QC Check Points

4 kinematic cross sections and 11 static points were surveyed at various locations throughout the project to be utilized for quality control and adjustment of the LIDAR data.

Airborne GPS Trajectories

All airborne GPS trajectories were processed and checked on site. All trajectories were very high quality with forward/reverse separation rms between 1cm-3cm.

3.6 Acquisition Summary

All equipment performed within specifications with no unusual occurrences or anomalies. All data was of a very high quality and the project was executed as planned.

4 Raw LiDAR Calibration at the Time of Acquisition

This LiDAR project was to provide high accuracy, calibrated multiple return LiDAR for

the Louisa, VA area. Raw calibrated LiDAR data was collected and delivered to Dewberry by LMSI in compliance with the "U.S.

Geological Survey National Geospatial Program Base LiDAR Specifications, Version 13 – ILMF 2010".

The elevation data was verified internally by LMSI prior to delivery to Dewberry to ensure it met fundamental accuracy requirements (vertical accuracy NSSDA RMSEZ = 12.5cm (NSSDA AccuracyZ 95% = 24.5 cm) or better; in open, non-vegetated terrain) when compared to kinematic and static GPS checkpoints. The following results apply to the raw LiDAR swath data at the time of acquisition as tested by LMSI. Dewberry's accuracy results for the final deliverable products can be found in section 7 of this report:

The LiDAR dataset was tested to 0.035m vertical accuracy at 95% confidence level based on consolidated RMSE_z (0.018m x 1.960) when compared to 11 GPS static check points.

All data delivered meets or exceeds LMSI's deliverable product requirements.

LiDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. By positioning laser range finding with the use of 1 second GPS with 200 Hz inertial measurement unit corrections; LMSI's LiDAR instruments are able to make highly detailed geospatial elevation products of the ground, man-made structures and vegetation.

The purpose of this LiDAR data was to produce high accuracy 3D terrain geospatial products for flood mapping and other applications.

This report covers the LiDAR processing methods and deliverable products. A GPS Validation Report has been included as an appendix.

Please note that this report focuses solely on the LMSI activities pertaining to the LiDAR data processing component of this project.

4.1 LiDAR Data Processing

4.1.1 Airborn GPS Kinematic

Airborne GPS kinematic data was processed on-site using GrafNav kinematic On-The-Fly (OTF) software. Flights were flown with a minimum of 6 satellites in view (13° above the horizon) and with a PDOP of better than 4. Distances from base station to aircraft were kept to a maximum of 40km.

For all flights, the GPS data can be classified as excellent, with GPS residuals of 3cm average or better but no larger than 10cm being recorded.

4.1.2 Generation and Calibration of Laser Points (raw data)

The initial step of calibration is to verify availability and status of all needed GPS and Laser data against field notes and compile any data if not complete.

Subsequently the mission points are output using Optech's Dashmap, initially with default values from Optech or the last mission calibrated for system. The initial point generation for each mission calibration is verified within Microstation/Terrascan for calibration errors. If a calibration error greater than specification is observed within the mission, the roll pitch and scanner scale corrections that need to be applied are calculated. The missions with the new calibration values are regenerated and validated internally once again to ensure quality.

All missions are validated against the adjoining missions for relative vertical biases and collected GPS kinematic validation points for absolute vertical accuracy purposes.

On a project level, a supplementary coverage check is carried out, to ensure no data voids unreported by Field Operations are present.

4.1.3 Vertical Bias Resolution

When the LiDAR data was compared to the GPS kinematic and static points, no bias was detected.

4.1.4 Deliverable Product Generation

The raw, unclassified LiDAR data were delivered in LAS format 1.2 adjusted GPS time, both as raw strips, with files bigger than 2 GB split in 2 both. Header is populated with the projection information. Angles +/- 20 are usually moved to class 11 and not included in the ground classification process. No angles greater than +/-14 are present in the Louisa, VA data so no points were withheld based on scan angle.

All products were delivered in UTM17 north meters, NAD83(NSRS 07), NAVD88(Geoid09).

4.2 Quality Control for Data Processing LiDAR Calibration

Quality assurance and quality control procedures for the raw LiDAR data are performed in an iterative fashion through the entire data processing cycle.

The following list provides a step-by-step explanation of the process used by LMSI to review the data prior to customer delivery.

4.2.1 Calibration Setup and Data Inventory

Data collected by the LiDAR unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GPS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database.

4.2.2 Boresight and Relative Accuracy

The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the LiDAR unit or GPS. Roll, pitch and scanner scale are optimized during the calibration process until the relative accuracy is met.

Relative accuracy and internal quality are checked using at least 3 regularly spaced QC blocks in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed. Color scale is adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point to point, flightline to flightline and mission to mission agreement. For this project the specifications used are as follows:

Relative accuracy <= 5cm RMSEZ within individual swaths and <=7 cm RMSEZ or within swath overlap (between adjacent swaths).

A different set of QC blocks are generated for final review after all transformations have been applied.

4.2.3 Absolute accuracy

A preliminary RMSE_z error check is performed at this stage of the project life cycle in the raw LiDAR dataset against GPS static and kinematic data and compared to RMSE_z project specifications. The LiDAR data is examined in open, flat areas away from breaks. Lidar ground points for each flightline generated by an automatic classification routine are used.

Results:

Prior to delivery the elevation data was verified internally to ensure it met fundamental accuracy requirements of 12.5cm vertical accuracy at the 95% confidence level (2 sigma = RMSE * 1.96) in when compared to LMSI kinematic and static GPS checkpoints.

Data is compiled to meet 1m horizontal accuracy at the 95% confidence level (2 sigma = RMSE * 1.96)

The LiDAR dataset was tested to 0.035m vertical accuracy at 95% confidence level based on consolidated RMSE_z (0.018m x 1.960) when compared to 11 GPS static check points.

Static GPS Validation X:\projects\Louisa\control\static-new.txt					
Number	Easting	Northing	Known Z		Dz
	779082.100 42				+0.000
5	771486.430 421	1451.540	143.380	143.420	+0.040
6	767707.320 420	3490.850	116.930	116.920	-0.010
8	783074.730 421	3618.480	83.800	83.770 -	0.030
9	776313.090 421	9276.100	111.700	111.700	+0.000
1	765400.570 419	2747.620	122,800	122.780	-0.020
2	775267.650 420	3147.160	113.130	113.140	+0.010
3	766826.880 420	9601.820	142.670	142.670	+0.000
111	766468.650 42	11361.270	148.760	slope	•
21	765722.840 42	11225.710	144.810	144.810	+0.000
222	765379.130 42	211178.860	142.420	142.420	+0.000
Average d	iz -0.001				
Minimum dz -0.030					
Maximum dz +0.040					
Average magnitude 0.011					
Root mean square 0.018					
Std deviat	tion 0.019				

Table 2: GPS Validation

4.3 Calibration Summary

Overall the LiDAR data products collected for Dewberry and Davis meet or exceed the requirements set out in the Statement of Work for this project. The quality control requirements of LMSI's Quality management program were adhered to throughout the acquisition stage of this project to ensure product quality.

5 LiDAR Processing & Qualitative Assessment

5.1 Data Classification and Editing

LiDAR mass points were produced to LAS 1.2 specifications, including the following LAS classification codes:

- Class 1 = Unclassified, and used for all other features that do not fit into the Classes 2, 7, 9, or 10, including vegetation, buildings, etc.
- Class 2 = Ground, includes accurate LiDAR points in overlapping flight lines
- Class 7 = Noise, low and high points
- Class 9 = Water, points located within collected breaklines
- Class 10 = Ignored Ground due to breakline proximity.

The data was processed using GeoCue and TerraScan software. The initial step is the setup of the GeoCue project, which is done by importing a project defined tile boundary index encompassing the entire project area. The acquired 3D laser point clouds, in LAS binary format, were imported into the GeoCue project and tiled according to the project tile grid. Once tiled, the laser points

were classified using a proprietary routine in TerraScan. This routine classifies any obvious outliers in the dataset to class 7. After points that could negatively affect the ground are removed from class 1, the ground layer is extracted from this remaining point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model.

