2010 USGS Lidar: Southeastern Michigan (Hillsdale, Jackson, Lenawee Counties) | spatialRepresentationInfo|
---|---|
(MI_Metadata) fileIdentifier: gov.noaa.nmfs.inport:49800 language: LanguageCode: eng characterSet: (MD_CharacterSetCode) UTF8 hierarchyLevel: (MD_ScopeCode) dataset contact: (CI_ResponsibleParty) organisationName: OCM Partners contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (missing) address: (CI_Address) role: (CI_RoleCode) resourceProvider contact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact dateStamp: DateTime: 2022-08-09T17:11:36 metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data metadataStandardVersion: ISO 19115-2:2009(E) return to top spatialRepresentationInfo: (MD_GridSpatialRepresentation) numberOfDimensions: 3 axisDimensionProperties: (MD_Dimension) dimensionName: (MD_DimensionNameTypeCode) row dimensionSize: 500 axisDimensionProperties: (MD_Dimension) dimensionName: (MD_DimensionNameTypeCode) column dimensionSize: 500 axisDimensionProperties: (MD_Dimension) dimensionName: (MD_DimensionNameTypeCode) vertical dimensionSize: 1 cellGeometry: (MD_CellGeometryCode) point transformationParameterAvailability: 0 return to top referenceSystemInfo: return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) authority: (CI_Citation) title: NAD83(2011) date: (CI_Date) date: 2008-11-12 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: European Petroleum Survey Group contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://apps.epsg.org/api/v1/CoordRefSystem/6318/export/?format=gml role: (missing) code: urn:ogc:def:crs:EPSG:6318 version: 6.18.3 return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) authority: (CI_Citation) title: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters alternateTitle: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters citedResponsibleParty: (CI_ResponsibleParty) organisationName: (withheld) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://apps.epsg.org/api/v1/VerticalCoordRefSystem/5703/?api_key=gml name: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters description: Link to Geographic Markup Language (GML) description of reference system. function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) resourceProvider citedResponsibleParty: (CI_ResponsibleParty) organisationName: European Petroleum Survey Group contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.epsg.org/ name: European Petroleum Survey Group Geodetic Parameter Registry description: Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. function: (CI_OnLineFunctionCode) search role: (CI_RoleCode) publisher VerticalCS: metaDataProperty: CommonMetaData: type: vertical informationSource: OGP revisionDate: 2006-11-28 isDeprecated: false identifier: urn:ogc:def:cs:EPSG::6499 name: Vertical CS. Axis: height (H). Orientation: up. UoM: meter. remarks: Used in vertical coordinate reference systems. axis: CoordinateSystemAxis: descriptionReference: urn:ogc:def:axis-name:EPSG::9904 identifier: urn:ogc:def:axis:EPSG::114 axisAbbrev: H axisDirection: up code: urn:ogc:def:crs:EPSG::5703 return to top identificationInfo: (MD_DataIdentification) citation: (CI_Citation) title: 2010 USGS Lidar: Southeastern Michigan (Hillsdale, Jackson, Lenawee Counties) alternateTitle: mi2010_usgs_southeastern_m3692_metadata date: (CI_Date) date: 2011-02-04 dateType: (CI_DateTypeCode) publication identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: Anchor: InPort Catalog ID 49800 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inport/item/49800 protocol: WWW:LINK-1.0-http--link name: Full Metadata Record description: View the complete metadata record on InPort for more information about this dataset. function: (CI_OnLineFunctionCode) information role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: Citation URL description: Online Resource function: (CI_OnLineFunctionCode) download role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer protocol: WWW:LINK-1.0-http--link name: Citation URL description: Online Resource function: (CI_OnLineFunctionCode) download role: (inapplicable) presentationForm: (CI_PresentationFormCode) mapDigital abstract: TASK NAME: Lake Erie LiDAR Priority Area 1 LiDAR Data Acquisition and Processing Production Task- Jackson, Hillsdale, and Lenawee Counties USGS Contract No. G10PC00057 Task Order No: G10PD02054 Woolpert ORDER NUMBER: 70398 CONTRACTOR: Woolpert, Inc. LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS positioning, and inertial measurment technologies. The LiDAR systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a resolution of 0.44 points per square meter (PPSM). The final products include first, last, and at least one intermediate return LAS, full classified LAS and a bare earth model in separate files. This data set is an LAZ (compressed