

Dewberry & Davis LLC 1000 N. Ashley Drive, Suite 801 Tampa, FL 33602-3718 813.225.1325 813.225.1385 fax www.dewberry.com

USGS Norfolk, VA LiDAR

Report Produced for U.S. Geological Survey

USGS Contract: G10PC00013

Task Order: G13PD00279

Report Date: 5/30/2014

SUBMITTED BY:

Dewberry

1000 North Ashley Drive Suite 801 Tampa, FL 33602 813.225.1325

SUBMITTED TO:

U.S. Geological Survey 1400 Independence Road Rolla, MO 65401 573.308.3810

Table of Contents

Executive summary	5
The Project Team	5
Survey Area	5
Date of Survey	5
Datum Reference	5
LiDAR Vertical Accuracy	6
Project Deliverables	6
Project Tiling Footprint	7
LiDAR Acquisition Report	8
Acquisition Equipment	8
LiDAR System parameters	9
Datum Reference	10
Atlantic LiDAR Acquisition Details	10
Acquisition Flight Logs, Dates, and Flightlines	11
LMSI LiDAR Acquisition Details	14
Acquisition Dates and Flightlines	15
Generation and Calibration of Laser Points (raw data)	16
Combined Swath Vertical Accuracy Assessment	17
LiDAR Processing & Qualitative Assessment	18
Data Classification and Editing	18
Qualitative Assessment	20
Analysis	22
Derivative LiDAR Products	33
Building Footprint Shapefiles	33
Vegetation Shapefiles	36
Survey Vertical Accuracy Checkpoints	36
LiDAR Vertical Accuracy Statistics & Analysis	39
Background	39
Vertical Accuracy Test Procedures	39
FVA	39
CVA	39
SVA	39
Vertical Accuracy Testing Steps	40
Vertical Accuracy Results	42
Breakline Production & Qualitative Assessment Report	45

Breakline Production Methodology45
Breakline Qualitative Assessment
Breakline Topology Rules45
Breakline QA/QC Checklist
Data Dictionary50
Horizontal and Vertical Datum50
Coordinate System and Projection
Inland Streams and Rivers50
Description50
Table Definition50
Feature Definition50
Inland Ponds and Lakes
Description52
Table Definition
Feature Definition52
Tidal Waters54
Description54
Table Definition54
Feature Definition54
2D Buildings55
Description55
Table Definition 55
Feature Definition55
3D Buildings56
Description56
Table Definition 56
Feature Definition57
Forest Polygons58
Description58
Table Definition58
Feature Definition58
Tree Points
Description59
Table Definition 59
Feature Definition59
DEM Production & Qualitative Assessment

DEM Production Methodology	59
DEM Qualitative Assessment	61
DEM Vertical Accuracy Results	62
DEM QA/QC Checklist	63
Appendix A: Survey Report	64
INTRODUTION	64
Project Summary	64
Points of Contact	64
1.3 Project Area	65
Project Details	66
Survey Equipment	66
Survey Point Detail	66
Network Design	66
Field Survey Procedures and Analysis	66
Data Processing Procedures	67
Final Coordinates	67
GPS Observations	70
Point Comparison	73
Appendix B: Complete List of Delivered Tiles	75
UTM Tiles (1,458):	75
SPCS Tiles (1,400):	82
Appendix C: GPS Processing Reports for Each Mission	90
Laser Mapping Specialists (LMSI)	90
The Atlantic Group	153
Output Results for JD13087_1	153
Figure 1: Trajectory Map	153
Figure 2: Position and Standard Deviation	154
Figure 3: Velocity and Standard Deviation	155
Figure 4: Forward/Reverse or Combined Separation Plot	156
Figure 5: Attitude and Standard Deviation	157
Figure 6: Position Accuracy and PDOP	158
Figure 7: Accelerometer Bias Estimation	159
Figure 8: Kalman Filter Residuals and Position Accuracy	160
Figure 9: Gyro Bias Estimation	161
Output Result for ID12088 1	162

Norfolk, VA LiDAR TO# G13PD00279 May 30, 2014 Page 5 of 233

EXECUTIVE SUMMARY

The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR) technology for the USGS Norfolk, Virginia Project Area.

The LiDAR data were processed to a bare-earth digital terrain model (DTM). Detailed breaklines, 3D buildings, 2D buildings, forest polygons, tree points, bare-earth digital elevation models (DEMs), first return digital surface models, and last return digital surface models were produced for the project area. Deliverables were produced in both UTM and State Plane coordinates. Data was formatted according to tiles with each UTM tile covering an area of 1,500 meters by 1,500 meters and each State Plane tile covering an area of 5,000 feet by 5,000 feet. A total of 1,458 UTM tiles and 1,400 State Plane tiles were produced for the project encompassing an area of approximately 1,130 sq. miles.

THE PROJECT TEAM

Dewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for, all LiDAR products including; LAS classification, breakline production, Digital Elevation Model (DEM) production, and quality assurance.

Dewberry's Matthew Rudolph completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the LiDAR-derived surface model. He also verified the GPS base station coordinates used during LiDAR data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A to view the separate Survey Report that was created for this portion of the project.

Laser Mapping Specialist, Inc (LMSI) and The Atlantic Group (Atlantic) completed LiDAR data acquisition and data calibration for the project area.

SURVEY AREA

The project area addressed by this report falls within the Virginia counties of Chesapeake, Hampton, James City, Newport News, Norfolk, Poquoson City, Portsmouth, Suffolk, Virginia Beach, Williamsburg, and York as well as portions of the North Carolina counties of Camden and Currituck.

DATE OF SURVEY

The LiDAR aerial acquisition for the Southern portion of the project was conducted from March 25, 2013 thru April 5, 2013. The LiDAR aerial acquisition for the Northern portion of the project was conducted from March 21, 2013 thru March 31, 2013.

DATUM REFERENCE

Data produced for the project were delivered in both of the following reference systems.

Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 (NAD 83)

Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)

Coordinate System: UTM Zone 18

Units: Horizontal units are in meters, Vertical units are in meters.

Norfolk, VA LiDAR TO# G13PD00279 May 30, 2014 Page 6 of 233

Geiod Model: Geoid12A

Horizontal Datum: North American Datum of 1983 HARN (NAD83 HARN)

Vertical Datum: North American Vertical Datum of 1988 (NAVD88)

Coordinate System: Virginia State Plane South

Units: Horizontal units are in U.S. Survey feet, Vertical units are in feet.

Geoid Model: Geoid12A

LIDAR VERTICAL ACCURACY

For the Norfolk, Virginia LiDAR Project, the tested RMSE $_z$ of the classified LiDAR data for checkpoints in open terrain equaled **0.066 m** compared with the 0.092 m specification; and the FVA of the classified LiDAR data computed using RMSE $_z$ x 1.9600 was equal to **0.129 m**, compared with the 0.181 m specification.

For the Norfolk, Virginia LiDAR Project, the tested CVA of the classified LiDAR data computed using the 95th percentile was equal to **0.194 m**, compared with the **0.269** m specification.

Additional accuracy information and statistics for the classified LiDAR data, raw swath data, and bare earth DEM data are found in the following sections of this report.

PROJECT DELIVERABLES

The deliverables for the project are listed below.

- 1. Raw Point Cloud Data (Swaths) in UTM coordinates
- 2. Control & Accuracy Checkpoint Report & Points in UTM coordinates
- 3. Project Report (Acquisition, Processing, QC)
- 4. Classified Point Cloud Data (Tiled)in both UTM and State Plane coordinates
- 5. First Return Surface (Raster DSM IMG Format) in both UTM and State Plane coordinates
- 6. Last Return Surface (Raster DSM IMG Format) in both UTM and State Plane coordinates
- 7. Bare Earth Surface (Raster DEM IMG Format) in both UTM and State Plane coordinates
- 8. Intensity Images (8-bit gray scale, tiled, GeoTIFF format) in both UTM and State Plane coordinates
- 9. Breakline Data (File GDB) in both UTM and State Plane coordinates
- 10. 3D and 2D buildings (File GDB) in both UTM and State Plane coordinates
- 11. Forest polygons (File GDB) in both UTM and State Plane coordinates
- 12. Tree points (File GDB) in both UTM and State Plane coordinates
- 13. Metadata
- 14. Project Extents in both UTM and State Plane coordinates, including a shapefile derived from the LiDAR Deliverable

PROJECT TILING FOOTPRINT

One thousand four hundred and fifty-eight (1,458) UTM tiles were delivered for the project. Each UTM tile's extent is 1,500 meters by 1,500 meters. One thousand four hundred (1400) State Plane tiles were delivered for the project. Each State plane tiles extent is 5,000 ft (see Appendix B for a complete listing of delivered tiles).

Norfolk, VA LiDAR Project

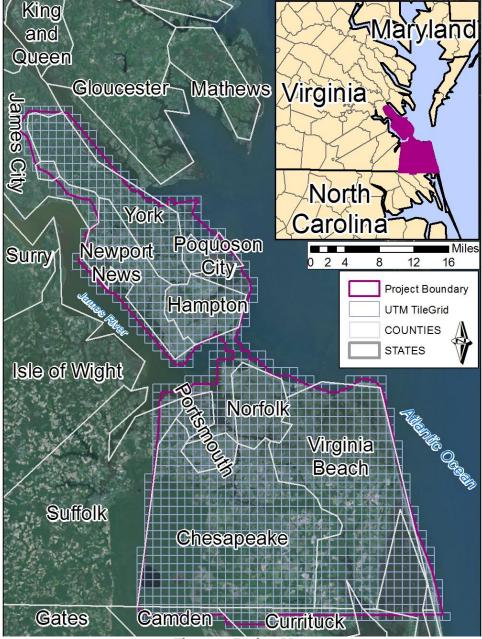


Figure 1 - Project Map

LiDAR Acquisition Report

Dewberry elected to subcontract the LiDAR Acquisition and Calibration activities to The Atlantic Group (Atlantic) and Laser Mapping Specialist Inc (LMSI). Atlantic and LMSI were responsible for providing LiDAR acquisition, calibration and delivery of LiDAR data files to Dewberry.

Dewberry received high accuracy, calibrated multiple return swath data from Atlantic on May 21, 2013 and from LMSI on June 5, 2013. Data was collected and delivered in compliance with the "U.S. Geological Survey National Geospatial Program Base LiDAR Specifications, Version 13 – ILMF 2010."

ACQUISITION EQUIPMENT

Atlantic operated a Cessna T-210 (Tail # N732JE) outfitted with a LEICA ALS70-HP LiDAR system during the collection of the Southern portion of the study area. Table 1 represents a list of the features and characteristics for the LEICA ALS70-HP LiDAR system:

Leica ALS70-HP				
Manufacturer	Leica			
Model	ALS70 - HP			
Platform	Fixed-wing			
Scan Pattern	sine, triangle, raster			
	sine	200		
Maximum Scan rate (Hz)	triangle	158		
	raster	120		
Field of view (°)	o - 75 (full angle, use	r adjustable)		
Maximum Pulse rate (kHz)	500			
Maximum Flying height (m AGL)	3500			
Number of returns	unlimited			
Number of intensity measurements	3 (first, second, third)			
Roll stabilization (automatic adative, °)	e, 75 - active FOV			
Storage media	removable 500 GB SSD			
Storage capacity (hours @ max pulse rate)	6			
size (cm)	Scanner	37 W x 68 L x 26 H		
Size (cm)	Control Electronics	45 W x 47 D x 36 H		
Weight (kg)	Scanner	43		
Weight (kg)	Control Electronics 45			
Operating Temperature	0 - 40 °C			
Flight Management	FCMS			
Power Consumption	927 W @ 22.0 - 30.3 VDC			

Table 1: Atlantic's LEICA Sensor Characteristic

LMSI operated an Optech 3100 EA LiDAR system during the collection of the Northern portion of the study area. Table 2 represents a list of the features and characteristics for the Optech 3100 EA LiDAR system:

Optech 3100 EA				
Manufacturer	Optech			
Model	3100EA			
Platform	Fixed-wing			
Maximum Scan rate (Hz)	o to 70 Hz (>70 Hz o	ptional)		
Field of view (°)	o - 75 (full angle, use	r adjustable)		
Maximum Pulse rate (kHz)	100			
Maximum Flying height (m AGL)	3500			
Number of returns	Up to 4 range measurements, including 1 st , 2 nd , 3 rd , last returns			
Number of intensity measurements	12-bit dynamic range. Measurements for all recorded returns, including last return.			
Roll stabilization (automatic adative,	±5°; more compensation available if			
Storage media	Ruggedized removab	le SCSI hard disks		
size (cm)	Scanner	26cm W x 19cm L x 57 cm H		
Size (citi)	Control Electronics	65 cm W x 59 cm D x 49 cm H		
Weight (kg)	Scanner	23.4 kg		
Weight (kg)	Control Electronics 53.2 kg			
Operating Temperature	Control rack: +10°C to 35 °C Sensor head: -10 °C to +35 °C			
Power Consumption	28 V 35 A (peak)			

Table 2: LMSI's Optech Sensor Characteristic

LIDAR SYSTEM PARAMETERS

Table 3 illustrates Atlantic's system parameters for LiDAR acquisition on this project.