This surface model is generated using three main parameters: building size, iteration angle and iteration distance. The initial model is based on low points being selected by a "roaming window" with the assumption that these are the ground points. The size of this roaming window is determined by the building size parameter. The low points are triangulated and the remaining points are evaluated and subsequently added to the model if they meet the iteration angle and distance constraints. This process is repeated until no additional points are added within iterations. A second critical parameter is the maximum terrain angle constraint, which determines the maximum terrain angle allowed within the classification model.

The following fields within the LAS files are populated to the following precision: GPS Time (0.000001 second precision), Easting (0.003 meter precision), Northing (0.003 meter precision), Elevation (0.003 meter precision), Intensity (integer value - 12 bit dynamic range), Number of Returns (integer - range of 1-4), Return number (integer range of 1-4), Scan Direction Flag (integer - range 0-1), Classification (integer), Scan Angle Rank (integer), Edge of flight line (integer, range 0-1), User bit field (integer - flight line information encoded). The LAS file also contains a Variable length record in the file header that defines the projection, datums, and units.

Once the initial ground routine has been performed on the data, Dewberry creates Delta Z (DZ) orthos to check the relative accuracy of the LiDAR data. These orthos compare the elevations of LiDAR points from overlapping flight lines on a 1 meter pixel cell size basis. If the elevations of points within each pixel are within 5 cm of each other, the pixel is colored green. If the elevations of points within each pixel are between 5 cm and 10 cm of each other, the pixel is colored yellow, and if the elevations of points within each pixel are between 5 cm and 10 cm of each other, the pixel is colored yellow, and if the elevations of points within each pixels that do not contain points from overlapping flight lines are colored according to their intensity values. DZ orthos can be created using the full point cloud or ground only points and are used to review and verify the calibration of the data is acceptable. Some areas are expected to show sections or portions of red, including terrain variations, slope changes, and vegetated areas or buildings if the full point cloud is used. However, large or continuous sections of yellow or red pixels can indicate the data was not calibrated correctly or that there were issues during acquisition that could affect the usability of the data. The DZ orthos for Louisa, Virginia showed that the data was calibrated correctly with no issues that would affect its usability. The figure below shows an example of the DZ orthos.

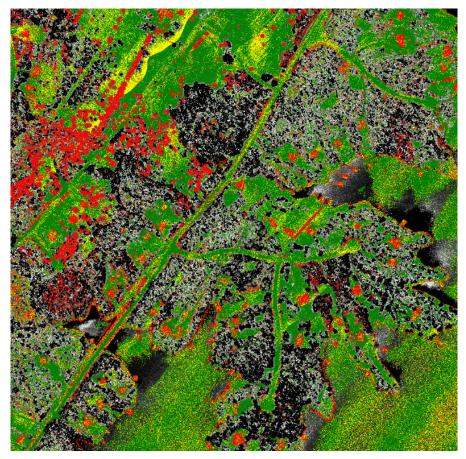


Figure 5: DZ orthos created from the full point cloud. Some red pixels are visible along embankments, sloped terrain, and in vegetated land cover, as expected. Open, flat areas are green indicating the calibration and relative accuracy of the data is acceptable.

Dewberry utilized a variety of software suites for data processing. The LAS dataset was received and imported into GeoCue task management software for processing in Terrascan. Each tile was imported into Terrascan and a surface model was created to examine the ground classification. Dewberry analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present following the initial processing conducted by Dewberry. Dewberry analysts employ 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points are removed from the ground classification. After the ground classification routine that utilizes breaklines compiled by dewberry to automatically classify hydro features. The water classification routine selects ground points within the breakline polygons and automatically classifies them as class 9, water. The final classification routine applied to the dataset selects ground points within a specified distance of the water breaklines and classifies them as class 10, ignored ground due to breakline proximity.

5.2 Qualitative Assessment

Dewberry qualitative assessment utilizes a combination of statistical analysis and interpretative methodology to assess the quality of the data for a bare-earth digital terrain model (DTM). This process looks for anomalies in the data and also identifies areas where man-made structures or vegetation points may not have been classified properly to produce a bare-earth model.

Within this review of the LiDAR data, two fundamental questions were addressed:

- Did the LiDAR system perform to specifications?
- Did the vegetation removal process yield desirable results for the intended bare-earth terrain product?

Mapping standards today address the quality of data by quantitative methods. If the data are tested and found to be within the desired accuracy standard, then the data set is typically accepted. Now with the proliferation of LiDAR, new issues arise due to the vast amount of data. Unlike photogrammetrically-derived DEMs where point spacing can be eight meters or more, LiDAR nominal point spacing for this project is 1 point per 0.5 square meters. The end result is that millions of elevation points are measured to a level of accuracy previously unseen for traditional elevation mapping technologies and vegetated areas are measured that would be nearly impossible to survey by other means. The downside is that with millions of points, the dataset is statistically bound to have some errors both in the measurement process and in the artifact removal process.

As previously stated, the quantitative analysis addresses the quality of the data based on absolute accuracy. This accuracy is directly tied to the comparison of the discreet measurement of the survey checkpoints and that of the interpolated value within the three closest LiDAR points that constitute the vertices of a three-dimensional triangular face of the TIN. Therefore, the end result is that only a small sample of the LiDAR data is actually tested. However there is an increased level of confidence with LiDAR data due to the relative accuracy. This relative accuracy in turn is based on how well one LiDAR point "fits" in comparison to the next contiguous LiDAR measurement, and is verified with DZ orthos. Once the absolute and relative accuracy has been ascertained, the next stage is to address the cleanliness of the data for a bare-earth DTM.

By using survey checkpoints to compare the data, the absolute accuracy is verified, but this also allows us to understand if the artifact removal process was performed correctly. To reiterate the quantitative approach, if the LiDAR sensor operated correctly over open terrain areas, then it most likely operated correctly over the vegetated areas. This does not mean that the entire bareearth was measured; only that the elevations surveyed are most likely accurate (including elevations of treetops, rooftops, etc.). In the event that the LiDAR pulse filtered through the vegetation and was able to measure the true surface (as well as measurements on the surrounding vegetation) then the level of accuracy of the vegetation removal process can be tested as a byproduct. To fully address the data for overall accuracy and quality, the level of cleanliness (or removal of above-ground artifacts) is paramount. Since there are currently no effective automated testing procedures to measure cleanliness, Dewberry employs a combination of statistical and visualization processes. This includes creating pseudo image products such as LiDAR orthos produced from the intensity returns, Triangular Irregular Network (TIN)'s, Digital Elevation Models (DEM) and 3-dimensional models. By creating multiple images and using overlay techniques, not only can potential errors be found, but Dewberry can also find where the data meets and exceeds expectations. This report will present representative examples where the LiDAR and post processing had issues as well as examples of where the LiDAR performed well.

5.3 Analysis

Dewberry utilizes GeoCue software as the primary geospatial process management system. GeoCue is a three tier, multi-user architecture that uses .NET technology from Microsoft. .NET technology provides the real-time notification system that updates users with real-time project status, regardless of who makes changes to project entities. GeoCue uses database technology for sorting project metadata. Dewberry uses Microsoft SQL Server as the database of choice. Specific analysis is conducted in Terrascan and QT Modeler environments.

Following the completion of LiDAR point classification, the Dewberry qualitative assessment process flow for the Louisa, Virginia LiDAR Project incorporated the following reviews:

1. Format: The LAS files are verified to meet project specifications. The LAS files for the Louisa, Virginia LiDAR Project conform to the specifications outlined below.