LAS) format file containing LIDAR point cloud data. purpose: This task order consisted of LiDAR data acquisition and processing for Jackson, Hillsdale, and Lenawee Counties in southeastern Michigan. The task order area of interest encompasses approximately 2,093 square miles. The task required the LiDAR data to be collected at a resolution of 0.44 points per square meter (PPSM). The LiDAR data was collected to meet a vertical accuracy requirement of 15.0 cm (0.49 ft) RMSE, or better, so that when combined with breaklines, the data adequately supports the generation of two (2) foot FEMA compliant contours. The final LiDAR data was delivered as 1,500m x 1,500m tiles, aligned to even 1,500m coordinates. status: (MD_ProgressCode) completed pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) custodian resourceMaintenance: (MD_MaintenanceInformation) maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded graphicOverview: (MD_BrowseGraphic) fileName: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/3692/supplemental/mi2010_usgs_southeastern_m3692.kmz fileDescription: This graphic shows the coverage of the 2012 USACE Lake Michigan lidar in Wisconsin and on the upper peninsula of Michigan. fileType: kmz descriptiveKeywords: (MD_Keywords) keyword: Great Lakes keyword: USGS type: (MD_KeywordTypeCode) theme descriptiveKeywords: (MD_Keywords) keyword: 2010 keyword: November type: (MD_KeywordTypeCode) temporal descriptiveKeywords: (MD_Keywords) keyword: Lidar - partner (no harvest) type: (MD_KeywordTypeCode) project thesaurusName: (CI_Citation) title: InPort date: (inapplicable) resourceConstraints: (MD_LegalConstraints) useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Cite As: OCM Partners, [Date of Access]: 2010 USGS Lidar: Southeastern Michigan (Hillsdale, Jackson, Lenawee Counties) [Data Date Range], https://www.fisheries.noaa.gov/inport/item/49800. resourceConstraints: (MD_Constraints) useLimitation: NOAA provides no warranty, nor accepts any liability occurring from any incomplete, incorrect, or misleading data, or from any incorrect, incomplete, or misleading use of the data. It is the responsibility of the user to determine whether or not the data is suitable for the intended purpose. resourceConstraints: (MD_LegalConstraints) accessConstraints: (MD_RestrictionCode) otherRestrictions useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Access Constraints: None | Use Constraints: Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. These data depict the heights at the time of the survey and are only accurate for that time. | Distribution Liability: Any conclusions drawn from the analysis of this information are not the responsibility of USGS, NOAA, the Office for Coastal Management or its partners. resourceConstraints: (MD_SecurityConstraints) classification: (MD_ClassificationCode) unclassified classificationSystem: (missing) handlingDescription: (missing) aggregationInfo: (MD_AggregateInformation) aggregateDataSetName: (CI_Citation) title: NOAA Data Management Plan (DMP) date: (unknown) identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: 49800 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inportserve/waf/noaa/nos/ocmp/dmp/pdf/49800.pdf protocol: WWW:LINK-1.0-http--link name: NOAA Data Management Plan (DMP) description: NOAA Data Management Plan for this record on InPort. function: (CI_OnLineFunctionCode) information role: (inapplicable) associationType: (DS_AssociationTypeCode) crossReference spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid language: eng; US topicCategory: (MD_TopicCategoryCode) elevation extent: (EX_Extent) geographicElement: (EX_GeographicBoundingBox) westBoundLongitude: -84.836293 eastBoundLongitude: -83.750877 southBoundLatitude: 41.683064 northBoundLatitude: 42.430187 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2010-11-19 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2010-11-20 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2010-11-20 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2010-11-28 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2010-11-28 supplementalInformation: A footprint of this data set may be viewed in Google Earth at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/3692/supplemental/mi2010_usgs_southeastern_m3692.kmz A report for this dataset is available at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/3692/supplemental/mi2010_usgs_southeastern_m3692_surveyreport.pdf return to top contentInfo: (MD_FeatureCatalogueDescription) complianceCode: false language: LanguageCode: eng includedWithDataset: false featureCatalogueCitation: (CI_Citation) title: none date: (unavailable) return to top distributionInfo: (MD_Distribution) distributor: (MD_Distributor) distributorContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) distributor transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=3692 protocol: WWW:LINK-1.0-http--link name: Customized Download description: Create custom data files by choosing data area, product type, map projection, file format, datum, etc. function: (CI_OnLineFunctionCode) download transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/3692/index.html protocol: WWW:LINK-1.0-http--link name: Bulk Download description: Simple download of data files. function: (CI_OnLineFunctionCode) download return to top dataQualityInfo: (DQ_DataQuality) scope: (DQ_Scope) level: (MD_ScopeCode) dataset report: (DQ_QuantitativeAttributeAccuracy) nameOfMeasure: Accuracy evaluationMethodDescription: The LiDAR collected for this task order was collected at a vertical accuracy of 15.0 cm (0.49 ft) Root Mean Squared (RMSE), or better, so that when combined with breaklines, it will adequately support the generation of two (2) foot FEMA compliant contours. | Quantitative Value: 15.0 cm (0.49 ft) RMSE | Quantitative Test Explanation: Points measured will produce an error less than 15.0 cm (0.49 ft) RMSE. result: (missing) report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Horizontal Positional Accuracy evaluationMethodDescription: Horizontal accuracy is +/- 1.158 meters at the 95% confidence level using RMSE(r) x 1.9600 as defined by the FGDC Geospatial Positional Accuracy Standards, Part 3: NSSDA.; Quantitative Value: 1.158 meters, Test that produced the value: +/- 115.8 cm, 2 sigma result: (missing) report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Vertical Positional Accuracy evaluationMethodDescription: The LiDAR data vertical accuracy RMSE is 7.0 cm (0.22 ft). The data collected under this Task Order meets the National Standard for Spatial Database Accuracy (NSSDA) accuracy standards. The NSSDA standards specify that vertical accuracy be reported at the 95 percent confidence level for data tested by an independent source of higher accuracy. (http://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy/part3/index_html). The Fundamental Vertical Accuracy (FVA) of the TIN: 13.72 cm (0.45 ft) at a 95% confidence level, derived according to NSSDA, i.e., based on RMSE of 18.5 cm in the "open terrain" land cover category. ; Quantitative Value: 0.07 meters, Test that produced the value: +/- 7 cm, 2 sigma result: (missing) report: (DQ_CompletenessCommission) nameOfMeasure: Completeness Measure evaluationMethodDescription: Cloud Cover: 0 result: (missing) report: (DQ_CompletenessCommission) nameOfMeasure: Completeness Report evaluationMethodDescription: The LIDAR data is visually inspected for completeness to ensure that are no gaps between flight lines. result: (missing) report: (DQ_ConceptualConsistency) nameOfMeasure: Conceptual Consistency evaluationMethodDescription: All formatted data are validated using commercial GIS software to ensure proper formatting and loading prior to delivery. result: (missing) lineage: (LI_Lineage) statement: (missing) processStep: (LI_ProcessStep) description: Using a LH Systems ALS50 Light Detection And Ranging (LiDAR) system, 83 flight lines of high density data, one and one half point per square meter, were collected over Jackson, Hillsdale, and Lenawee counties in Michigan (approximately 2,093 square miles). Multiple returns were recorded for each laser pulse along with an intensity value for each return. A total of five missions were flown over a 3 day period: November 19, 2010, November 20, 2010, and November 28, 2010. A minimum of two airborne global positioning system (GPS) base stations were used in support of the LiDAR data acquisition. 28 ground control points were surveyed through static methods. The geoid used to reduce satellite derived elevations to orthometric heights was Geoid09. All data for the task order is referenced to UTM 16N for the area within its zone and UTM 17N for the area within its zone, NAD83, NAVD88, in meters. Data located in tiles along the UTM zone border was processed in both UTM 16N and UTM 17N. Airborne GPS data was differentially processed and integrated with the post processed IMU data to derive a smoothed best estimate of trajectory (SBET). The SBET was used to reduce the LiDAR slant range measurements to a raw reflective surface for each flight line. The coverage was classified to extract a bare earth digital elevation model (DEM) and separate last returns. In addition to the LAS deliverables, one layer of coverage were delivered in the ArcINFO ArcGrid binary format: bare-earth. System Parameters: - Type of Scanner = LH Systems ALS50 - Data Acquisition Height = 7,800-feet AGL - Scanner Field of View = 40 degrees - Scan Frequency = 35.3 Hertz - Pulse Repetition Rate - 99.0 Kilohertz - Aircraft Speed = 130 Knots - Swath Width = 5,678-feet - Number of Returns Per Pulse = Maximum of 4 - Distance