Item	Parameter
System	Leica ALS-70 HP
Altitude (AGL meters)	1700
Approx. Ground Speed (kts)	120
Laser Firing Rate (kHz)	316.2
Scan Frequency (hz)	42.3
Swath width (m)	1237
Swath Overlap (%)	15%
Line Spacing (m)	858
Pass heading (degree)	164

Item	Parameter
Field of View (degree)	40
Computed Down Track spacing (m) per beam	0.73
Computed Cross Track Spacing (m) per beam	0.73
Average point spacing (m) per beam	0.7
Point Spacing density at Nadir	3.8
Points per meter^2 (m)	2.4
Gain up/Down	3
Scan Pattern	Triangle

Table 3: Atlantics LiDAR System Parameters

Table 4 illustrates LMSI's system parameters for LiDAR acquisition on this project.

Item	Parameter
System	Optech 3100 EA
Altitude (AGL meters)	880
Approx. Ground Speed (kts)	110
Laser Firing Rate (kHz)	70
Scan Frequency (hz)	40
Swath width (m)	612
Swath Overlap (%)	25%
Line Spacing (m)	275
Field of View (degree)	38
Computed Down Track spacing (m)	0.5
Computed Cross Track Spacing (m)	0.5
Points per meter^2 (m)	2

Table 4: LMSI's LiDAR System Parameters

DATUM REFERENCE

Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 (NAD 83)

Vertical Datum: The Vertical datum for the project is North American Vertical Datum

of 1988 (NAVD88) **Coordinate System:** UTM Zone 18

Units: Horizontal units are in meters, Vertical units are in meters.

Geiod Model: Geoid12A

ATLANTIC LIDAR ACQUISITION DETAILS

Atlantic planned 64 passes for the Southern portion of the project area as a series of parallel flight lines with cross flightlines for the purposes of quality control. The flight plan included zigzag flight line collection as a result of the inherent IMU drift associated with all IMU systems. In order to reduce any margin for error in the flight plan, Atlantic followed FEMA's Appendix A "guidelines" for flight planning and, at a minimum, includes the following criteria:

• A digital flight line layout using LEICA MISSION PRO flight design software for direct integration into the aircraft flight navigation system.

- Planned flight lines; flight line numbers; and coverage area.
- LiDAR coverage extended by a predetermined margin beyond all project borders to ensure necessary over-edge coverage appropriate for specific task order deliverables.
- Local restrictions related to air space and any controlled areas have been investigated so that required permissions can be obtained in a timely manner with respect to schedule. Additionally, Atlantic Group will file our flight plans as required by local Air Traffic Control (ATC) prior to each mission.

Atlantic monitored weather and atmospheric conditions and conducted LiDAR missions only when no conditions exist below the sensor that will affect the collection of data. These conditions include leaf-off for hardwoods, no snow, rain, fog, smoke, mist and low clouds. LiDAR systems are active sensors, not requiring light, thus missions may be conducted during night hours when weather restrictions do not prevent collection. Atlantic accesses reliable weather sites and indicators (webcams) to establish the highest probability for successful collection in order to position our sensor to maximize successful data acquisition. Within 72-hours prior to the planned day(s) of acquisition, Atlantic closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis. Atlantic LiDAR sensors are calibrated at a designated site located at the Lawrence County Airport in Courtland, Alabama and are periodically checked and adjusted to minimize corrections at project sites.

ACQUISITION FLIGHT LOGS, DATES, AND FLIGHTLINES

Upon notification to proceed, the flight crew loaded the flight plans and validated the flight parameters. The Acquisition Manager contacted air traffic control and coordinated flight pattern requirements. LiDAR acquisition began immediately upon notification that control base stations were in place. During flight operations, the flight crew monitored weather and atmospheric conditions. LiDAR missions were flown only when no condition existed below the sensor that would affect the collection of data. The pilot constantly monitored the aircraft course, position, pitch, roll, and yaw of the aircraft. The sensor operator monitored the sensor, the status of PDOPs, and performed the first Q/C review during acquisition. The flight crew constantly reviewed weather and cloud locations. Any flight lines impacted by unfavorable conditions were marked as invalid and re-flown immediately or at an optimal time.

The table below shows the flight missions to acquire the laser data including flight dates, daily missions, number of lines, tidal information, and comments for each flight.

Date	Mission #	Lines Flown
3/25/13 to 3/29/13	5	1-43
3/31/13 to 4/5/13	5	44-66

Table 5: Flight Lines and Acquisition Dates

The figure below illustrates Atlantic's final trajectories.

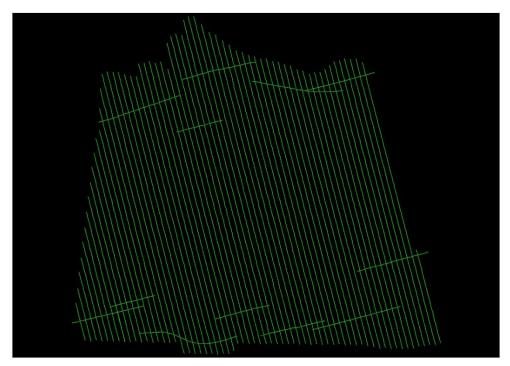


Figure 2: Trajectories as flown by Atlantic LiDAR Control

All surveys were performed to Federal Geodetic Control Subcommittee (FGCS) FGCS guidelines. Atlantic Group maximized existing NGS control and the ALDOT CORS stations to provide the control network, designed with proper redundancies, session occupation times, and time between sessions according to the applicable NOS technical standards. GPS observations were conducted using Federal Geodetic Control Committee (FGCC) approved dual frequency GPS receivers. A minimum of two fixed-height tripods were used as ground base stations running at a one (1.0) second epoch collection rate during every mission, typically at a minimum of four hours. The control locations are planned to ensure a 28km baseline distance from the furthest flight line distance. All mission collections were conducted with a PDOP of 3.2 or lower. Also, the KP index is considered prior to mission collection and no collection occurred when the KP index was at or above 4. During acquisition the following ground control points where used.

Station	Latitude	Longitude	Northing	Easting	Elevation	PID
CEM1	36 44 42.01674	76 06 26.52957	4067157.092	401140.823	5.000m	
CPK1	36 39 56.13139	76 19 19.36753	4058590.483	381853.335	4.185m	DN7636

Table 6 - Base Stations used to control LiDAR acquisition

Station	Julian Day	Receiver Model	Antenna Model	Height (m)	Start Date/Time	Stop Date/Time
					3/28/13	3/28/13
CPK1	87	TOPCON	TPSHIPER_V	1.374	22:20	15:00
					3/29/13	3/29/13
CEM1	88	TOPCON	TPSHIPER_V	1.391	11:15	11:43
CPK1	88	TOPCON	TPSHIPER_V	1.374	3/29/13	3/29/13

					2:30	17:33
CEM1	89	TOPCON	TPSHIPER_V	1.389	3/30/13 11:20	3/30/13 22:38
CPK1	89	TOPCON	TPSHIPER_V	1.374	3/30/13 15:22	3/30/13 20:02
CEM1	90	TOPCON	TPSHIPER_V	1.389	3/31/13 10:45	3/30/13 11:30
CPK1	90	TOPCON	TPSHIPER_V	1.374	3/31/13 4:15	3/31/13 8:30
CEM1	91	TOPCON	TPSHIPER_V	1.390	4/1/13 11:45	4/1/13 24:00
CPK1	91	TOPCON	TPSHIPER_V	1.373	4/1/13 5:15	4/1/13 20:30

Table 7 – Site Observations

Airborn GPS Kinematic

LEICA IPAS TC was used to post process the airborne solutions for the mission. IGS08 (EPOCH:2013.1011) coordinates from the OPUS solutions was used in the post processing.

Generation and Calibration of Laser Points (raw data)

Data collected by the LiDAR unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GPS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database.

On a project level, a supplementary coverage check is carried out to ensure no data voids are present.

Figure 3 - LiDAR Swath output showing complete coverage. Boresight and Relative accuracy

The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the LiDAR unit or GPS. Roll, pitch and scanner scale are optimized during the calibration process until the relative accuracy is met.

Relative accuracy and internal quality are checked using at least 3 regularly spaced QC blocks in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed. Color scale is adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point to point, flight line to flight line and mission to mission agreement.

LMSI LIDAR ACQUISITION DETAILS

LMSI planned 90 passes for the Northern portion of the project area as a series of parallel flight lines with cross flightlines for the purposes of quality control. The flight plan included zigzag flight line collection as a result of the inherent IMU drift associated with all IMU systems. In order to reduce any margin for error in the flight plan, LMSI followed FEMA's Appendix A "guidelines" for flight planning and, at a minimum, includes the following criteria:

- A digital flight line layout using ALTM-NAV flight management software for direct integration into the aircraft flight navigation system.
- Planned flight lines; flight line numbers; and coverage area.
- LiDAR coverage extended by a predetermined margin beyond all project borders to ensure necessary over-edge coverage appropriate for specific task order deliverables.
- Local restrictions related to air space and any controlled areas have been investigated so
 that required permissions can be obtained in a timely manner with respect to schedule.
 Additionally LMSI will file our flight plans as required by local Air Traffic Control (ATC)
 prior to each mission.

LMSI monitored weather and atmospheric conditions and conducted LiDAR missions only when no conditions exist below the sensor that will affect the collection of data. These conditions include leaf-off for hardwoods, no snow, rain, fog, smoke, mist and low clouds. LiDAR systems are active sensors, not requiring light, thus missions may be conducted during night hours when weather restrictions do not prevent collection. LMSI accesses reliable weather sites and indicators (webcams) to establish the highest probability for successful collection in order to position our sensor to maximize successful data acquisition.

Within 72-hours prior to the planned day(s) of acquisition, LMSI closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis.

ACQUISITION DATES AND FLIGHTLINES

Table 8 shows the flight missions to acquire the laser data including flight dates, daily missions, number of lines, tidal information, and comments for each flight.

Date	Mission #	Lines Flown	Mission Time	Tidal Window	Mission Notes
3/21/13	1	1-18	10:23-1:30	9:36-1:36	
3/22/13	2	19-23, 23-25	11:21-12:33, 1:34- 2:22	10:22-2:22	Had mechanical issue, fixed, went back up
3/23/13	0				Laser maint/ground control
3/24/13	0				Weather/ground control
3/25/13	0				Weather/ground control
3/26/13	0				Ground Control/laser maint
3/27/13	0				Ground Control
3/28/13	1	26-31	4:55-6:25	2:41-6:41	
3/29/13	2	32-54	3:37-7:10a, 3:57- 7:16p	3:18-7:18a, 3:26-7:16p	
3/30/13	2	55-90	4:20-8:05am, 4:16-6:23p	4:07- 8:07a, 4:13-8:13p	
3/31/13	1	26-31	5:05-6:41a	4:58-8:58a	reflights

Table 8: Flight Lines and Acquisition Dates

The figure below illustrates LMSI's final trajectories.

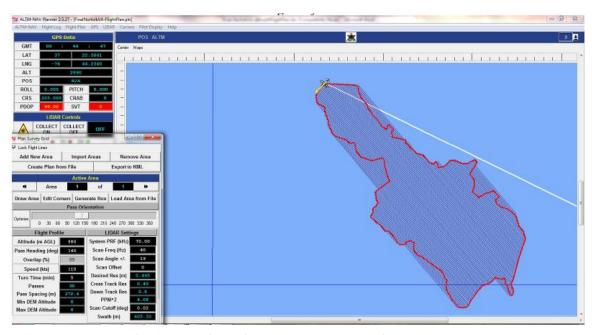


Figure 4: Trajectories as flown by LMSI LiDAR Control

Two base stations were utilized. The base station coordinates are set forth below.

Latitude	Longitude	Elevation
37 11 46.65724	76 29 28.13126	-18.135m
37 07		
27.35080	76 25 12.73298	-33.312m

Table 9 - Base Stations used to control LiDAR acquisition Airborne GPS Kinematic

All airborne GPS trajectories were processed and checked on site. All trajectories were very high quality with forward/reverse separation between 2cm-5cm.

GENERATION AND CALIBRATION OF LASER POINTS (RAW DATA)

The initial step of calibration is to verify availability and status of all needed GPS and Laser data against field notes and compile any data if not complete.

If a calibration error greater than specification is observed within the mission, the roll, pitch and scanner scale corrections that need to be applied are calculated. The missions with the new calibration values are regenerated and validated internally once again to ensure quality.

Data collected by the LiDAR unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GPS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database.

On a project level, a supplementary coverage check is carried out to ensure no data voids unreported by Field Operations are present.

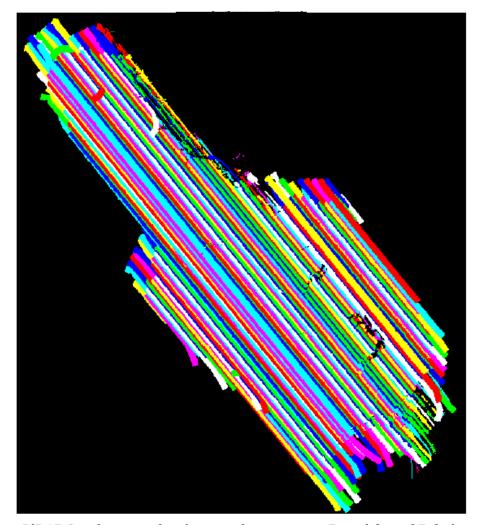


Figure 5 - LiDAR Swath output showing complete coverage. Boresight and Relative accuracy

The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the LiDAR unit or GPS. Roll, pitch and scanner scale are optimized during the calibration process until the relative accuracy is met.