-Format, Echos, Intensity

- LAS format 1.2
- Point data record format 1
- Multiple returns (echos) per pulse
- Intensity values populated for each point
- -ASPRS classification scheme
 - Class 1 unclassified
 - Class 2 Bare-earth ground
 - Class 7 Noise
 - Class 9 Water
 - Class 10 Ignored Ground due to breakline proximity

-Projections

- o Datum North American Datum 1983
- Projected Coordinate System UTM Zone 18
- o Units Meters
- Vertical Datum North American Vertical Datum 1988, Geoid 09
- Vertical Units Meters

- Datum North American Datum 1983 HARN
- Projected Coordinate System Virginia State Plane, South Zone
- Units US Survey Feet
- Vertical Datum North American Vertical Datum 1988, Geoid 09
- Vertical Units US Survey Feet
- LAS header information:
 - Class (Integer)
 - GPS Week Time (0.0001 seconds)
 - Easting (0.003 meters)
 - Northing (0.003 meters)
 - Elevation (0.003 meters)
 - Echo Number (Integer 1 to 4)
 - Echo (Integer 1 to 4)
 - Intensity (8 bit integer)
 - Flight Line (Integer)
 - Scan Angle (Integer degree)
- 2. Data density, data voids: The LAS files are used to produce Digital Elevation Models using the commercial software package "QT Modeler" which creates a 3-dimensional data model derived from Class 2 (ground points) in the LAS files. Grid spacing is based on the project density deliverable requirement for un-obscured areas. For the Louisa, Virginia LiDAR project it is stipulated that the minimum post spacing in un-obscured areas should be 1 point per 0.5 square meter.
 - *a*. Acceptable voids (areas with no LiDAR returns in the LAS files) that are present in the majority of LiDAR projects include voids caused by bodies of water. These are considered to be acceptable voids.

- 3. Bare earth quality: Dewberry reviewed the cleanliness of the bare earth to ensure the ground has correct definition, meets the project requirements, there is correct classification of points, and there are less than 5% residual artifacts.
 - *a. Artifacts:* Artifacts are caused by the misclassification of ground points and usually represent vegetation and/or man-made structures. The artifacts identified are usually low lying structures, such as porches or low vegetation used as landscaping in neighborhoods and other developed areas. These low lying features are extremely difficult for the automated algorithms to detect as non-ground and must be removed manually. The vast majority of these features have been removed but a small number of these features are still in the ground classification. The limited numbers of features remaining in the ground are usually 0.3 meters or less above the actual ground surface, and should not negatively impact the usability of the dataset.

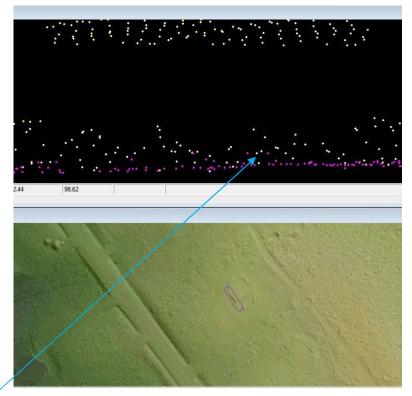


Figure 6 – Tile number 18STH551091. Profile with points colored by class (class 1=yellow, class 2=pink) is shown in the top view and a TIN of the surface is shown in the bottom view. The arrow identifies low vegetation points. A limited number of these small features are still classified as ground.

b. Bridge Removal Artifacts: The DEM surface models are created from TINs or Terrains. TIN and Terrain models create continuous surfaces from the inputs. Because a continuous surface is being created, the TIN or Terrain will use interpolation to triangulate across a bridge opening from legitimate ground points on either side of the actual bridge. This can cause visual artifacts or "saddles." These "artifacts" are only visual and do not exist in the LiDAR points or breaklines.

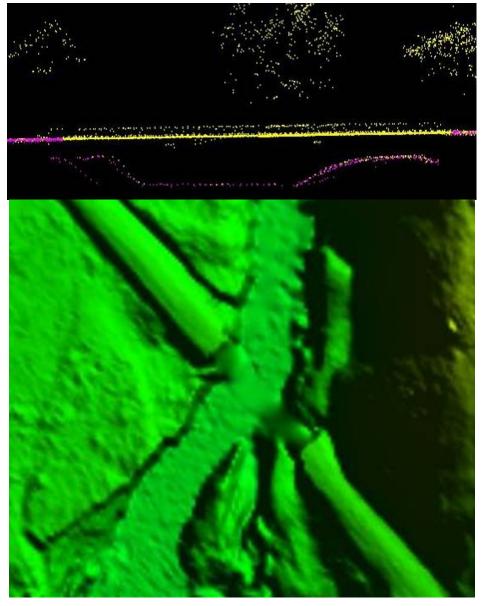


Figure 7 – Tile number 18STH371031. The DEM in the bottom view shows a visual artifact because the surface model is interpolating from the slope leading to the bridge to the lower ground points on either side of the bridge points that were removed. The surface model must make a continuous model and in order to do so, points are connected through interpolation. This can cause visual artifacts when there are features with large elevation differences. The profile in the top view shows the LiDAR points of this particular feature colored by class. All bridge points have been removed from ground (pink) and are unclassified (yellow). There are no ground points that can be modified to correct this visual artifact.

c. Building Removal Artifacts: Large buildings, unique construction, and buildings built on sloped terrain or built into the ground can make a noticeable impact on the bare earth DEM once they have been removed, often in the form of large void areas with obvious triangulation or interpolation across the area and general lack of detail in the ground where the structure stood. In a few areas, this interpolation has resulted in visual artifacts within building footprints. These "artifacts" are only visual and do not exist in the LiDAR points. Two examples are shown below.

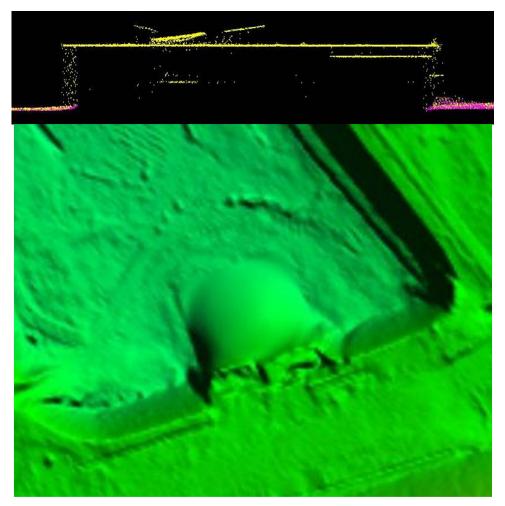


Figure 8 – Tile number 18STH541151. The DEM in the bottom view shows a visual artifact because the surface model is interpolating between the available ground points on either side of the building points that were removed. The surface model must make a continuous model and in order to do so, points are connected through interpolation. This can cause visual artifacts in areas where the ground elevation is slightly lower on one side of building than the other. The profile in the top view shows the LiDAR points of this particular feature colored by class. All building points have been removed from ground (pink) and are unclassified (yellow). There are no ground points that can be modified to correct this visual artifact.

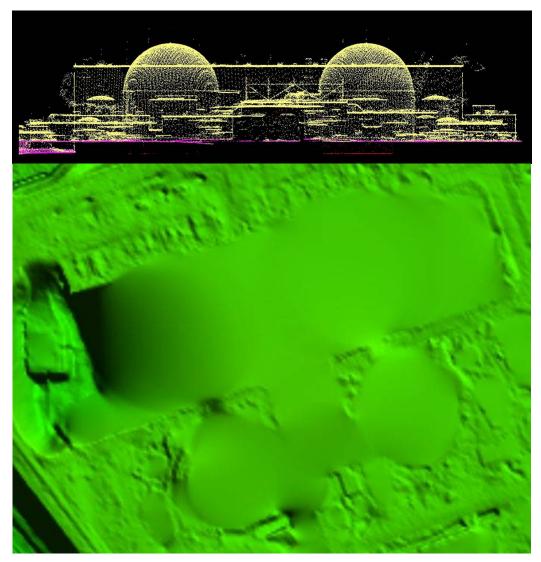


Figure 9 – Tile number 18STH551161. The DEM in the bottom view shows a visual artifact because the surface model is interpolating between the available ground points on either side of the North Anna Nuclear Generating Station points that were removed. The surface model must make a continuous model and in order to do so, points are connected through interpolation. This can cause visual artifacts in areas where the ground elevation is slightly lower on one side of building than the other. The profile in the top view shows the LiDAR points of this particular feature colored by class. All building points have been removed from ground (pink) and are unclassified (yellow) or noise (red). There are no ground points that can be modified to correct this visual artifact.

d. Culverts and Bridges: Bridges have been removed from the bare earth surface while culverts remain in the bare earth surface. In instances where it is difficult to determine if the feature is a culvert or bridge, such as with some small bridges, Dewberry included the feature in the bare earth surface as culverts, especially if they are on secondary or tertiary roads. There were also several large structures throughout the project area that Dewberry determined to be box culverts. Below is an example of a culvert that has been left in the ground surface.