Between Flight Lines = 3,943-feet dateTime: DateTime: 2011-02-04T00:00:00 processStep: (LI_ProcessStep) description: The ALS50 calibration and system performance is verified on a periodic basis using Woolpert's calibration range. The calibration range consists of a large building and runway. The edges of the building and control points along the runway have been located using conventional survey methods. Inertial measurement unit (IMU) misalignment angles and horizontal accuracy are calculated by comparing the position of the building edges between opposing flight lines. The scanner scale factor and vertical accuracy is calculated through comparison of LiDAR data against control points along the runway. Field calibration is performed on all flight lines to refine the IMU misalignment angles. IMU misalignment angles are calculated from the relative displacement of features within the overlap region of adjacent (and opposing) flight lines. The raw LiDAR data is reduced using the refined misalignment angles. dateTime: DateTime: 2010-11-18T00:00:00 processStep: (LI_ProcessStep) description: Once the data acquisition and GPS processing phases are complete, the LiDAR data was processed immediately to verify the coverage had no voids. The GPS and IMU data was post processed using differential and Kalman filter algorithms to derive a best estimate of trajectory. The quality of the solution was verified to be consistent with the accuracy requirements of the project. dateTime: DateTime: 2010-11-19T00:00:00 processStep: (LI_ProcessStep) description: The individual flight lines were inspected to ensure the systematic and residual errors have been identified and removed. Then, the flight lines were compared to adjacent flight lines for any mismatches to obtain a homogenous coverage throughout the project area. The point cloud underwent a classification process to determine bare-earth points and non-ground points utilizing "first and only" as well as "last of many" LiDAR returns. This process determined bare-earth points (Class 2), Noise (Class 7), Water (Class 9) Ignored ground (Class 10) and unclassified data (Class 1). The bare-earth (Class 2 - Ground) LiDAR points underwent a manual QA/QC step to verify that artifacts have been removed from the bare-earth surface. The surveyed ground control points are used to perform the accuracy checks and statistical analysis of the LiDAR dataset. dateTime: DateTime: 2010-11-19T00:00:00 processStep: (LI_ProcessStep) description: Breaklines defining lakes, greater than two acres, and double-line streams, wider than 30.5 meters (100 feet), were compiled using digital photogrammetric techniques as part of the hydrographic flattening process and provided as ESRI Polyline Z and Polygon Z shape files. Breaklines defining water bodies and streams were compiled for this task order. The breaklines were used to perform the hydrologic flattening of water bodies, and gradient hydrologic flattening of double line streams. Lakes, reservoirs and ponds, at a nominal minimum size of two (2) acres or greater, were compiled as closed polygons. The closed water bodies were collected at a constant elevation. Rivers and streams, at a nominal minimum width of 30.5 meters (100 feet), were compiled in the direction of flow with both sides of the stream maintaining an equal gradient elevation. The hydrologic flattening of the LiDAR data was performed for inclusion in the National Elevation Dataset (NED). dateTime: DateTime: 2011-02-04T00:00:00 processStep: (LI_ProcessStep) description: The NOAA Office for Coastal Management (OCM) received the topographic files in LAS format from USACE. The files contained lidar easting, northing, elevation, intensity, return number, etc. The data was received in Geographic Coordinates (decimal degrees). OCM performed the following processing for data storage and Digital Coast provisioning purposes: 1. A datum shift was performed for all tiles found in UTM Zone 17N and shifted to UTM Zone 16N in order to eliminate duplicate points and tiles. dateTime: DateTime: 2014-09-16T00:00:00 processStep: (LI_ProcessStep) description: The vertical values in this data set have been converted to reference North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters, using the GEOID18 grids provided by the National Geodetic Survey. Any datum and projection transformations were then done with the Office for Coastal Management 'datum_shift' program. Compression to an LAZ file was done with the LAStools 'laszip' program and can be unzipped with the same free program (laszip.org) Processing notes: dateTime: DateTime: 2023-07-01T06:44:59 processor: (CI_ResponsibleParty) individualName: NOAA Office for Coastal Management contactInfo: (CI_Contact) address: (CI_Address) electronicMailAddress: coastal.info@noaa.gov role: (CI_RoleCode) processor |