Relative accuracy and internal quality are checked using at least 3 regularly spaced QC blocks in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed. Color scale is adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point to point, flight line to flight line and mission to mission agreement.

COMBINED SWATH VERTICAL ACCURACY ASSESSMENT

Dewberry tested the vertical accuracy of the open terrain swath data upon receipt of the calibrated data from Atlantic and LMSI. Dewberry tested the vertical accuracy of the swath data using the eighteen open terrain independent survey check points. The vertical accuracy is tested by comparing survey checkpoints in open terrain to a triangulated irregular network (TIN) that is created from the raw swath points. Only checkpoints in open terrain can be tested against raw swath data because the data has not undergone classification techniques to remove vegetation,

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 18 of 233

buildings, and other artifacts from the ground surface. Checkpoints are always compared to interpolated surfaces from the LiDAR point cloud because it is unlikely that a survey checkpoint will be located at the location of a discrete LiDAR point. Project specifications require a FVA of 0.181 m based on the RMSE $_z$ (0.0925 m) x 1.96. The dataset for the Norfolk, VA LiDAR Project satisfies these criteria. The raw LiDAR swath data tested 0.163 m vertical accuracy at 95% confidence level in open terrain, based on RMSE $_z$ (0.083m) x 1.9600. The table below shows all calculated statistics for the raw swath data.

100 % of Totals	RMSE _z (m) Open Terrain Spec=0.0925m	FVA – Fundamental Vertical Accuracy (RMSE _z x 1.9600) Spec=0.181m	Mean	Median (m)	Skew	Std Dev (m)	# of Points	Min (m)	Max (m)
Open Terrain	0.083	0.163	0.058	0.025	0.963	0.077	18	-0.109	0.248

Table 10: FVA at 95% Confidence Level for Raw Swaths

Based on the initial vertical accuracy testing conducted by Dewberry, the calibrated data received from Atlantic and LMSI for the Norfolk, VA LiDAR Project satisfies the project's pre-defined vertical accuracy criteria.

LiDAR Processing & Qualitative Assessment

DATA CLASSIFICATION AND EDITING

LiDAR mass points were produced to LAS 1.2 specifications, including the following LAS classification codes:

- Class 1 = Unclassified, used for all other features that do not fit into the Classes 2, 7, 9, 10, or 11, including vegetation, buildings, etc.
- Class 2 = Bare-Earth Ground
- Class 7 = Noise, low and high points
- Class 9 = Water, points located within collected breaklines
- Class 10 = Ignored Ground due to breakline proximity.
- Class 11 = Withheld, Points with scan angles exceeding +/- 20 degrees.

The data was processed using GeoCue and TerraScan software. The initial step is the setup of the GeoCue project, which is done by importing a project defined tile boundary index encompassing the entire project area. The acquired 3D laser point clouds, in LAS binary format, were imported into the GeoCue project and tiled according to the project tile grid. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine classifies any obvious outliers in the dataset to class 7 and points with scan angles exceeding +/- 20 degrees to class 11. After points that could negatively affect the ground are removed from class

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 19 of 233

1, the ground layer is extracted from this remaining point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model.

This surface model is generated using three main parameters: building size, iteration angle and iteration distance. The initial model is based on low points being selected by a "roaming window" with the assumption that these are the ground points. The size of this roaming window is determined by the building size parameter. The low points are triangulated and the remaining points are evaluated and subsequently added to the model if they meet the iteration angle and distance constraints. This process is repeated until no additional points are added within iterations. A second critical parameter is the maximum terrain angle constraint, which determines the maximum terrain angle allowed within the classification model.

The following fields within the LAS files are populated to the following precision: GPS Time (0.00001 second precision), Easting (0.003 meter precision), Northing (0.003 meter precision), Elevation (0.003 meter precision), Intensity (integer value - 12 bit dynamic range), Number of Returns (integer - range of 1-4), Return number (integer range of 1-4), Scan Direction Flag (integer - range 0-1), Classification (integer), Scan Angle Rank (integer), Edge of flight line (integer, range 0-1), User bit field (integer - flight line information encoded). The LAS file also contains a Variable length record in the file header that defines the projection, datums, and units.

Once the initial ground routine has been performed on the data, Dewberry creates Delta Z (DZ) orthos to check the relative accuracy of the LiDAR data. These orthos compare the elevations of LiDAR points from overlapping flight lines on a 1 meter pixel cell size basis. If the elevations of points within each pixel are within 10 cm of each other, the pixel is colored green. If the elevations of points within each pixel are between 10 cm and 20 cm of each other, the pixel is colored yellow, and if the elevations of points within each pixel are greater than 20 cm in difference, the pixel is colored red. Pixels that do not contain points from overlapping flight lines are colored according to their intensity values. DZ orthos can be created using the full point cloud or ground only points and are used to review and verify the calibration of the data is acceptable. Some areas are expected to show sections or portions of red, including terrain variations, slope changes, and vegetated areas or buildings if the full point cloud is used. However, large or continuous sections of yellow or red pixels can indicate the data was not calibrated correctly or that there were issues during acquisition that could affect the usability of the data. The DZ orthos for Norfolk, VA showed that the data was calibrated correctly with no issues that would affect its usability. The figure below shows an example of the DZ orthos.

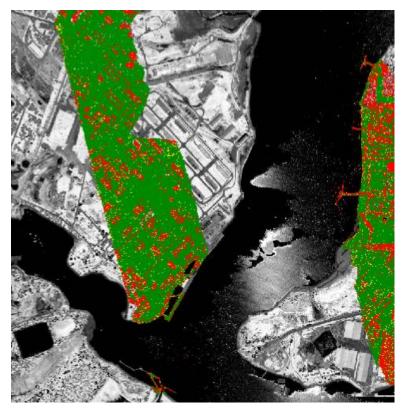


Figure 6 - DZ orthos created from the full point cloud. Some red pixels are visible along embankments, sloped terrain, on buildings, and in vegetated land cover, as expected. Open, flat areas are green indicating the calibration and relative accuracy of the data is acceptable.

Once the calibration and relative accuracy of the data was confirmed, Dewberry utilized a variety of software suites for data processing. The LAS dataset was imported into GeoCue task management software for processing in Terrascan. Each tile was imported into Terrascan and a surface model was created to examine the ground classification. Dewberry analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present following the initial processing conducted by Dewberry. Dewberry analysts employ 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points are removed from the ground classification. After the ground classification corrections were completed, the dataset was processed through a water classification routine that utilizes breaklines compiled by Dewberry to automatically classify hydro features. The water classification routine selects ground points within the breakline polygons and automatically classifies them as class 9, water. The final classification routine applied to the dataset selects ground points within a specified distance of the water breaklines and classifies them as class 10, ignored ground due to breakline proximity.

QUALITATIVE ASSESSMENT

Dewberry's qualitative assessment utilizes a combination of statistical analysis and interpretative methodology to assess the quality of the data for a bare-earth digital terrain model (DTM). This process looks for anomalies in the data and also identifies areas where man-made structures or vegetation points may not have been classified properly to produce a bare-earth model.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 21 of 233

Within this review of the LiDAR data, two fundamental questions were addressed:

- Did the LiDAR system perform to specifications?
- Did the vegetation removal process yield desirable results for the intended bare-earth terrain product?

Mapping standards today address the quality of data by quantitative methods. If the data are tested and found to be within the desired accuracy standard, then the data set is typically accepted. Now with the proliferation of LiDAR, new issues arise due to the vast amount of data. Unlike photogrammetrically-derived DEMs where point spacing can be eight meters or more, LiDAR nominal point spacing for this project is 1 point per 0.7 square meters. The end result is that millions of elevation points are measured to a level of accuracy previously unseen for traditional elevation mapping technologies and vegetated areas are measured that would be nearly impossible to survey by other means. The downside is that with millions of points, the dataset is statistically bound to have some errors both in the measurement process and in the artifact removal process.

As previously stated, the quantitative analysis addresses the quality of the data based on absolute accuracy. This accuracy is directly tied to the comparison of the discreet measurement of the survey checkpoints and that of the interpolated value within the three closest LiDAR points that constitute the vertices of a three-dimensional triangular face of the TIN. Therefore, the end result is that only a small sample of the LiDAR data is actually tested. However there is an increased level of confidence with LiDAR data due to the relative accuracy. This relative accuracy in turn is based on how well one LiDAR point "fits" in comparison to the next contiguous LiDAR measurement, and is verified with DZ orthos. Once the absolute and relative accuracy has been ascertained, the next stage is to address the cleanliness of the data for a bare-earth DTM.

By using survey checkpoints to compare the data, the absolute accuracy is verified, but this also allows us to understand if the artifact removal process was performed correctly. To reiterate the quantitative approach, if the LiDAR sensor operated correctly over open terrain areas, then it most likely operated correctly over the vegetated areas. This does not mean that the entire bareearth was measured; only that the elevations surveyed are most likely accurate (including elevations of treetops, rooftops, etc.). In the event that the LiDAR pulse filtered through the vegetation and was able to measure the true surface (as well as measurements on the surrounding vegetation) then the level of accuracy of the vegetation removal process can be tested as a by-product.

To fully address the data for overall accuracy and quality, the level of cleanliness (or removal of above-ground artifacts) is paramount. Since there are currently no effective automated testing procedures to measure cleanliness, Dewberry employs a combination of statistical and visualization processes. This includes creating pseudo image products such as LiDAR orthos produced from the intensity returns, Triangular Irregular Network (TIN)'s, Digital Elevation Models (DEM) and 3-dimensional models. By creating multiple images and using overlay techniques, not only can potential errors be found, but Dewberry can also find where the data meets and exceeds expectations. This report will present representative examples where the LiDAR and post processing had issues as well as examples of where the LiDAR performed well.

ANALYSIS

Dewberry utilizes GeoCue software as the primary geospatial process management system. GeoCue is a three tier, multi-user architecture that uses .NET technology from Microsoft. .NET technology provides the real-time notification system that updates users with real-time project status, regardless of who makes changes to project entities. GeoCue uses database technology for sorting project metadata. Dewberry uses Microsoft SQL Server as the database of choice. Specific analysis is conducted in Terrascan and QT Modeler environments.

Following the completion of LiDAR point classification, the Dewberry qualitative assessment process flow for the Norfolk, VA LiDAR project incorporated the following reviews:

- 1. *Format:* The LAS files are verified to meet project specifications. The LAS files for the Norfolk, VA LiDAR project conform to the specifications outlined below.
 - Format, Echos, Intensity
 - o LAS format 1.2
 - o Point data record format 1
 - o Multiple returns (echos) per pulse
 - o Intensity values populated for each point
 - ASPRS classification scheme
 - Class 1 unclassified
 - o Class 2 Bare-earth ground
 - Class 7 Noise
 - Class 9 Water
 - Class 10 Ignored Ground due to breakline proximity
 - Class 11 Withheld due to scan angles exceeding +/- 20 degrees
 - Projections
 - Datum North American Datum 1983
 - Projected Coordinate System UTM Zone 18
 - o Linear Units Meters
 - O Vertical Datum North American Vertical Datum 1988, Geoid 12A
 - Vertical Units Meters
 - o Datum North American Datum 1983 HARN (NAD83 HARN)
 - o Projected Coordinate System Virginia State Place South
 - o Linear Units U.S. Survey Feet
 - Vertical Datum North American Vertical Datum 1988, Geoid 12A
 - Vertical Units Feet
 - LAS header information:
 - Class (Integer)
 - o Adjusted GPS Time (0.0001 seconds)
 - o Easting (0.003 meters)
 - o Northing (0.003 meters)
 - Elevation (0.003 meters)
 - o Echo Number (Integer 1 to 4)
 - o Echo (Integer 1 to 4)

- Intensity (8 bit integer)
- Flight Line (Integer)
- Scan Angle (Integer degree)
- 2. Data density, data voids: The LAS files are used to produce Digital Elevation Models using the commercial software package "QT Modeler" which creates a 3-dimensional data model derived from Class 2 (ground points) in the LAS files. Grid spacing is based on the project density deliverable requirement for un-obscured areas. For the Norfolk, VA LiDAR project it is stipulated that the minimum post spacing in un-obscured areas should be 1 point per 0.7 square meters.
 - a. Acceptable voids (areas with no LiDAR returns in the LAS files) that are present in the majority of LiDAR projects include voids caused by bodies of water. These are considered to be acceptable voids. No unacceptable voids are present in the Norfolk, VA LiDAR project.
- 3. *Bare earth quality:* Dewberry reviewed the cleanliness of the bare earth to ensure the ground has correct definition, meets the project requirements, there is correct classification of points, and there are less than 5% residual artifacts.
 - a. Artifacts: Artifacts are caused by the misclassification of ground points and usually represent vegetation and/or man-made structures. The artifacts identified are usually low lying structures, such as porches or low vegetation used as landscaping in neighborhoods and other developed areas. These low lying features are extremely difficult for the automated algorithms to detect as non-ground and must be removed manually. The vast majority of these features have been removed but a small number of these features are still in the ground classification. The limited numbers of features remaining in the ground are usually 0.3 meters or less above the actual ground surface, and should not negatively impact the usability of the dataset.