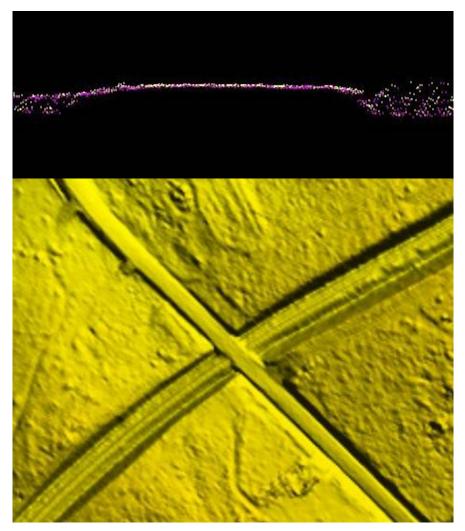
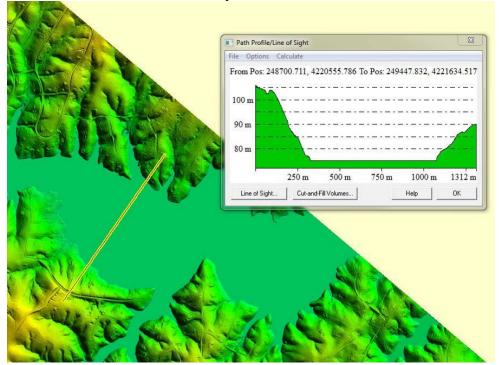



Figure 10– Tile number 18STH521141. Profile with points colored by class (class 1=yellow, class 2=pink) is shown in the top view and the DEM is shown in the bottom view. This culvert remains in the bare earth surface. Bridges have been removed from the bare earth surface and classified to class 1.

e. Flattened Areas within Collected Breaklines: Water bodies are flattened in the final DEMs. In order to ensure that no floating vertices are present, Dewberry has enforced the lowest elevation of each hydrographic feature. In the large lakes that are present within the project area, enforcing the lowest elevation of each feature can cause some sections to appear significantly lower than the surrounding terrain. This is expected and has been correctly shown in the final DEMs. Dewberry has gone through the DEMs making sure that the elevation of each feature is consistent from bank to bank. An example showing the elevation of a flattened water body from bank to bank is shown below.

Figure 11– Tile numbers 18STH481201, 18STH491201, 18STH491211, and 18STH481211. Elevation of a flattened water body shown from bank to bank

f. Flightline Ridges: Ridges occur when there is a difference between the elevations of adjoining flightlines or swaths. Some flightline ridges are visible in the final DEMs but they do not exceed the project specifications and the overall relative accuracy requirements for the project area have been met. An example of a visible ridge that is within tolerance is shown below.

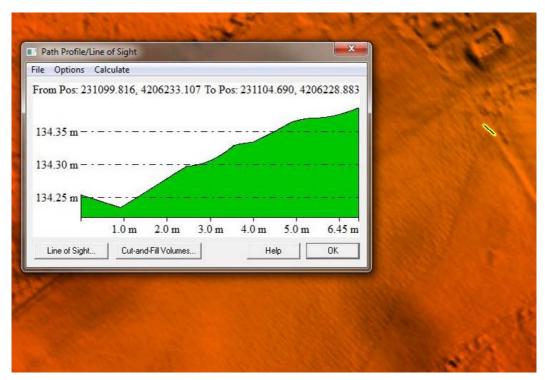


Figure 12 – Tile number 17SQC301061. The flight line ridge is less than 10 cm. Overall, the Louisa, Virginia LiDAR data meets the project specifications for 10 cm RMSE relative accuracy.

g. Multi tile ridge: A large square shaped ridge was identified within the Louisa project area. While ridges are known to occur when there is a difference between the elevations of adjoining flightlines or swaths, this particular ridge did not follow the project flightline paths. It is an odd feature that is present in all flightlines in the area. If it had been present in only a single flightline, Dewberry would have considered removing the points causing the ridge and using only points from adjacent flightlines. In this instance, removing the ridge would result in a square shaped void since the points would have to be removed from all flightlines. Because the ridge appears to be a gradual drop of a fairly consistent elevation all along its perimeter, Dewberry decided that it was more accurate to leave the feature in the ground then attempt to remove it. Examples are shown below.

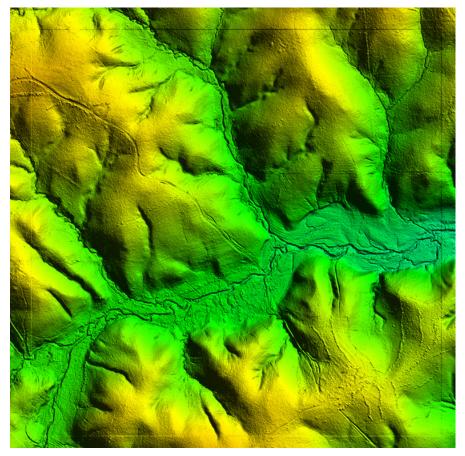


Figure 13: Tile numbers 17SQC341031, 17SQC341021, 17SQC351021, and 17SQC351031. Overview of the entire area where the ridge is present.

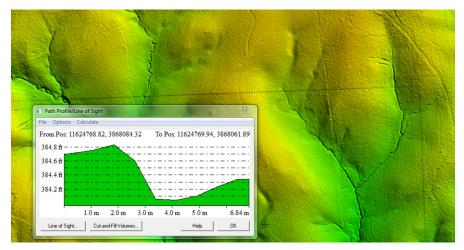


Figure 14: Tile numbers 17SQC341031, 17SQC341021, 17SQC351021, and 17SQC351031. Profile showing the area of the ridge with the greatest change in elevation.

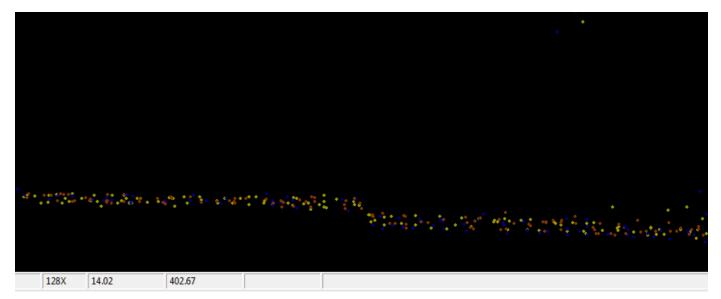


Figure 15: Tile numbers 17SQC341031, 17SQC341021, 17SQC351021, and 17SQC351031. Profile with points colored by flightline showing the change in elevation is consistent in all flightlines.



Figure 16: Tile numbers 17SQC341031, 17SQC341021, 17SQC351021, and 17SQC351031. The image shows a tile view of the LAS points colored by flightline. The ridge does not follow the flightline paths. It is not isolated to a single flightline but occurs in all flightlines in the area.

5.4 Conclusion

The dataset conforms to project specifications for format and header values. The spatial projection information and classification of points is correct. Minor artifacts and small areas of misclassification are isolated and have minimal impact on the usability of the dataset.

	LOUISA, VIRGINIA LIDAR QA						
UTM ZONE 18 COORDINATE SYSTEM							
	NAD83 (m)		NAVD88 (m)				
POINT ID	NORTHING (m)	EASTING (m)	ORTHO HEIGHT (m)				
OPEN TER	RAIN POINTS						
OT-1	4223780.061	246334.167	99.726				
OT-2	4220660.185	248679.867	103.899				
OT-3	4217770.888	250747.009	98.399				
OT-4	4215531.335	254256.194	103.109				
OT-5	4214065.721	256802.691	84.791				
OT-6	4210445.772	257932.492	79.821				
OT-7	4207546.480	257188.888	83.926				
OT-8	4210303.473	254347.241	84.391				
OT-9	4210177.053	248284.651	131.940				
OT-10	4218621.780	247456.675	127.745				
OT-11	4219653.849	245162.049	90.414				
OT-12	4218107.005	242413.234	121.080				
OT-13	4212655.926	241274.385	144.029				
OT-14	4214015.328	246634.629	132.701				
OT-15	4209404.457	250008.772	111.231				
OT-16	4206234.512	253216.736	99.772				
OT-17	4201831.875	250721.408	108.985				
OT-18	4205075.536	248499.542	99.862				
OT-19	4208978.633	246381.997	145.011				
OT-20	4211008.178	244747.636	142.979				
OT-21	4212237.938	237351.251	127.684				
OT-22	4207306.609	236782.495	132.358				
OT-23	4204335.982	237540.178	116.591				
OT-24	4203370.179	241983.361	121.661				
OT-25	4199574.800	247816.766	121.627				
OT-26	4197143.475	249010.598	96.515				
OT-27	4194712.869	245353.418	78.948				
OT-28	4197907.516	245272.386	102.598				
OT-29	4201140.683	237622.671	133.236				
OT-30	4206228.697	231945.961	130.331				
OT-31	4202745.399	231777.230	135.291				

6 Survey Vertical Accuracy Checkpoints

OT-32	4192731.704	237743.951	119.420
OT-33	4198474.968	242076.753	90.501
OT-34	4195581.033	238768.986	122.261
OT-35	4191032.375	242823.317	113.339
OT-36	4186669.411	238662.740	91.882
OT-37	4197323.415	233251.810	155.836
OT-38	4191024.595	233863.911	84.293
OT-39	4194841.392	230399.740	150.240
OT-40	4199415.218	229870.041	150.996
OT-41	4197319.757	224775.655	114.062
OT-42	4207631.392	252559.615	101.619
OT-43	4204510.643	245197.517	130.127
OT-44	4196976.214	232730.660	159.520

Table 3: USGS Louisa, Virginia LiDAR surveyed accuracy checkpoints

7 LiDAR Vertical Accuracy Statistics & Analysis

7.1 Background

Dewberry tests and reviews project data both quantitatively (for accuracy) and qualitatively (for usability).

For qualitative assessment (i.e. vertical accuracy assessment), forty four (44) points were surveyed for the project and all are located within open terrain land cover category The checkpoints were surveyed for the project using RTK survey methods. A survey report was produced which details and validates how the survey was completed for this project.

Checkpoints were evenly distributed throughout the project area so as to cover as many flight lines as possible using the "dispersed method" of placement.

Out of the forty four checkpoints received from the surveyor, one was not used in the final accuracy testing due to the presence of medium vegetation at the survey site. The resulting difference in elevation was significant enough to justify the omission of this point. Forty three surveyed checkpoints were used for the final qualitative assessment. The checkpoint that was not included in the accuracy testing is listed below accompanied by photos of the site.

Open terrain point number OT-26 shown below was not used.

7.2 Vertical Accuracy Test Procedures

FVA (Fundamental Vertical Accuracy) is determined with check points located only in the open terrain (grass, dirt, sand, and/or rocks) land cover category, where there is a very high probability that the LiDAR sensor will have detected the bare-earth ground surface and where random errors are expected to follow a normal error distribution. The FVA determines how well the calibrated LiDAR sensor performed. With a normal error distribution, the vertical accuracy at the 95% confidence level is computed as the vertical root mean square error (RMSEz) of the checkpoints x 1.9600. For the Louisa, Virginia LiDAR project, vertical accuracy must be 0.245 meters or less based on an RMSEz of 0.125 meters x 1.9600.

CVA (Consolidated Vertical Accuracy) is determined with all checkpoints in all land cover categories combined where there is a possibility that the LiDAR sensor and post-processing may yield elevation errors that do not follow a normal error distribution. CVA at the 95% confidence level equals the 95th percentile error for all checkpoints in all land cover categories combined. The Louisa, Virginia LiDAR Project CVA standard is 0.363 meters at the 95% confidence level. The CVA is accompanied by a listing of the 5% outliers that are larger than the 95th percentile used to compute the CVA; these are always the largest outliers that may depart from a normal error distribution. Here, Accuracy_z differs from CVA because Accuracy_z assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas CVA assumes LiDAR errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid.

SVA (Supplemental Vertical Accuracy) is determined for each land cover category other than open terrain. SVA at the 95% confidence level equals the 95th percentile error for all checkpoints in each land cover category. The Louisa, Virginia LiDAR Project SVA target is 0.363 meters at the 95% confidence level. Target specifications are given for SVA's as one individual land cover category may exceed this target value as long as the overall CVA is within specified tolerances. Again, Accuracy_z differs from SVA because Accuracy_z assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas SVA assumes LiDAR errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid. Because there were no checkpoints in land cover categories other than open terrain, it was not necessary to determine the SVA for the Louisa, Virginia Project.

Quantitative Criteria	Measure of Acceptability
Fundamental Vertical Accuracy (FVA) in open	0.245 meters (based on RMSEz (0.125 meters) *
terrain only using RMSEz *1.9600	1.9600)
Consolidated Vertical Accuracy (CVA) in all land	0.363 meters (based on combined 95 th percentile)
cover categories combined at the 95% confidence	
level	
Supplemental Vertical Accuracy (SVA) in each	0.363 meters (based on 95 th percentile for each land
land cover category separately at the 95%	cover category)
confidence level	

The relevant testing criteria are summarized in the table below.

7.3 Vertical Accuracy Testing Steps

The primary QA/QC vertical accuracy testing steps used by Dewberry are summarized as follows:

- 1. Dewberry's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications.
- 2. Next, Dewberry interpolated the bare-earth LiDAR DTM to provide the z-value for each of the 43 checkpoints.
- 3. Dewberry then computed the associated z-value differences between the interpolated zvalue from the LiDAR data and the ground truth survey checkpoints and computed FVA andCVA values. There were no checkpoints in land cover categories other than open terrain so computing the SVA value was not necessary.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. The review process examined the various accuracy parameters as defined by the scope of work. The overall descriptive statistics of each dataset were computed to assess any trends or anomalies. This report provides tables, graphs and figures to summarize and illustrate data quality.

The figure below shows the location of the QA/QC checkpoints within the project area.

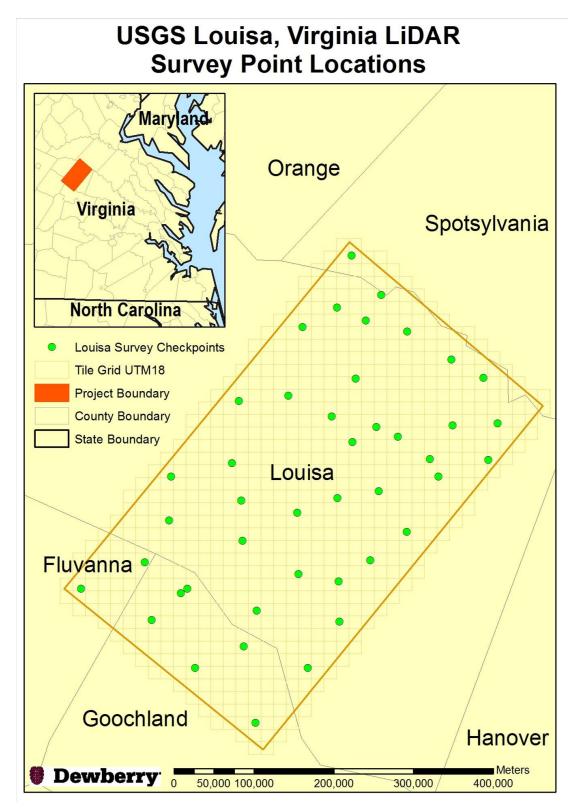


Figure 17 – Location of QA/QC Checkpoints

7.4 Vertical Accuracy Results

The table below summarizes the tested vertical accuracy resulting from a comparison of the surveyed checkpoints to the elevation values present within the LiDAR LAS files.