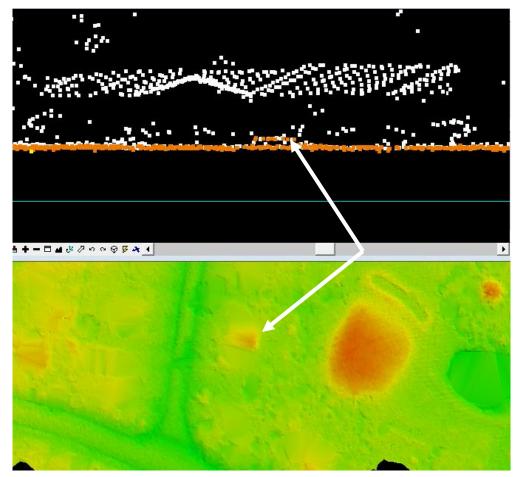


Figure 7 – Tile number 18SVF020755. Profile with points colored by class (class 1=white, class 2=orange) is shown in the top view and a model of the surface is shown in the bottom view. The arrow identifies low structure or vegetation points. A limited number of these small features are still classified as ground but do not impact the usability of the dataset.

b. Bridge Removal Artifacts: The DEM surface models are created from TINs or Terrains. TIN and Terrain models create continuous surfaces from the inputs. Because a continuous surface is being created, the TIN or Terrain will use interpolation to triangulate across a bridge opening from legitimate ground points on either side of the actual bridge. This can cause visual artifacts or "saddles." These "artifacts" are only visual and do not exist in the LiDAR points or breaklines.

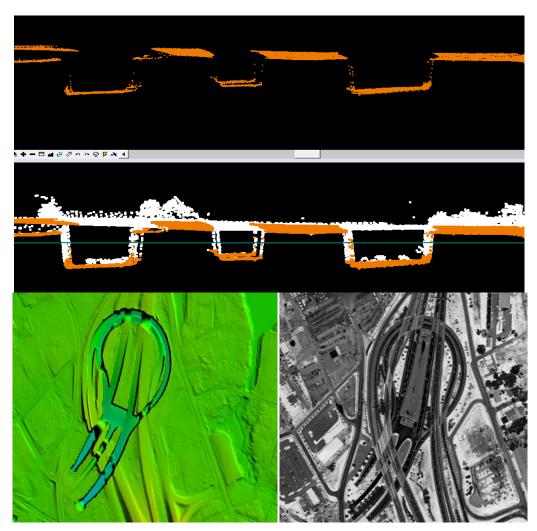


Figure 8 – Tile number 18SUF840770. The DEM in the bottom left view shows visual artifacts because the surface model is interpolated from the ground points on the slope leading from the tops of the overpasses and bridges to the lower ground points on either side of the overpasses and bridges. The surface model must make a continuous model and in order to do so, points are connected through interpolation. This can cause visual artifacts when there are features with large elevation differences. The profiles in the top two views show the LiDAR points of this particular feature colored by class. All overpass and bridge points have been removed from ground (orange) and are unclassified (white). There are no ground points that can be modified to correct these visual artifacts.

c. Culverts and Bridges: Bridges have been removed from the bare earth surface while culverts remain in the bare earth surface. In instances where it is difficult to determine if the feature is a culvert or bridge, such as with some small bridges, Dewberry erred on assuming they would be culverts especially if they are on secondary or tertiary roads. Below is an example of a culvert that has been left in the ground surface.

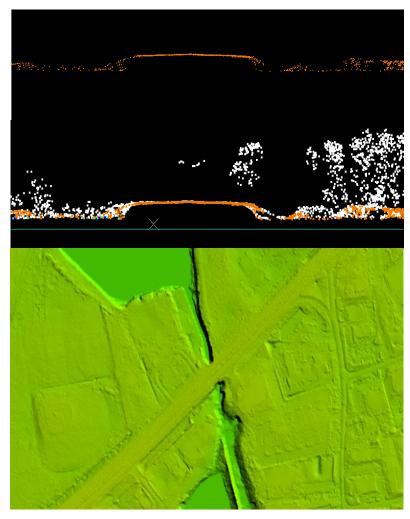


Figure 9– Tile number 18SUF885725. Profile with points colored by class (class 1=white, class 2=orange, class 9=blue) is shown in the top view and the DEM is shown in the bottom view. This culvert remains in the bare earth surface. Bridges have been removed from the bare earth surface and classified to class 1.

d. *In Ground Structures:* In ground structures exist within the project area. These types of structures occur mainly on military bases and in facilities designed for munitions testing and storage. These features are correctly included in the ground classification.

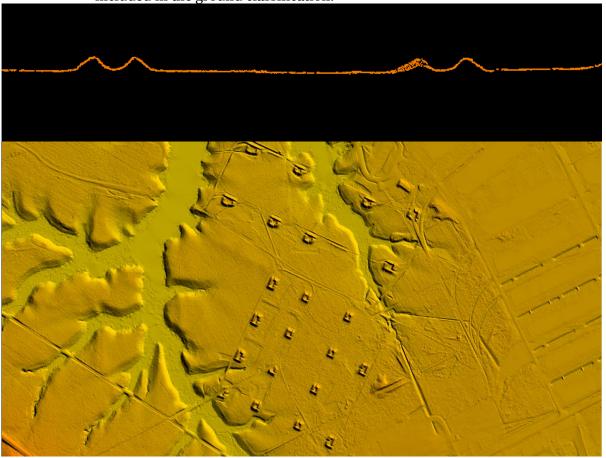


Figure 10 – Tile 18SUG555265. Profile with the points colored by class (class 1=white, class 2=orange) is shown in the top view and a DEM of the surface is shown in the bottom view. These features are correctly included in the ground classification.

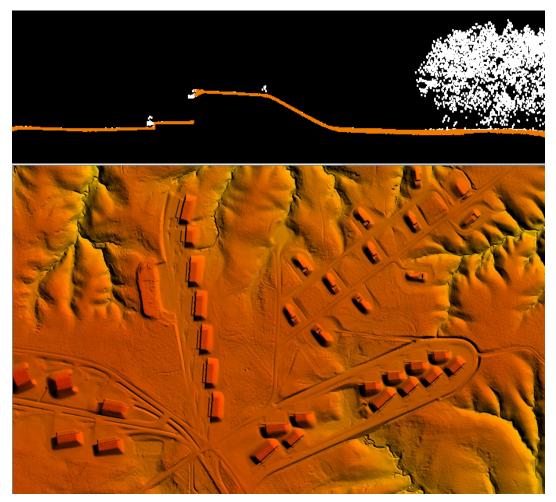


Figure 11 – Tiles 18SUG570220. Profile with the points colored by class (class 1=white, class 2=orange) is shown in the top view and a DEM of the surface is shown in the bottom view. These features are correctly included in the ground classification.

e. Dirt Mounds: Irregularities in the natural ground exist and may be misinterpreted as artifacts that should be removed. Small hills and dirt mounds are present throughout the project area. These features are correctly included in the ground.

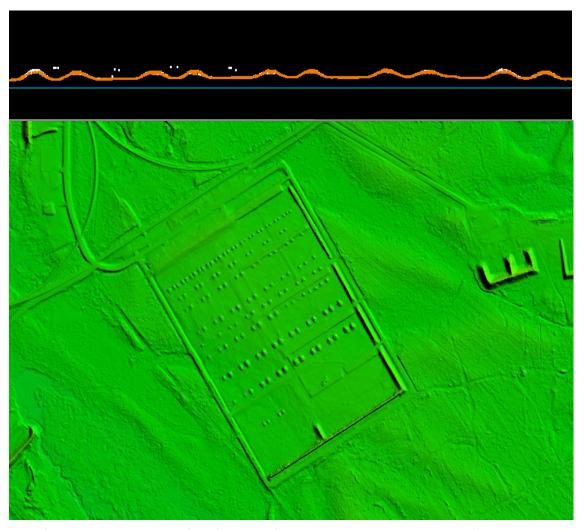


Figure 12 - Tile 18SUG585070. Profile with the points colored by class (class 1=white, class 2=orange) is shown in the top view and a DEM of the surface is shown in the bottom view. These features are correctly included in the ground classification.

f. Elevation Change Within Breaklines: While water bodies are flattened in the final DEMs, other features such as linear hydrographic features can have significant changes in elevation within a small distance. In linear hydrographic features, this is often due to the presence of a structure that affects flow such as a dam or spillway. Significant changes in elevation are also present in tidally influenced areas which are located throughout the Norfolk, VA Project area. Dewberry has reviewed the DEMs to ensure that changes in elevation are shown from bank to bank. These changes are often shown as steps to reduce the presence of artifacts while ensuring consistent downhill flow. An example is shown below.

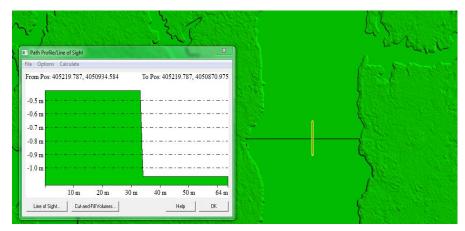


Figure 13 – Tile number 18SVF050500. Significant drops in elevation occur in the tidally influenced areas. Elevation change has been stair stepped. The steps are flat from bank to bank and flow consistently downhill.

g. Shipyards and Dry Docks: Large dry docks are located throughout the Norfolk, VA project area. Newport News Shipbuilding is one of the largest in the world and has dry docks that can hold over 100 million gallons of water when flooded. Large vessels such as aircraft carriers were being actively constructed within most of the dry docks during the time of acquisition. Other dry docks were empty resulting in large crater like artifacts in the final bare earth DEMs. There are no ground points that can be modified to correct these visual artifacts. Examples are shown below.

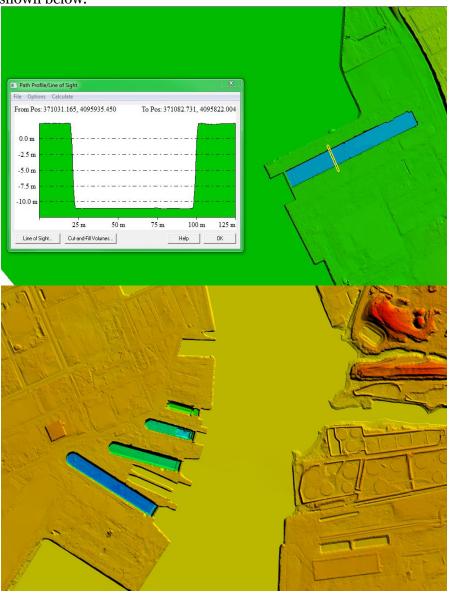


Figure 14– Tile 18SUF705950 in the top view and tile 18SUF840755 in the bottom view. The DEMs show visual artifacts because the surface model is interpolated from the ground points on the slope leading from the tops of the dry docks to the lower ground points within the dry docks. The surface model must make a continuous model and in order to do so, points are connected through interpolation. This can cause visual artifacts when there are features with large elevation differences.

h. Canal Locks: Great Bridge Lock, often closed by the Army Corp. due to flooding, was open at the time of acquisition. Dewberry collected it as a water body and it was hydro flattened along with the rest of the hydro mask in the final DEMs. Examples are shown below.

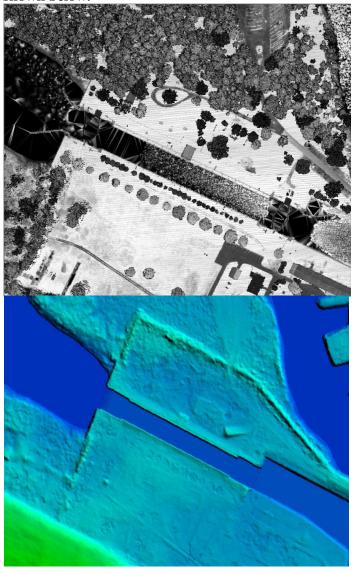


Figure 15 – Tile 18SUF885635. Great Bridge Lock was open and full of water at the time of acquisition. Dewberry included the lock in the hydro mask to avoid artifacts in the final DEM model shown above in the bottom view.

i. Flight line Ridges: Ridges occur when there is a difference between the elevations of adjoining flight lines or swaths. Some flight line ridges are visible in the final DEMs but they do not exceed the project specifications and the overall relative accuracy requirements for the project area have been met. An example of a visible ridge that is within tolerance is shown below.

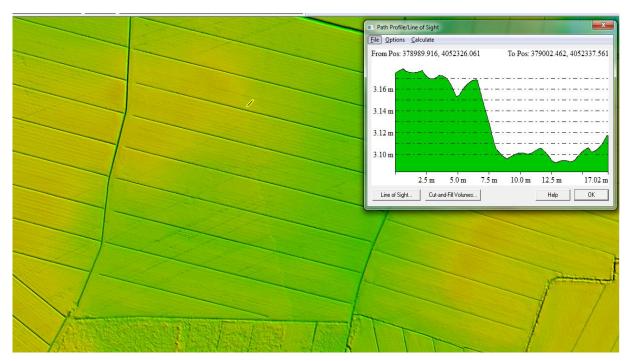


Figure 16—Tile number 18SUF780515. The flight line ridge is less than 8 cm. Overall, the FEMA Norfolk, VA LiDAR data meets the project specifications for 10 cm RMSE relative accuracy.

DERIVATIVE LIDAR PRODUCTS

Building Footprint Shapefiles

Dewberry generated 2D and 3D building footprints through the use of a semi-automated approach. This approach is semi automated in that the initial development of the features is conducted through the automated processing of the LiDAR data using proprietary tools and completed through manual review and editing of the features to ensure that the product meets the specifications.

Dewberry developed an automated processing algorithm that identified the planar surfaces in the LiDAR data and generated polygons from the indentified areas. Once the surfaces were identified and the initial polygons had been extracted, a secondary process preformed a best-fit line surrounding the initial polygons to square and finish the buildings.

While the automated portion of the process successfully extracts the majority of features, there are instances where features will not be accurately captured. Dewberry identified and manually added features that were visible in the LiDAR but were missed by the automated collect, separated buildings that were collected as a single footprint due to proximity, and reshaped complex features in the final processing steps.

a. Missed or Inaccurately Generated Features: The automated building footprints are based on LiDAR points that were classified based on size, elevation and angular relationships between the points. Occasionally, features were missed or inaccurately generated due to tree cover or certain properties not meeting the automated classification parameters. Dewberry added or modified these features as needed during the manual portion of the process. Examples are shown below.

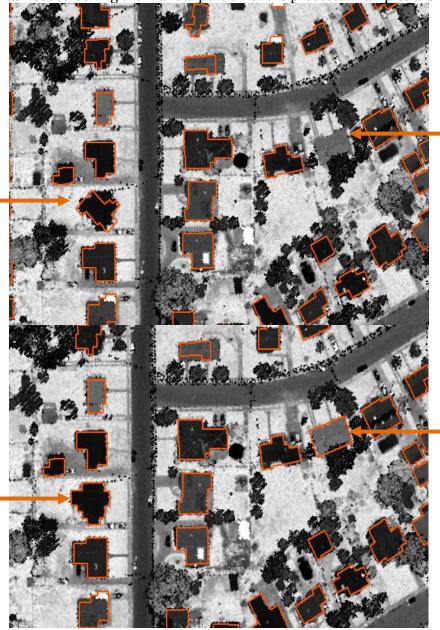


Figure 17 – Tiles 18SUF795950 and 18SUF795965. The top image shows the automated portion of the process missed a feature and did not accurately capture a second feature. Dewberry corrected these types of errors during the manual review as shown in the bottom image.

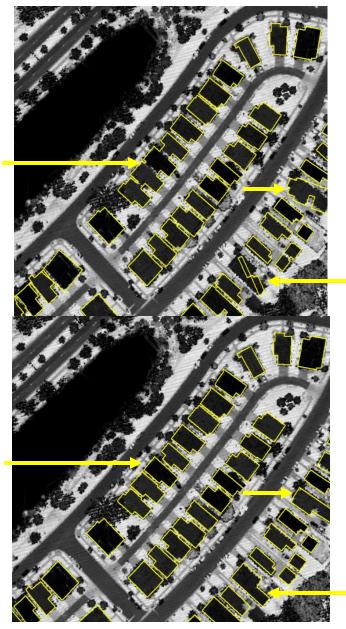


Figure 19 – Tile 18SUF795725. The top image shows the automated portion of the process did not accurately capture and separate individual features that were in close proximity. Dewberry corrected these types of errors during the manual review as shown in the bottom image.

Dewberry completed the buildings by programmatically adding the attributes for length, width, area, building top elevation, building base elevation, median height of building, and rooftype.

The positional accuracy of the features are equal to 1.5 meters relative to the LiDAR data. This accuracy allows for the fact that the roof line will not be completely accurate due to the density of points on the feature.

Vegetation Shapefiles

Forest polygons were developed using automated processes in eCognition software. This software allowed the input of the surface models and intensity imagery to determine vegetation stands as well as individual points. Upon completion of the automated extraction buildings and hydrographic features were erased from the vegetation polygons as required in the specifications.

Dewberry determined the predominant height of the stand, the average stem spacing, and the type of tree using GIS tools. Stand height was calculated using the mean surface model elevation for each tree stand. Average stem spacing was calculated using the mean Euclidean distance of the tree points within each stand. Tree type was assigned by first correlating forest landcover types from NOAA's Coastal Change Analysis Program (C-CAP) 2006 landcover dataset to coincident forest polygons. Then, the remaining forest polygons that were not coincident to the C-CAP forest landcover were classified manually.

Along with the forest polygons, Dewberry generated point records for each tree within the project area that exceeds the 4 meter height requirement. Trees were collected both inside and outside of the vegetation polygons. Dewberry used eCognition to segment the intensity and surface models into likely candidates for individual trees. These segments were converted to a centroid and attributed as a tree point. Dewberry performed a review of the dataset to ensure that no significant errors are present. However, it should be noted that the individual tree points will be best estimates for the trees and not necessarily the absolute location of an individual tree.

Survey Vertical Accuracy Checkpoints

All checkpoints surveyed for vertical accuracy testing purposes are listed in the following table. A total of one hundred (100) checkpoints were surveyed for the USGS Norfolk, VA LiDAR Project.

Point ID	NAD83	NAVD88	
	Easting X (m)	Northing Y (m)	Elevation (m)
BLT	351760.734	4127850.10	18.183
BLT	381578.163	4078664.26	0.747
BLT	393248.624	4072438.86	5.015
BLT	402227.485	4071563.33	3.332
BLT	392360.215	4067495.23	4.073
BLT	381270.904	4060371.47	4.561
BLT	400675.21	4061689.79	3.101
BLT	418260.165	4058718.15	0.336
BLT	381142.027	4051271.05	0.508
BLT	391753.707	4051529.69	3.966
BLT	410587.042	4049846.41	0.215
BLT	354157.693	4124969.35	26.867