Land Cover Category	# of Points	FVA — Fundamental Vertical Accuracy (RMSEz x 1.9600) Spec=0.245 m	CVA — Consolidated Vertical Accuracy (95th Percentile) Spec=0.363 m
Consolidated	43		0.12
Open Terrain	43	0.13	

Table 5 — FVA and CVA Vertical Accuracy at 95% Confidence Level

The RMSE_z for checkpoints in open terrain only tested 0.07 meters, within the target criteria of 0.125 meters. Compared with the 0.245 meters specification, the FVA tested 0.13 meters at the 95% confidence level based on RMSE_z x 1.9600.

Compared with the 0.363 meters specification, CVA tested 0.12 meters at the 95% confidence level based on the 95^{th} percentile.

The figure below illustrates the magnitude of the differences between the QA/QC checkpoints and LiDAR data. This shows that the majority of LiDAR elevations were within +/- 0.13 meters of the checkpoints elevations.

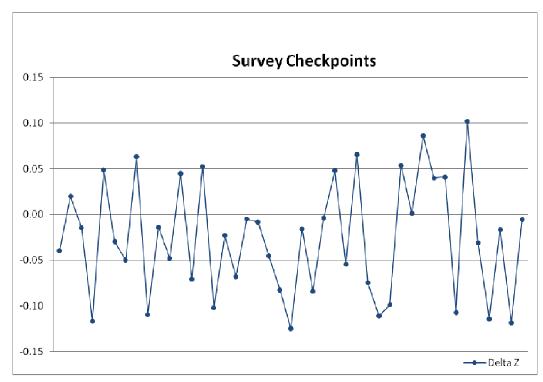


Figure 18– Magnitude of Elevation Discrepancies

Doint ID	NAD83 UTM	Zone 18	NAVD 88	LiDAR – Z	Delta Z	AbsDelta Z
Point ID	Easting – X (m)	Northing – Y (m)	Survey – Z (m)	(m)		
OT-22	236782.495	4207306.609	132.358	132.23300	-0.13	0.13

The following table shows the 5% outliers that are larger than the 95^{th} percentile.

Table 6 — 5% Outliers

The following table provides overall descriptive statistics.

100 % of Totals	RMSE (m) Open Terrain Spec=0.125m	Mean (m)	Mean Absolute (m)	Median (m)	Skew	Std Dev (m)	# of Points	Min (m)	Ma x (m)
Consolidated		-0.03	0.06	-0.02	0.14	0.06	43	-0.13	0.10
Open									
Terrain	0.07	-0.03	0.06	-0.02	0.14	0.06	43	-0.13	0.10

 Table 7 — Overall Descriptive Statistics

The figure below illustrates a histogram of the associated elevation discrepancies between the QA/QC checkpoints and elevations interpolated from the LiDAR triangulated irregular network (TIN). The frequency shows the number of discrepancies within each band of elevation differences. The discrepancies vary between a low of -0.13 meters and a high of +0.10 meters. The histogram shows that the majority of the discrepancies are skewed on the negative side.

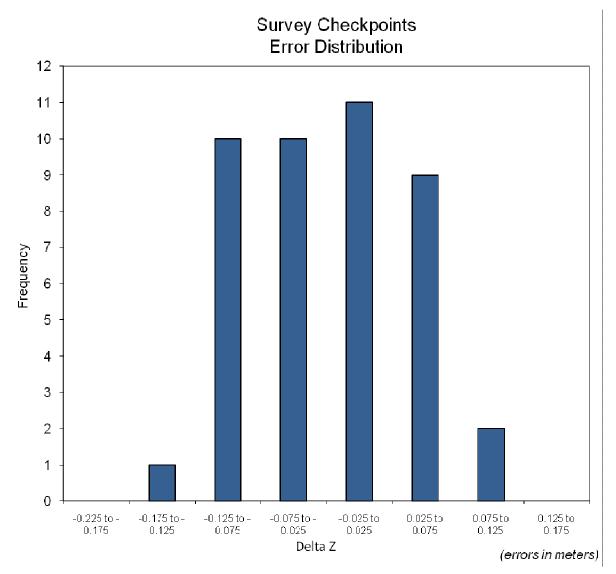
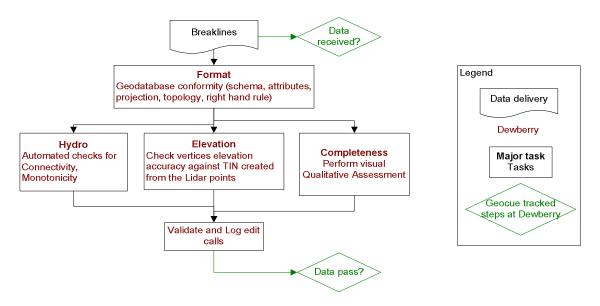


Figure 19 — Histogram of Elevation Discrepancies within errors in meters

7.5 Conclusion

Based on the vertical accuracy testing conducted by Dewberry, the LiDAR dataset for the Louisa, Virginia LiDAR Project satisfies the project's pre-defined vertical accuracy criteria.

8 Breakline Production & Qualitative Assessment Report


8.1 Breakline Production Methodology

Dewberry used GeoCue software to develop LiDAR stereo models of the Louisa, Virginia LiDAR Project area so the LiDAR derived data could be viewed in 3-D stereo using Socet Set softcopy photogrammetric software. Using LiDARgrammetry procedures with LiDAR intensity imagery, Dewberry used the stereo models developed by Dewberry to stereo-compile the three types of hard breaklines in accordance with the project's Data Dictionary.

All drainage breaklines are monotonically enforced to show downhill flow. Water bodies are reviewed in stereo and the lowest elevation is applied to the entire waterbody.

8.2 Breakline Qualitative Assessment

Dewberry completed breakline qualitative assessments according to a defined workflow. The following workflow diagram represents the steps taken by Dewberry to provide a thorough qualitative assessment of the breakline data.

8.3 Breakline Topology Rules

Automated checks are applied on hydro features to validate the 3D connectivity of the feature and the monotonicity of the hydrographic breaklines. Dewberry's major concern was that the hydrographic breaklines have a continuous flow downhill and that breaklines do not undulate. Error points are generated at each vertex not complying with the tested rules and these potential edit calls are then visually validated during the visual evaluation of the data. This step also helped validate that breakline vertices did not have excessive minimum or maximum elevations and that elevations are consistent with adjacent vertex elevations. The next step is to compare the elevation of the breakline vertices against the elevation extracted from the ESRI Terrain built from the LiDAR ground points, keeping in mind that a discrepancy is expected because of the hydro-enforcement applied to the breaklines and because of the interpolated imagery used to acquire the breaklines. A given tolerance is used to validate if the elevations differ too much from the LiDAR.

Dewberry's final check for the breaklines was to perform a full qualitative analysis. Dewberry compared the breaklines against LiDAR intensity images to ensure breaklines were captured in the required locations. The quality control steps taken by Dewberry are outlined in the QA Checklist below.

8.4 Breakline QA/QC Checklist

Project Number/Description: TO G10PC00013 USGS Louisa, Virginia LiDAR

Date:____08/02/2012____

Overview

All Feature Classes are present in GDB

All features have been loaded into the geodatabase correctly. Ensure feature classes with subtypes are domained correctly.

The breakline topology inside of the geodatabase has been validated. See Data Dictionary for specific rules

Projection/coordinate system of GDB is accurate with project specifications

Perform Completeness check on breaklines using either intensity or ortho imagery

Check entire dataset for missing features that were not captured, but should be to meet baseline specifications or for consistency (See Data Dictionary for specific collection rules). NHD data will be used to help evaluate completeness of collected hydrographic features. Features should be collected consistently across tile bounds within a dataset as well as be collected consistently between datasets.