BLT 393929.901 4045956.46 1.760 BLT 374985.334 4116934.63 1.681 BLT 37713.574 411272.261 1.301 BLT 365984.403 4105501.27 5.313 BLT 365984.403 4105501.27 5.313 BLT 387491.887 4091258.47 0.708 BLT 387491.887 4091258.47 0.708 BLT 409355.513 4083480.74 1.461 FO 370349.672 4073223.38 6.550 FO 372583.785 4071595.18 5.275 FO 415396.475 4067593.56 0.702 FO 397607.018 4068185.83 2.955 FO 397607.018 4068185.83 2.955 FO 395007.018 4068185.83 2.955 FO 395007.018 406914.70 2.597 FO 395007.02 407649.95 4.395 FO 395007.03 4060914.70 2.597 FO 3050807.06 4049602.28 2.667 FO 396807.306 4049602.28 2.667 FO 39088.746 404644 2.244 FO 303237.179 4126365.61 24.011 FO 391454.574 4046723.48 4.048 FO 360028.768 4126241.51 9.111 FO 39250.758 4112572.97 4.076 FO 362705.508 410826.95 9.253 FO 372250.758 4112572.97 4.076 FO 381648.883 4101531.90 2.403 FO 372250.758 410826.95 9.253 FO 399373.443 40864210.27 5.089 FO 399373.443 40864210.27 5.089 FO 399373.443 4096625.19 3.710 FO 397274.821 4096032.45 5.704 FO 392212.252 4078421.85 3.445 GWC 375676.882 4078315.06 1.982 GWC 409071.75 407301.62 5.377 GWC 392212.252 4061512.70 6.443 GWC 375676.882 4078315.20 4.983 GWC 409971.276 4046525.10 2.111 GWC 37569.823 4046741.63 4.160 GWC 37569.823 409962.58 5.993 GWC 409971.276 4046625.10 3.710 GWC 37569.824 409563.955 FO GWC 375676.882 4078315.06 1.982 GWC 409971.276 404625.13 2.111 GWC 392212.252 4061512.70 6.443 GWC 375676.882 4078315.06 1.982 GWC 409971.276 404625.13 2.111 GWC 392212.252 4061512.70 6.443 GWC 375676.882 4078315.06 1.982 GWC 409971.276 404625.13 2.111 GWC 392212.252 4061512.70 6.443 GWC 375676.882 4078315.60 1.982 GWC 409971.276 404625.13 2.111 GWC 392212.252 4061512.70 6.443 GWC 375676.882 4078315.99 4.983 GWC 409971.276 404625.13 2.111 GWC 392212.252 4061512.70 6.443 GWC 37569.823 409863.955 FO 309373.443 409863.955 FO 309373.444 409863.955 FO 309373.444 409863.955 GWC 37694.936 4114889.91 FO 393786.442 409863.366 GWC 37694.936 GWC 37694				
BLT 377113-574 4112722.61 1.301 BLT 363984-403 4105501.27 5.313 BLT 376746.304 410703.52 3.508 BLT 376746.304 410703.52 3.508 BLT 387491.887 4091258.47 0.708 BLT 375730-499 4083420.21 5.063 BLT 409359.513 4083180.74 1.461 FO 370349.672 4073223.38 6.550 FO 372583.785 4071595.18 5.275 FO 415396.475 4067053.56 0.702 FO 397607.018 4068185.83 2.955 FO 376505.026 4067499.95 4.395 FO 376505.026 4067499.95 4.395 FO 336087.306 4049602.51 0.440 FO 380102.698 4056043.02 4.959 FO 393948.268 4045614.94 2.244 FO 350327.179 4136365.61 24.911 FO 39454.574 4046723.48 4.048 FO 360402.67 411875.45 16.648 FO 372250.758 4112572.97 4.076 FO 372250.758 412572.97 4.076 FO 372274.821 409603.45 5.794 FO 39373-443 4084210.27 5.089 FO 39373-443 4084210.27 5.089 FO 393746.948 4078316.06 1.982 GWC 393746.948 4078316.06 1.982 GWC 403954.91 4066742.59 4.983 GWC 39374.94 4066725.50 3.710 GWC 360405.124 4118875.52 3.5999 GWC 37651.032 4118875.52 3.5999 GWC 37651.032 4118875.52 3.5999 GWC 37651.032 411888.55 5.794 GWC 39374.948 4078316.06 1.982 GWC 37981.16 406625.51 9.3710 GWC 37981.16 406625.51 9.3710 GWC 37051.32 411888.75 5.163 GWC 37059.394 411888.75 5.163 GWC 37059.394 411888.75 5.163 GWC 37651.032 411933.90 1.280 GWC 37657.544 411933.90 1.280 GWC 37657.544 411933.90 1.280 GWC 37657.544 411933.90 1.280 GWC 37657.545 411933.90 1.280 GWC 37657.546 411933.90 1.280 GWC 37659.0966 411889.55 17.938	BLT	393929.901	4045956.46	1.760
BLT 363984-403 4105501.27 5.313 BLT 376736,304 4101703,52 3.508 BLT 387491.887 491928.47 0.708 BLT 376730.499 4083420.21 5.063 BLT 4903395.513 4083180.74 1.461 FO 370349.672 4073223.38 6.550 FO 372583.785 4071595.18 5.275 FO 415396.475 4067053.56 0.702 BLT 37670.018 406818.83 2.955 FO 376505.026 4067499.95 4.395 FO 376505.026 4067499.95 4.395 FO 305910.233 4066914.70 2.597 FO 410438.562 4051525.18 0.440 FO 380102.698 4056043.02 4.959 FO 396807.306 4049602.58 2.637 FO 391454.574 4046723.48 4.048 FO 305027.179 4136365.61 24.911 FO 360028.768 4126241.51 9.111 FO 366402.057 411875.45 16.648 FO 372250.758 4112572.97 4.076 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 403375.22 407842.85 3.415 GWC 373766.882 4078545.9 4.983 GWC 409067.175 407801.62 5.377 GWC 403954.91 406695.95 GWC 375676.882 407824.85 3.415 GWC 375676.882 407824.165 3.710 GWC 39212.252 4061512.70 6.443 GWC 37676.882 407824.163 4.06625.19 3.710 GWC 39212.252 4061512.70 6.443 GWC 37581.16 4055382.32 2.440 GWC 37676.892 406625.19 3.710 GWC 37981.16 4065382.32 2.440 GWC 37676.892 4064571.3 2.111 GWC 37676.892 4064571.3 2.111 GWC 37676.892 4064571.3 2.111 GWC 37676.892 406593.45 5.509 GWC 37676.892 406593.45 5.509 GWC 37676.892 406625.19 3.710 GWC 37676.892 4078421.85 3.415 GWC 37676.892 4078421.893 GWC 37677.846 4096625.80 4.989 GWC 37698.866 414889.56 414889.56 41988	BLT	374985.334	4116934.63	1.681
BLT 376746.304 4101703.52 3.508 BLT 387491.887 4091258.47 0.708 BLT 376730.499 4083420.21 5.063 BLT 409339.513 4083180.74 1.461 FO 370349.672 4073223.38 6.550 FO 372583.785 4071595.18 5.275 FO 415396.475 406703.56 0.702 FO 395607.018 4068185.83 2.955 FO 37650.026 4067499.95 4.395 FO 305909.233 4060914.70 2.597 FO 410438.562 405125.18 0.440 FO 380102.698 4056043.02 4.959 FO 380102.698 4056043.02 4.959 FO 396807.306 4049602.58 2.657 FO 39454.51574 4046723.48 4.048 FO 360028.768 4126241.51 9.111 FO 360028.768 4126241.51 9.111 FO 360402.057 4118875.45 16.648 FO 372250.758 410826.98 4105319.0 2.403 FO 381648.883 4101531.90 2.403 FO 399373.443 4084210.27 5.089 FO 409375.322 4078421.85 3.415 GWC 39374.948 407831.60 1.982 GWC 40957.176 407607.5 407311.62 GWC 37981.16 406625.19 3.710 GWC 39212.252 4061512.70 6.443 GWC 37654.939 414825.52 5.599 GWC 40957.176 407607.5 5.509 GWC 37654.932 407654.59 4.983 GWC 40957.176 40763.32 2.440 GWC 37654.932 407642.59 4.174 GWC 37981.16 406625.19 3.710 GWC 36602.44 495633.55 5.506 GWC 37654.932 407842.85 3.498 GWC 40251.116 406525.19 3.710 GWC 39212.252 4061512.70 6.443 GWC 37654.932 407842.85 3.999 GWC 37657.897 GWC 37658.907 GWC 37657.897 GWC 37657.867 GWC 37658.907 GWC 37659.9086 GWC 37657.867 GWC 37659.9086	BLT	377113.574	4112722.61	1.301
BLT 387491.887 4091258.47 0.708 BLT 376730.499 4083420.21 5.063 BLT 409359.513 4081810.74 1.461 FO 370349.672 4073223.38 6.550 FO 372583.785 4071595.18 5.275 FO 415396.475 406783.56 0.702 FO 397607.018 4068185.83 2.955 FO 37650.026 4067499.95 4.395 FO 37650.026 4067499.95 4.395 FO 395102.33 4060914.70 2.597 FO 380102.698 4055025.18 0.440 FO 380102.698 4055043.02 4.999 FO 39687.306 4049602.58 2.637 FO 393537.179 4136365.61 22.941 FO 350327.179 4136365.61 22.941 FO 350327.179 4136365.61 24.911 FO 360028.768 4126241.51 9.111 FO 360402.057 4118875.45 16.648 FO 37255.0758 4112572.97 4.076 FO 372276.508 4108269.85 9.253 FO 381648.883 4101521.09 2.493 FO 372274.821 409603.45 5.794 FO 372274.821 409603.45 5.794 FO 37274.821 409603.45 5.794 FO 37256.882 4078421.85 3.415 GWC 375676.882 4078421.85 3.415 GWC 37576.882 4078421.85 3.415 GWC 37576.882 4078421.85 3.415 GWC 37581.16 4055382.32 2.440 GWC 37981.16 4055382.32 2.440 GWC 37981.16 4055382.32 2.440 GWC 38672.05 404914.93 3.966 GWC 37654.932 404674.63 4.160 GWC 37654.936 414889.51 17.938	BLT	363984.403	4105501.27	5.313
BLT 376730.499 4083420.21 5.063 BLT 409359.513 4083180.74 1.461 FO 370349.672 4073223.38 6.550 FO 372853.785 4071595.18 5.275 FO 415396.475 4067053.56 0.702 FO 39607.018 406818.83 2.955 FO 376505.026 4067499.95 4.395 FO 395910.233 4060914.70 2.597 FO 410438.562 4055125.18 0.440 FO 396807.306 4049602.58 2.637 FO 409348.268 4045614.94 2.224 FO 39048.268 4045614.94 2.224 FO 39048.268 4045614.94 2.244 FO 360402.657 4118875.45 16.648 FO 372250.758 4112572.97 4.076 FO 386102.657 4118875.45 16.648 FO 372250.758 4112572.97 4.076 FO 399373.443 4084210.27 5.089 FO 409373.443 4084210.27 5.089 FO 409373.443 4084210.27 5.089 FO 409373.443 4084210.27 5.089 FO 409373.443 4084210.27 5.089 FO 409575.322 4078421.85 3.415 GWC 375676.882 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 392212.252 4061512.70 6.443 GWC 37698.491 4067625.19 3.710 GWC 376541.932 4096633.23 2.2440 GWC 37698.491 4067625.19 3.710 GWC 376541.932 4046741.63 4.160 GWC 37678.523 41934.999 GWC 37697.852 41934.999 GWC 37697.852 41934.999 GWC 37697.852 4096625.80 4.989 GWC 37697.852 4096625.80 4.989 GWC 37697.852 41934.999 GWC 37697.852 4096625.80 4.989 GWC 37697.852 41934.999 GWC 37697.852 4096625.80 4.989 GWC 37697.852 4096625.80 4.989 GWC 37697.852 41934.999 GWC 37697.852 4096625.80 4.989 GWC 37697.852 4096625.80 4.989 GWC 37697.852 4096625.80 4.989 GWC 37697.852 4096625.80 4.989 GWC 37697.544 411888.876 13.727 GWC 37697.544 411889.51 17.938	BLT	376746.304	4101703.52	3.508
BLT 409359.513 4083180.74 1.461 FO 370349.672 4073223.38 6.550 FO 372583.785 4071595.18 5.275 FO 415396.475 4067053.56 0.702 FO 397697.018 4068185.83 2.955 FO 376505.026 4067499.95 4.395 FO 376505.026 4067499.95 4.395 FO 380102.638 4066914.70 2.597 FO 410438.562 4055125.18 0.440 FO 380102.698 4056043.02 4.959 FO 396807.306 4049602.58 2.637 FO 403948.268 4045614.94 2.224 FO 350327.179 4136365.61 24.911 FO 360402.874 4046723.48 4.048 FO 39454.574 4046723.48 4.048 FO 372250.758 4112572.97 4.076 FO 366402.057 4118875.45 16.648 FO 372250.758 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 409375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 375676.882 4072545.39 4.983 GWC 377981.16 406625.19 3.710 GWC 377981.16 406525.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 38620.44 405635.9.55 GWC 377981.16 406525.19 3.710 GWC 38620.44 405635.9.55 GWC 377981.16 406525.19 3.710 GWC 38620.44 405635.9.55 GWC 37654.93 404994.93 3.966 GWC 37654.93 41932.9 4046741.63 4.160 GWC 366405.124 411888.76 13.727 GWC 37305.394 4119838.76 13.727 GWC 37305.394 4119838.76 13.727 GWC 37637.546 4096625.80 4.989	BLT	387491.887	4091258.47	0.708
FO 370349.672 4073223.38 6.550 FO 372583.785 4071595.18 5.275 FO 415396.475 4067053.56 0.702 97670.08 4068185.83 2.955 FO 376505.026 4067499.95 4.395 FO 395910.233 4060914.70 2.597 FO 410438.562 4055125.18 0.440 FO 380102.698 4056043.02 4.959 FO 439382.668 4049602.58 2.637 FO 396807.306 4049602.58 2.637 FO 3913434.574 4046723.48 4.048 FO 36028.768 4126241.51 9.111 FO 366402.057 4118875.45 16.648 FO 372250.758 4110531.90 2.403 FO 381648.88 4101531.90 2.403 FO 39273.443 4084210.27 5.089 FO 409375.322 4078421.85 3.415 GWC 393745.491 406702.59 4.706 GWC 372981.116 4065025.51 3.710 GWC 39212.252 4078421.60 1.982 GWC 376541.90 409971.276 GWC 38620.44 4056359.55 5.163 GWC 376541.93 411933.90 1.406 GWC 376541.93 41193.90 1.406 GWC 376541.93 409603.45 5.770 GWC 403954.911 40667042.59 4.1174 GWC 377981.16 40650358.23 2.440 GWC 377981.16 40650359.55 5.163 GWC 409971.276 4049194.93 3.966 GWC 376541.93 4119343.90 1.280 GWC 37678.523 410920.56 4.989 GWC 37678.523 410920.56 4.989 GWC 37678.523 410920.56 4.989 GWC 37678.523 410920.56 4.989 GWC 376178.523 410920.56 4.999 GWC 376177.54 409602.80 4.989 GWC 376177.54 409662.80 4.989 GWC 376177.54 409662.80 4.989 GWC 376177.54 409662.80 4.989	BLT	376730.499	4083420.21	5.063
FO 372583.785 4071595.18 5.275 FO 415396.475 4067053.56 0.702 FO 397607.018 4068185.83 2.955 FO 376505.026 4067499.95 4.395 FO 395910.233 4060914.70 2.597 FO 395910.233 4060914.70 2.597 FO 395910.233 4060914.70 2.597 FO 410438.562 4055125.18 0.440 FO 396807.306 4049602.58 2.637 FO 403948.268 4045614.94 2.244 FO 350327.179 4136365.61 24.911 FO 391454.574 4046723.48 4.048 FO 360028.768 4126241.51 9.111 FO 366402.057 4118875.45 16.648 FO 372250.758 4112572.97 4.076 FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 372274.821 409603.45 5.794 FO 393937.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 375676.882 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 406625.19 3.710 GWC 37981.16 406625.19 3.710 GWC 37981.16 406625.19 3.710 GWC 37654.1932 40499.93 3.966 GWC 37654.1932 4046257.13 2.111 GWC 37981.16 406625.19 3.710 GWC 36820.44 4056359.55 5.163 GWC 36712.905 4049194.93 3.966 GWC 37654.1932 4046724.163 4.160 GWC 37654.1932 4046724.163 4.160 GWC 37654.1932 4046724.163 4.160 GWC 37658.53 411934.390 1.280 GWC 37618.523 4107208.36 GWC 37619.524 410933.59 GWC 37619.524 4109732.52 O.319 GWC 37618.523 4107208.36 GWC 37619.524 410983.50 GWC 37619.524 410993.525 117.938	BLT	409359.513	4083180.74	1.461
FO 415396.475 4067053.56 0.702 FO 397607.018 4068188.83 2.955 FO 376505.026 4067499.95 4.395 FO 376505.026 4067499.95 4.395 FO 395910.233 4060914.70 2.597 FO 410438.562 4055125.18 0.440 FO 380102.698 4056043.02 4.959 FO 396807.306 4049602.58 2.637 FO 403948.268 4045614.94 2.244 FO 350327.179 4136365.61 24.911 FO 391454.574 4046723.48 4.048 FO 360028.768 4126241.51 9.111 FO 366402.057 4118875.45 16.648 FO 372250.758 4112572.97 4.076 FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 375676.882 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 37281.16 406625.519 3.710 GWC 392212.252 4061512.70 6.443 GWC 377981.16 406625.19 3.710 GWC 386220.44 4056338.23 2.440 GWC 37591.16 406625.19 3.710 GWC 386220.44 4056358.23 2.2440 GWC 37651.04 4046257.13 2.111 GWC 386220.44 4056358.55 GWC 376541.932 4046257.13 2.111 GWC 376541.932 4046257.13 2.111 GWC 376541.932 4046625.13 2.111 GWC 376541.932 4046625.80 4.989 GWC 376541.932 4046625.80 4.989 GWC 376541.932 4046625.80 4.989 GWC 37618.523 4107208.36 2.294 GWC 37618.523 4107208.36 4.294 GWC 37618.524 410932.51 17.938	FO	370349.672	4073223.38	6.550
FO 397607.018 4068185.83 2.955 FO 376505.026 4067499.95 4.3995 FO 376505.026 4067499.95 4.3995 FO 395910.233 4060914.70 2.597 FO 410438.562 4055125.18 0.440 FO 380102.698 4056043.02 4.959 FO 396807.306 4049602.58 2.637 FO 403948.268 4045614.94 2.244 FO 350327.179 4136365.61 24.911 FO 391454.574 4046723.48 4.048 FO 360028.768 4126241.51 9.111 FO 36402.057 4118875.45 16.648 FO 372250.758 4112572.97 4.076 FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 375676.882 4072545.39 4.983 GWC 409067.175 407301.62 5.377 GWC 403954.911 4067042.99 4.174 GWC 377981.16 406625.19 3.710 GWC 386220.44 4056359.55 5.163 GWC 376541.932 404694.93 3.966 GWC 376541.932 4046925.13 2.111 GWC 376541.932 4046925.13 2.111 GWC 376541.932 4046925.13 2.111 GWC 376541.932 404674.163 4.160 GWC 376541.932 404674.163 4.160 GWC 376541.932 404674.163 4.160 GWC 376537.54 4118838.76 13.727 GWC 37805.394 4119343.90 1.280 GWC 376137.546 4006625.80 4.989 GWC 36690.986 4114829.51 17.938	FO	372583.785	4071595.18	5.275
FO 376505.026 4067499.95 4.395 FO 395910.233 4060914.70 2.597 FO 410438.562 4055125.18 0.440 FO 380102.698 4056043.02 4.959 FO 396807.306 4049602.58 2.637 FO 403948.268 4045614.94 2.244 FO 350327.179 4136365.61 24.911 FO 360028.768 4126241.51 9.111 FO 36402.057 4118875.45 16.648 FO 372250.758 412672.97 4.076 FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 39373.443 4084210.27 5.089 FO 409375.322 4078421.85 3.415 GWC 333746.948 407836.06 1.982 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 37798.16 406525.19 3.710 GWC 38212.252 4061512.70 6.443 GWC 386220.44 405635.55 5.163 GWC 38672.905 40967.175 407301.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 37798.16 4066255.19 3.710 GWC 386220.44 4056359.55 5.163 GWC 38672.905 4049194.93 3.966 GWC 37654.932 40741.55 2.35.999 GWC 37654.932 40741.55 2.35.999 GWC 37654.932 40741.63 4.160 GWC 37098.74 41188.76 13.727 GWC 37099.94 411934.90 1.280 GWC 37618.523 410720.86 2.294 GWC 37618.523 410720.86 2.294 GWC 37618.523 410720.86 2.294 GWC 37618.523 410960.86 4114829.51 17.938	FO	415396.475	4067053.56	0.702
FO 395910.233 4060914.70 2.597 FO 410438.562 4055125.18 0.440 FO 380102.698 4056043.02 4.959 FO 396807.306 4049602.58 2.637 FO 403948.268 4045614.94 2.244 FO 350327.179 4136365.61 24.911 FO 391454.574 4046723.48 4.048 FO 360028.768 4126241.51 9.111 FO 366402.057 4118875.45 16.648 FO 372525.758 4112572.97 4.076 FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 3375676.882 4072545.39 4.983 GWC 409067.175 407301.62 5.377 GWC 403954.91 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 386220.44 405633.22 2.440 GWC 386220.44 405633.95 5.163 GWC 409971.276 404914.93 3.966 GWC 37641.9987 404914.93 3.966 GWC 376541.992 4046741.63 4.160 GWC 374575.24 418838.76 13.727 GWC 37479.087 413425.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 376137.546 409605.80 4.989 GWC 376137.546 409605.80 4.989 GWC 376137.546 409662.50 4.989	FO	397607.018	4068185.83	2.955
FO 410438.562 4055125.18 0.440 FO 380102.698 4056043.02 4.959 FO 396807.306 4049602.58 2.637 FO 403948.268 4045614.94 2.244 FO 350327.179 4156365.61 24,911 FO 391454.574 4046723.48 4.048 FO 366028.768 4126241.51 9.111 FO 372250.758 4118875.45 16.648 FO 372250.758 4118875.45 16.648 FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 3792374.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 409067.175 4073011.62 5.377 GWC 403954.91 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 386220.25 4078421.70 6.443 GWC 386220.44 4056359.55 5.163 GWC 409971.276 407301.93 3.966 GWC 37654.932 4079194.93 3.966 GWC 37654.932 4079194.93 3.966 GWC 37654.932 4049194.93 3.966 GWC 37654.932 4049194.93 3.966 GWC 37654.932 404974.163 4.160 GWC 37655.23 404973.25 35.999 GWC 37655.24 41883.876 13.727 GWC 37695.25 4078.25 407973.25 35.999 GWC 37618.523 410720.36 2.294 GWC 37618.523 410720.36 4.989 GWC 37618.523 410720.36 4.989 GWC 37618.523 410720.36 4.989 GWC 37619.546 4096625.80 4.989 GWC 37619.524 410920.36 4.989 GWC 37619.524 410920.36 4.989 GWC 37619.524 410920.36 4.999 GWC 37619.523 410720.36 4.999 GWC 37619.523 410720.36 4.999 GWC 37619.523 410720.36 4.999 GWC 37619.524 41096025.80 4.989 GWC 37619.524 410920.36 4.999	FO	376505.026	4067499.95	4.395
FO 380102.698 4056043.02 4.959 FO 396807.306 4049602.58 2.637 FO 403948.268 4049602.58 2.244 FO 350327.179 4136365.61 24.911 FO 391454.574 4046723.48 4.048 FO 360028.768 4126241.51 9.111 FO 366402.057 4118875.45 16.648 FO 372250.758 4112572.97 4.076 FO 381648.883 4101531.90 2.403 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 375676.882 4072545.39 4.988 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 409971.276 404057.13 2.111 GWC 37654.932 407641.63 35.999 GWC 409971.276 404057.13 2.111 GWC 37654.932 4079194.93 3.966 GWC 409971.276 404057.13 2.111 GWC 37654.932 404074.63 2.111 GWC 37654.932 404074.63 2.111 GWC 37654.932 404074.63 2.111 GWC 360405.124 4118838.76 13.727 GWC 37654.932 404073.25 35.999 GWC 37654.932 404073.25 0.319 GWC 37613.546 4096625.80 4.989 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938	FO	395910.233	4060914.70	2.597
FO 396807.306 4049602.58 2.637 FO 403948.268 4045614.94 2.244 FO 350327.179 4156365.61 24.911 FO 391454.574 4046723.48 4.048 FO 360028.768 4126241.51 9.111 FO 366402.057 4118875.45 16.648 FO 36205.508 4126241.51 9.111 FO 362705.508 4126261.51 9.253 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 386220.44 4056359.55 5.163 GWC 409971.276 4049194.93 3.966 GWC 376541.932 4046257.13 2.111 GWC 376941.93 4046257.13 2.111 GWC 3769541.932 4046257.13 2.111 GWC 37696.124 4118838.76 13.727 GWC 409971.276 4046257.13 2.111 GWC 376541.932 4046741.63 4.160 GWC 37655.23 41932.52 0.319 GWC 37613.524 4119343.90 1.280 GWC 376137.546 4096625.80 4.989	FO	410438.562	4055125.18	0.440
FO 403948.268 4045614.94 2.244 FO 350327.179 4136365.61 24.911 FO 391454.574 4046723.48 4.048 FO 360028.768 4126241.51 9.111 FO 366402.057 4118875.45 16.648 FO 372250.758 4112572.97 4.076 FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 375676.882 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 36820.44 4056359.55 5.163 GWC 368712.905 4049194.93 3.966 GWC 368712.905 4049194.93 3.966 GWC 376541.932 4046741.63 4.160 GWC 3779.87 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 376178.523 4109732.52 0.319 GWC 376178.523 4109732.52 0.319 GWC 376178.523 4109732.52 0.319 GWC 376178.523 41096625.80 4.989 GWC 37619.524 411889.51 17.938	FO	380102.698	4056043.02	4.959
FO 350327.179 4136365.61 24.911 FO 391454.574 4046723.48 4.048 FO 360028.768 4126241.51 9.111 FO 366402.057 4118875.45 16.648 FO 372250.758 4112572.97 4.076 FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 33746.948 4078316.06 1.982 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 36541.932 4049194.93 3.966 GWC 376541.932 4046741.63 4.160 GWC 37059.394 4118898.76 13.727 GWC 360405.124 4118898.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 376175.523 4109625.80 4.989 GWC 376175.523 4109625.80 4.989 GWC 376175.546 4096625.80 4.989 GWC 376175.546 4096625.80 4.989 GWC 376175.546 4096625.80 4.989 GWC 376175.545 4096625.80 4.989 GWC 376175.546 4096625.80 4.989	FO	396807.306	4049602.58	2.637
FO 391454.574 4046723.48 4.048 FO 360028.768 4126241.51 9.111 FO 366402.057 4118875.45 16.648 FO 372250.758 4112572.97 4.076 FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 409067.175 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4053382.32 2.440 GWC 36820.44 4056359.55 5.163 GWC 36820.44 4056359.55 5.163 GWC 409971.276 40492.94 3.966 GWC 376541.932 4046741.63 4.160 GWC 37654.932 4046741.63 4.160 GWC 373059.394 4119343.90 1.280 GWC 376178.523 4107208.36 2.294 GWC 376178.523 4107208.36 2.294 GWC 376178.523 4107208.36 2.294 GWC 376178.523 4107208.36 2.294 GWC 37617.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938	FO	403948.268	4045614.94	2.244
FO 360028.768 4126241.51 9.111 FO 366402.057 4118875.45 16.648 FO 372250.758 4112572.97 4.076 FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 40967.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 406625.19 3.710 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 37654.932 4046741.63 4.160 GWC 37659.394 4119343.90 1.280 GWC 373059.394 4119343.90 1.280 GWC 37618.523 4107208.36 2.294 GWC 37618.523 4107208.36 GWC 37618.523 4107208.36 GWC 37618.523 4107208.36 GWC 37613.546 4096625.80 4.989 GWC 37613.546 4096625.80 4.989 GWC 366940.986 4114829.51 17.938	FO	350327.179	4136365.61	24.911
FO 366402.057 4118875.45 16.648 FO 372250.758 4112572.97 4.076 FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 37227.4821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 376541.932 4046741.63 4.160 GWC 37059.394 4118838.76 13.727 GWC 37059.394 4118838.76 13.727 GWC 37017.824 4067042.59 4.111 GWC 386712.905 4049194.93 3.966 GWC 386712.905 4049194.93 3.966 GWC 376541.932 4046741.63 4.160 GWC 37057.24 4118838.76 13.727 GWC 37057.844 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938	FO	391454.574	4046723.48	4.048
FO 372250.758 4112572.97 4.076 FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 39546.948 4078316.06 1.982 GWC 375676.882 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386712.905 4049194.93 3.966 GWC 386712.905 4049194.93 3.966 GWC 340479.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 37051.24 4118838.76 13.727 GWC 381475.24 4109732.52 0.319 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938	FO	360028.768	4126241.51	9.111
FO 362705.508 4108269.85 9.253 FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 39546.948 4078316.06 1.982 GWC 375676.882 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386712.905 4049194.93 3.966 GWC 36WC 366712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 360405.124 4118838.76 13.727 GWC 376178.523 4107208.36 2.294 GWC 376178.523 4107208.36 2.294 GWC 376178.523 41096025.80 4.989 GWC 376175.546 4096625.80 4.989 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938	FO	366402.057	4118875.45	16.648
FO 381648.883 4101531.90 2.403 FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 375676.882 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 37059.394 4119343.90 1.280 GWC 376178.523 4107208.36 2.294 GWC 376175.546 4096625.80 4.989 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938	FO	372250.758	4112572.97	4.076
FO 372274.821 4096033.45 5.794 FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 375676.882 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 373059.394 4119343.90 1.280 GWC 376178.523 4107208.36 2.294 GWC 376178.523 4107208.36 2.294 GWC<	FO	362705.508	4108269.85	9.253
FO 399373.443 4084210.27 5.089 FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 375676.882 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC<	FO	381648.883	4101531.90	2.403
FO 400375.322 4078421.85 3.415 GWC 393746.948 4078316.06 1.982 GWC 375676.882 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 360405.124 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GW	FO	372274.821	4096033.45	5.794
GWC 393746.948 4078316.06 1.982 GWC 375676.882 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 376541.932 4046741.63 4.160 GWC 376541.932 4046741.63 4.160 GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938	FO	399373.443	4084210.27	5.089
GWC 375676.882 4072545.39 4.983 GWC 409067.175 4073011.62 5.377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 37059.394 4119843.90 1.280 GWC 373059.394 4119343.90 1.280 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938	FO	400375.322	4078421.85	3.415
GWC 409067.175 4073011.62 5:377 GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 360405.124 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938	GWC	393746.948	4078316.06	1.982
GWC 403954.911 4067042.59 4.174 GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 360405.124 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938	GWC	375676.882	4072545.39	4.983
GWC 377981.16 4066255.19 3.710 GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 360405.124 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938	GWC	409067.175	4073011.62	5.377
GWC 392212.252 4061512.70 6.443 GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 360405.124 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938	GWC	403954.911	4067042.59	4.174
GWC 402351.116 4055382.32 2.440 GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 360405.124 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938		377981.16	4066255.19	3.710
GWC 386220.44 4056359.55 5.163 GWC 386712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 360405.124 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938		392212.252		
GWC 386712.905 4049194.93 3.966 GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 360405.124 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938				
GWC 409971.276 4046257.13 2.111 GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 360405.124 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938			4056359.55	
GWC 344779.087 4134125.52 35.999 GWC 376541.932 4046741.63 4.160 GWC 360405.124 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938				3.966
GWC 376541.932 4046741.63 4.160 GWC 360405.124 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938			4046257.13	
GWC 360405.124 4118838.76 13.727 GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938				
GWC 373059.394 4119343.90 1.280 GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938				
GWC 381475.24 4109732.52 0.319 GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938				
GWC 376178.523 4107208.36 2.294 GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938				
GWC 376137.546 4096625.80 4.989 GWC 365940.986 4114829.51 17.938				
GWC 365940.986 4114829.51 17.938				
GWC 393786.442 4082613.86 6.043				
	GWC	393786.442	4082613.86	6.043

GWC	404973.792	4084165.95	4.738
ОТ	348684.803	4133416.99	25.196
ОТ	387312	4078657.57	2.843
ОТ	387581.462	4072616.49	5.679
ОТ	409482.049	4066448.20	2.486
ОТ	381818.542	4067562.41	2.601
ОТ	378660.721	4061599.98	4.475
ОТ	409784.125	4060963.64	1.461
ОТ	397899.773	4055461.44	3.726
ОТ	376373.978	4051531.89	5.106
ОТ	385337.999	4049989.79	4.067
ОТ	399629.715	4045755.10	2.509
ОТ	365374.175	4120908.93	19.117
ОТ	389710.031	4046832.73	3.427
ОТ	360651.125	4113702.12	10.775
ОТ	385773.135	4105404.72	1.142
ОТ	365920.251	4107753.53	9.598
ОТ	371637.805	4101773.55	6.314
ОТ	382129.104	4097123.06	2.298
ОТ	383472.444	4086525.63	3.377
ОТ	404011.498	4078298.89	4.043
UT	350036.421	4130867.11	21.875
UT	376920.293	4079299.32	3.214
UT	381584.308	4073036.02	3.282
UT	398962.242	4072060.25	3.235
UT	387116.242	4067549.67	5.267
UT	386392.045	4061538.34	5.179
UT	417183.163	4061728.53	0.768
UT	407222.046	4055014.76	3.243
UT	392295.391	4055820.66	5.854
UT	403094.607	4049572.58	2.671
UT	407107.901	4049321.39	3.256
UT	386772.849	4046143.79	5.127
UT	366296.531	4122275.22	1.749
UT	365989.527	4112855.29	16.213
UT	360182.785	4110977.45	9.528
UT	371528.482	4107289.80	8.882
UT	365947.433	4102065.18	9.063
UT	375440.462	4094026.89	1.167
UT	388018.935	4084249.17	3.177
UT	410043.225	4077444.67	4.977

Table 11: Norfolk, VA LiDAR surveyed accuracy checkpoints

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 39 of 233

LiDAR Vertical Accuracy Statistics & Analysis

BACKGROUND

Dewberry tests and reviews project data both quantitatively (for accuracy) and qualitatively (for usability).