Check to make sure breaklines are compiled to correct tile grid boundary and there is full coverage without overlap

 \square Check to make sure breaklines are correctly edge-matched to adjoining datasets if applicable. Ensure breaklines from one dataset join breaklines from another dataset that are coded the same and all connecting vertices between the two datasets match in X,Y, and Z (elevation). There should be no breaklines abruptly ending at dataset boundaries and no discrepancies of Z-elevation in overlapping vertices between datasets.

Compare Breakline Z elevations to LiDAR elevations

 \Box Using a terrain created from LiDAR ground points and water points and GeoFIRM tools, drape breaklines on terrain to compare Z values. Breakline elevations should be at or below the elevations of the immediately surrounding terrain. This should be performed before other breakline checks are completed.

Perform automated data checks using PLTS

The following data checks are performed utilizing ESRI's PLTS extension. These checks allow automated validation of 100% of the data. Error records can either be written to a table for

future correction, or browsed for immediate correction. PLTS checks should always be performed on the full dataset.

Perform "adjacent vertex elevation change check" on the Inland Ponds feature class (Elevation Difference Tolerance=.001 meters). This check will return Waterbodies whose vertices are not all identical. This tool is found under "Z Value Checks."

Perform "unnecessary polygon boundaries check" on Inland Ponds and Inland Streams feature classes. This tool is found under "Topology Checks."

Perform "duplicate geometry check" on (inland streams to inland streams), (inland ponds to inland ponds), (inland ponds to inland streams). Attributes do not need to be checked during this tool. This tool is found under "Duplicate Geometry Checks."

Perform "geometry on geometry check" on (inland ponds to inland streams). Spatial relationship is contains, attributes do not need to be checked. This tool is found under "Feature on Feature Checks."

Perform "polygon overlap/gap is sliver check" (inland streams to inland streams), (inland ponds to inland ponds), (inland ponds to inland streams). Maximum Polygon Area is not required. This tool is found under "Feature on Feature Checks."

Perform Dewberry Proprietary Tool Checks

 \boxtimes Perform monotonicity check on inland streams features using "A3_checkMonotonicityStreamLines." This tool looks at line direction as well as elevation. Features in the output shapefile attributed with a "d" are correct monotonically, but were compiled from low elevation to high elevation. These errors can be ignored. Features in the output shapefile attributed with an "m" are not correct monotonically and need elevations to be corrected. Input features for this tool need to be in a geodatabase. Z tolerance is .01 meters. Polygons need to be exported as lines for the monotonicity tool.

Perform connectivity check between (inland ponds to inland streams) using the tool "07_CheckConnectivityForHydro." The input for this tool needs to be in a geodatabase. The output is a shapefile showing the location of overlapping vertices from the polygon features and polyline features that are at different Z-elevation. The unnecessary polygon boundary check must be run and all errors fixed prior to performing connectivity check. If there are exceptions to the polygon boundary rule then that feature class must be checked against itself, i.e. inland streams to inland streams.

Metadata

Each XML file (1 per feature class) is error free as determined by the USGS MP tool

Metadata content contains sufficient detail and all pertinent information regarding source materials, projections, datums, processing steps, etc. Content should be consistent across all feature classes.

Completion Comments: Complete – Approved

8.5 LiDARgrammetry Data Dictionary & Stereo Compilation Rules

HORIZONTAL AND VERTICAL DATUM

The horizontal datum shall be North American Datum of 1983, Units in Meters as well as North American Datum of 1983 HARN, Units in U.S Survey Feet. The vertical datum shall be referenced to the North American Vertical Datum of 1988 (NAVD 88), Units in Meters as well as North American Vertical Datum of 1988 (NAVD 88), Units in Feet. Geoid09 shall be used to convert ellipsoidal heights to orthometric heights.

Coordinate System and Projection

All data shall be projected to both UTM Zone 18, Horizontal Units in Meters and Vertical Units in Meters as well as Virginia State Plane South, Horizontal Units in U.S. Survey Feet and Vertical Units in Feet

Inland Streams and Rivers

Feature Dataset: BREAKLINES STREAMS_AND_RIVERS Contains M Values: No Annotation Subclass: None XY Resolution: Accept Default Setting Feature Feature Type: Polygon Contains Z Values: Yes **Class:**

Z Resolution: Accept Default Setting

Z Tolerance: 0.001

XY Tolerance: 0.003

Description

This polygon feature class will depict linear hydrographic features with a width greater than 100 feet.

Table Definition

Field Name	Data Type	Allow Null Value s	Defaul t Value	Domai n	Precisio n	Scal e	Lengt h	Responsibilit y
OBJECTID	Object ID							Assigned by Software
SHAPE	Geometr y							Assigned by Software
SHAPE_LENGT H	Double	Yes			0	0		Calculated by Software
SHAPE_AREA	Double	Yes			0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
		Capture features showing dual line (one on each side of the feature). Average width shall be great than 100 feet to show as a double line. Each vertex placed should maintain vertical integrity and data is required to show "closed polygon". Generally both banks shall be collected to show consistent downhill flow. There are exceptions to this rule where a small branch or offshoot of the stream or river is present.
		The banks of the stream must be captured at the same elevation to ensure flatness of the water feature. If the elevation of the banks appears to be different see the task manager or PM for further guidance.
	Linear hydrographic features such as streams, rivers, canals, etc. with an average	Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually.
Streams and Rivers	width greater than 100 feet in length. In the case of embankments, if the feature forms a natural dual line channel, then capture it consistent with the capture rules. Other natural or manmade embankments will not qualify for this project.	These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water.
		Every effort should be made to avoid breaking a stream or river into segments.
		Dual line features shall break at road crossings (culverts). In areas where a bridge is present the dual line feature shall continue through the bridge.
		Islands: The double line stream shall be captured around

an island if the features on either side of the island meet
the criteria for capture. In this case a segmented polygon
shall be used around the island in order to allow for the
island feature to remain as a "hole" in the feature.

Inland Ponds and Lakes

Feature Dataset: BREAKLINES PONDS_AND_LAKES Contains M Values: No Annotation Subclass: None XY Resolution: Accept Default Setting

Feature Type: Polygon Contains Z Values: Yes

Feature

Class:

Z Resolution: Accept Default Setting

XY Tolerance: 0.003

Z Tolerance: 0.001

Description

This polygon feature class will depict closed water body features that are at a constant elevation.

Table Definition

Field Name	Data Type	Allow Null Value s	Defaul t Value	Domai n	Precisio n	Scal e	Lengt h	Responsibilit y
OBJECTID	Object ID							Assigned by Software
SHAPE	Geometr y							Assigned by Software
SHAPE_LENGT H	Double	Yes			0	0		Calculated by Software
SHAPE_AREA	Double	Yes			0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
Ponds and Lakes	Land/Water boundaries of constant elevation water bodies such as lakes, reservoirs, ponds, etc. Features shall be defined as closed polygons and contain an elevation value that reflects the best estimate of the water elevation at the time of data capture. Water body features will be captured for features 2 acres in size or greater. "Donuts" will exist where there	 Water bodies shall be captured as closed polygons with the water feature to the right. The compiler shall take care to ensure that the z-value remains consistent for all vertices placed on the water body. Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually. An Island within a Closed Water Body Feature will

are islands within a closed water body feature greater than $\frac{1}{2}$ acre in	also have a "donut polygon" compiled.
size.	These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water.

Tidal Waters

Feature Dataset: BREAKLINES Feature Type: Polygon Contains M Values: No Annotation Subclass: None XY Resolution: Accept Default Setting

XY Tolerance: 0.003

Feature Class: TIDAL_WATERS

Contains Z Values: Yes

Z Resolution: Accept Default Setting

Z Tolerance: 0.001

Description

This polygon feature class will outline the land / water interface at the time of LiDAR acquisition.

Table Definition

Field Name	Data Type	Allow Null Value s	Defaul t Value	Domai n	Precisio n	Scal e	Lengt h	Responsibilit y	
OBJECTID	Object ID							Assigned by Software	
SHAPE	Geometr y							Assigned by Software	
DATESTAMP_D T	Date	Yes			0	0	8	Assigned by Dewberry	
SHAPE_LENGT H	Double	Yes			0	0		Calculated by Dewberry	
SHAPE_AREA	Double	Yes			0	0		Calculated by Dewberry	

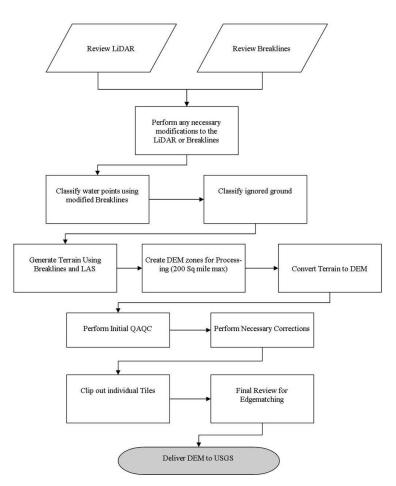
Feature Definition

Description	Definition	Capture Rules
TIDAL_WATERS	The coastal breakline will delineate the land water interface using LiDAR data as reference. In flight line boundary areas with tidal variation the coastal shoreline may require some feathering or edge matching to ensure a smooth transition.	The feature shall be extracted at the apparent land/water interface, as determined by the LiDAR intensity data, to the extent of the tile boundaries. Differences caused by tidal variation are acceptable and breaklines delineated should reflect that change with no feathering. Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually.

	If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water.
	Breaklines shall snap and merge seamlessly with linear hydrographic features.

Contact Information

Any questions regarding this document should be addressed to:


David Maune Senior Project Manager Dewberry 8401 Arlington Blvd. Fairfax, VA 22031-4666 (703) 849-0396 dmaune@dewberry.com

9 DEM Production & Qualitative Assessment

9.1 DEM Production Methodology

Dewberry utilized ESRI software and Global Mapper for the DEM production and QC process. ArcGIS software is used to generate the products and the QC is performed in both ArcGIS and Global Mapper.

Dewberry Hydro-Flattening Workflow

- 1. <u>Classify Water Points</u>: LAS point falling within hydrographic breaklines shall be classified to ASPRS class 9 using TerraScan. Breaklines must be prepared correctly prior to performing this task.
- 2. <u>Classify Ignored Ground Points</u>: Classify points in close proximity to the breaklines from Ground to class 10 (Ignored Ground). Close proximity will be defined as no more than 1x the nominal point spacing on the landward side of the breakline. Breaklines will be buffered using this specification and the subsequent file will need to be prepared in the same manner as the water breaklines for classification. This process will be performed after the water points have been classified and only run on remaining ground points.

- 3. <u>Terrain Processing</u>: A Terrain will be generated using the Breaklines and LAS data that has been imported into Arc as a Multipoint File. If the final DEMs are to be clipped to a project boundary that boundary will be used during the generation of the Terrain.
- 4. <u>Create DEM Zones for Processing</u>: Create DEM Zones that are buffered around the edges. Zones should be created in a logical manner to minimize the number of zones without creating zones too large for processing. Dewberry will make zones no larger than 200 square miles (taking into account that a DEM will fill in the entire extent not just where LiDAR is present). Once the first zone is created it must be verified against the tile grid to ensure that the cells line up perfectly with the tile grid edge.
- 5. <u>Convert Terrain to Raster</u>: Convert Terrain to raster using the DEM Zones created in step 6. In the environmental properties set the extents of the raster to the buffered Zone. For each subsequent zone, the first DEM will be utilized as the snap raster to ensure that zones consistently snap to one another.
- 6. <u>Perform Initial QAQC on Zones</u>: During the initial QA process anomalies will be identified and corrective polygons will be created.
- 7. <u>Correct Issues on Zones</u>: Dewberry will perform corrections on zones following Dewberry's correction process.
- 8. <u>Extract Individual Tiles</u>: Dewberry will extract individual tiles from the zones utilizing the Dewberry created tool.
- 9. <u>Final QA</u>: Final QA will be performed on the dataset to ensure that tile boundaries are seamless.

9.2 DEM Qualitative Assessment

Dewberry performed a comprehensive qualitative assessment of the DEM deliverables to ensure that all tiled DEM products were delivered with the proper extents, were free of processing artifacts, and contained the proper referencing information. This process was performed in ArcGIS software with the use of a tool set Dewberry has developed to verify that the raster extents match those of the tile grid and contain the correct projection information. The DEM data was reviewed at a scale of 1:5000 to review for artifacts caused by the DEM generation process and to review the hydro-flattened features. To perform this review Dewberry creates HillShade models and overlays a partially transparent colorized elevation model to review for these issues. Upon completion of this review the DEM data is loaded into Global Mapper to ensure that all files are readable and that no artifacts exist between tiles.

9.3 DEM Vertical Accuracy Results

The same 43 checkpoints that were used to test the vertical accuracy of the LiDAR were used to validate the vertical accuracy of the final DEM products as well. Accuracy results may vary between the source LiDAR and final DEM deliverable. DEMs are created by averaging several LiDAR points within each pixel which may result in slightly different elevation values at each survey checkpoint when compared to the source LAS, which does not average several LiDAR points together but may interpolate (linearly) between two or three points to derive an elevation value.

The following table summarizes the tested vertical accuracy results from a comparison of the surveyed checkpoints to the elevation values present within the final DEM dataset.

Land Cover Category	# of Points	FVA — Fundamental Vertical Accuracy (RMSEz x 1.9600) Spec=0.245 m	CVA — Consolidated Vertical Accuracy (95th Percentile) Spec=0.363 m
Consolidated	43		0.12
Open Terrain	43	0.14	

Table 8 — FVA, CVA Vertical Accuracy at 95% Confidence Level

The RMSE_z for checkpoints in open terrain only tested 0.07 meters, within the target criteria of 0.125 meters. Compared with the 0.245 meters specification, the FVA tested 0.14 meters at the 95% confidence level based on RMSE_z x 1.9600.

Compared with the 0.363 meters specification, CVA for all checkpoints in all land cover categories combined tested 0.12 meters at the 95% confidence level based on the 95th percentile.

There were no checkpoints in land cover categories other than open terrain so computing the SVA value was not necessary.

The following table lists the 5% outliers that are larger than the 95^{th} percentile.

Point ID	NAD83 UTM N	orth Zone 18	NAVD88	DEM - Z	Delta	AbsDel	
	Easting - X (m)	Northing - Y (m)	Survey -Z (m)	(m)	Ζ	taZ	
OT-22	236782.495	4207306.609	132.358	132.23300	-0.13	0.13	

Table 9 — 5% Outliers

The following table provides overall descriptive statistics.

100 % of Totals	RMSE (m) Open Terrain Spec=0.125 m	Mea n (m)	Mean Absolute (m)	Median (m)	Skew	Std Dev (m)	# of Points	Min (m)	Ma x (m)
Consolidated		-0.03	0.06	-0.03	0.18	0.06	43	-0.12	0.10
Bare Earth-Open									
Terrain	0.07	-0.03	0.06	-0.03	0.18	0.06	43	-0.12	0.10

 Table 10 — Overall Descriptive Statistics

9.4 DEM QA/QC Checklist

Project Number/Description: TO G11PD00336 USGS Louisa, Virginia LiDAR

Date:____08/02/2012_

Overview Co

- Correct number of files is delivered and all files are in ERDAS IMG format
- Verify Raster Extents
- Verify Projection/Coordinate System

Review

Manually review bare-earth DEMs with a hillshade to check for issues with hydroenforcement process or any general anomalies that may be present. Specifically, water should be flowing downhill, water features should NOT be floating above surrounding terrain and bridges should NOT be present in bare-earth DEM. Hydrologic breaklines should be overlaid during review of DEMs.

Overlap points (in the event they are supplied to fill in gaps between adjacent flightlines) are not to be used to create the bare-earth DEMs

 \square DEM cell size is 1 meter

Perform final overview in Global Mapper to ensure seamless product.

Metadata

Project level DEM metadata XML file is error free as determined by the USGS MP tool

Metadata content contains sufficient detail and all pertinent information regarding source materials, projections, datums, processing steps, etc.

Completion Comments: Complete - Approved