For quantitative assessment (i.e. vertical accuracy assessment), one hundred (100) check points were surveyed for the project and are located within bare earth/open terrain, urban, grass/weeds/crops, brush lands/tress, and forested/fully grown land cover categories. The checkpoints were surveyed for the project using RTK survey methods. Please see appendix A to view the survey report which details and validates how the survey was completed for this project.

Checkpoints were evenly distributed throughout the project area so as to cover as many flight lines as possible using the "dispersed method" of placement.

VERTICAL ACCURACY TEST PROCEDURES

FVA (Fundamental Vertical Accuracy) is determined with check points located only in the open terrain (grass, dirt, sand, and/or rocks) land cover category, where there is a very high probability that the LiDAR sensor will have detected the bare-earth ground surface and where random errors are expected to follow a normal error distribution. The FVA determines how well the calibrated LiDAR sensor performed. With a normal error distribution, the vertical accuracy at the 95% confidence level is computed as the vertical root mean square error (RMSE $_z$) of the checkpoints x 1.9600. For the Norfolk, VA LiDAR project, vertical accuracy must be 0.181 meters or less based on an RMSE $_z$ of 0.0925 meters x 1.9600.

CVA (Consolidated Vertical Accuracy) is determined with all checkpoints in all land cover categories combined where there is a possibility that the LiDAR sensor and post-processing may yield elevation errors that do not follow a normal error distribution. CVA at the 95% confidence level equals the 95th percentile error for all checkpoints in all land cover categories combined. The Norfolk, VA LiDAR Project CVA standard is 0.269 meters based on the 95th percentile. The CVA is accompanied by a listing of the 5% outliers that are larger than the 95th percentile used to compute the CVA; these are always the largest outliers that may depart from a normal error distribution. Here, Accuracy_z differs from CVA because Accuracy_z assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas CVA assumes LiDAR errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid.

SVA (Supplemental Vertical Accuracy) is determined for each land cover category other than open terrain. SVA at the 95% confidence level equals the 95th percentile error for all checkpoints in each land cover category. The Norfolk, VA LiDAR Project SVA target is 0.269 meters based on the 95th percentile. Target specifications are given for SVA's as one individual land cover category may exceed this target value as long as the overall CVA is within specified tolerances. Again, Accuracy_z differs from SVA because Accuracy_z assumes elevation errors follow a normal error distribution where RMSE procedures are valid, whereas SVA assumes LiDAR errors may not follow a normal error distribution in vegetated categories, making the RMSE process invalid.

The relevant testing criteria are summarized in the table below.

Quantitative Criteria	Measure of Acceptability
Fundamental Vertical Accuracy (FVA) in open terrain only using RMSE _z *1.9600	0.181 meters (based on RMSE _z (0.0925 meters) * 1.9600)
Consolidated Vertical Accuracy (CVA) in all land cover categories combined at the 95% confidence level	0.269 meters (based on combined 95 th percentile)
Supplemental Vertical Accuracy (SVA) in each land cover category separately at the 95% confidence level	0.269 meters (based on 95 th percentile for each land cover category)

Table 12 – Acceptance Criteria

VERTICAL ACCURACY TESTING STEPS

The primary QA/QC vertical accuracy testing steps used by Dewberry are summarized as follows:

- 1. Dewberry's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications.
- 2. Next, Dewberry interpolated the bare-earth LiDAR DTM to provide the z-value for every checkpoint.
- 3. Dewberry then computed the associated z-value differences between the interpolated z-value from the LiDAR data and the ground truth survey checkpoints and computed FVA, CVA, and SVA values.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. The review process examined the various accuracy parameters as defined by the scope of work. The overall descriptive statistics of each dataset were computed to assess any trends or anomalies. This report provides tables, graphs and figures to summarize and illustrate data quality.

The figure below shows the location of the QA/QC checkpoints within the project area.

Maryland King Virginia and Queen Mathews Gloucester North Carolina Checkpoints Brushlands and Low Trees Grass, Weeds, and Crops Open Terrain Urban Surry COUNTIES STATES **Project Boundary UTM TileGrid** Miles 2 4 8 Isle of Wight Norfolk \$ Virginia Beach Chesapeake Gates Currituck

Norfolk, VA Checkpoint Locations

Figure 20 - Location of QA/QC Checkpoints

VERTICAL ACCURACY RESULTS

The table below summarizes the tested vertical accuracy resulting from a comparison of the surveyed checkpoints to the elevation values present within the fully classified LiDAR LAS files.

Land Cover Category	# of Points	FVA — Fundamental Vertical Accuracy (RMSE _z x 1.9600) Spec=0.181 m	CVA — Consolidated Vertical Accuracy (95th Percentile) Spec=0.269 m	SVA — Supplemental Vertical Accuracy (95th Percentile) Target=0.269 m
Consolidated	100		0.194	
Bare Earth-Open Terrain	20	0.129		
Grass, Weeds and				
Crops	20			0.198
Forest	20			0.163
Urban	20			0.196
Brush Land and Trees	20			0.196

Table 13 - FVA, CVA, and SVA Vertical Accuracy at 95% Confidence Level

The RMSE_z for checkpoints in open terrain only tested 0.066 meters, within the target criteria of 0.092 meters. Compared with the 0.181 meters specification, the FVA tested 0.129 meters at the 95% confidence level based on RMSE_z x 1.9600.

Compared with the 0.269 meters specification, CVA for all checkpoints in all land cover categories combined tested 0.194 meters based on the 95th percentile.

Compared with the target 0.269 meters specification, SVA for checkpoints in the urban land cover category tested 0.196 meters based on the 95th percentile, checkpoints in the grass, weeds and crops land cover category tested 0.198 meters based on the 95th percentile, checkpoints in the forested land cover category tested 0.163 meters based on the 95th percentile, and checkpoints in the brush land and trees land cover category tested 0.196 meters based on the 95th percentile.

The figure below illustrates the magnitude of the differences between the QA/QC checkpoints and LiDAR data. This shows that the majority of LiDAR elevations were within +/- 0.15 meters of the checkpoints elevations, but there were some outliers where LiDAR and checkpoint elevations differed by up to +0.23 meters.

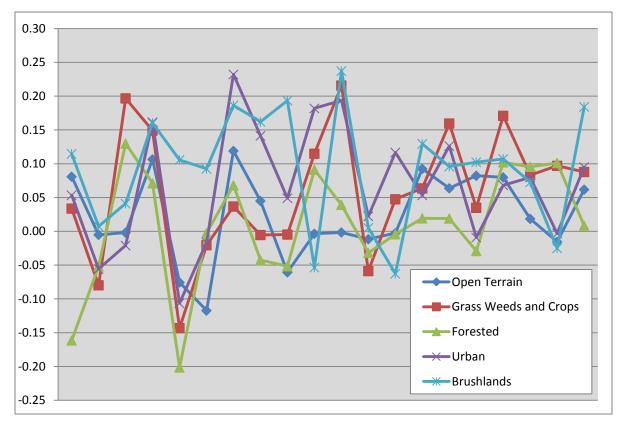


Figure 21 – Magnitude of elevation discrepancies per land cover category

Table 14 lists the 5% outliers that are larger than the 95th percentile.

Point	NAD83 U	ΓM Zone 18	NAVD88	LiDAR Z (m)	Delta	AbsDeltaZ
ID	Easting X (m)	Northing Y (m)	Survey Z (m)	LIDAR Z (III)	Z	Absbeitaz
BLT	410587.042	4049846.41	0.215	0.4522	0.24	0.24
FO	376505.026	4067499.95	4.395	4.1936	-0.20	0.20
GWC	409067.175	4073011.62	5.377	5.5738	0.20	0.20
GWC	344779.087	4134125.52	35.999	36.2148	0.22	0.22
UT	417183.163	4061728.53	0.768	1.0002	0.23	0.23

Table 14 - 5% Outliers

Table 15 provides overall descriptive statistics.

100 % of Totals	RMSEz (m) Open Terrain Spec=0.0925m	Mean (m)	Median (m)	Skew	Std Dev (m)	# of Points	Min (m)	Max (m)
Consolidated		0.050	0.053	-0.197	0.088	100	-0.201	0.237
Open Terrain	0.066	0.023	0.008	-0.428	0.064	20	-0.117	0.119
Grass, Weeds and Crops		0.059	0.056	-0.256	0.095	20	-0.201	0.216
Forest		0.008	0.014	-0.884	0.086	20	-0.201	0.130
Urban		0.068	0.061	-0.005	0.089	20	-0.106	0.232
Brush land and Trees		0.093	0.104	-0.349	0.085	20	-0.063	0.237

Table 15 - Overall Descriptive Statistics

The figure below illustrates a histogram of the associated elevation discrepancies between the QA/QC checkpoints and elevations interpolated from the LiDAR triangulated irregular network (TIN). The frequency shows the number of discrepancies within each band of elevation differences. Although the discrepancies vary between a low of -0.201 meters and a high of +0.237 meters, the histogram shows that the majority of the discrepancies are skewed on the positive side. The vast majority of points are within the ranges of -0.15 meters to +0.15 meters.

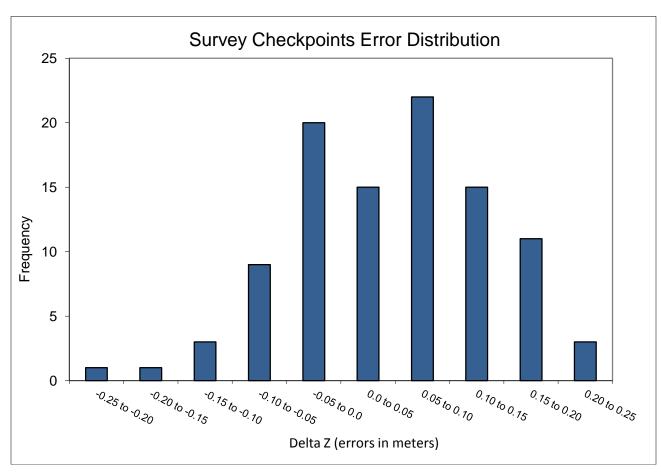
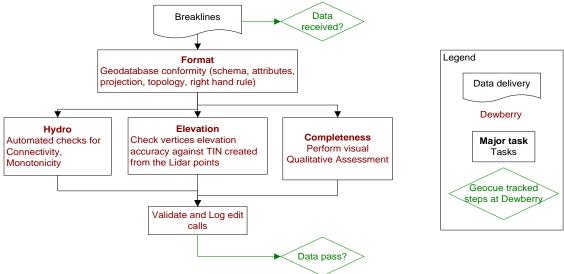


Figure 22 - Histogram of Elevation Discrepancies with errors in meters

Based on the vertical accuracy testing conducted by Dewberry, the LiDAR dataset for the Norfolk, VA LiDAR Project satisfies the project's pre-defined vertical accuracy criteria.

Breakline Production & Qualitative Assessment Report


BREAKLINE PRODUCTION METHODOLOGY

Dewberry used GeoCue software to develop LiDAR stereo models of the Norfolk, VA LiDAR Project area so the LiDAR derived data could be viewed in 3-D stereo using Socet Set softcopy photogrammetric software. Using LiDAR grammetry procedures with LiDAR intensity imagery, Dewberry used the stereo models developed by Dewberry to stereo-compile the three types of hard breaklines in accordance with the project's Data Dictionary.

All drainage breaklines are monotonically enforced to show downhill flow. Water bodies are reviewed in stereo and the lowest elevation is applied to the entire waterbody.

BREAKLINE QUALITATIVE ASSESSMENT

Dewberry completed breakline qualitative assessments according to a defined workflow. The following workflow diagram represents the steps taken by Dewberry to provide a thorough qualitative assessment of the breakline data.

BREAKLINE TOPOLOGY RULES

Automated checks are applied on hydro features to validate the 3D connectivity of the feature and the monotonicity of the hydrographic breaklines. Dewberry's major concern was that the hydrographic breaklines have a continuous flow downhill and that breaklines do not undulate. Error points are generated at each vertex not complying with the tested rules and these potential edit calls are then visually validated during the visual evaluation of the data. This step also helped validate that breakline vertices did not have excessive minimum or maximum elevations and that elevations are consistent with adjacent vertex elevations.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 46 of 233

The next step is to compare the elevation of the breakline vertices against the elevation extracted from the ESRI Terrain built from the LiDAR ground points, keeping in mind that a discrepancy is expected because of the hydro-enforcement applied to the breaklines and because of the interpolated imagery used to acquire the breaklines. A given tolerance is used to validate if the elevations differ too much from the LiDAR.

Dewberry's final check for the breaklines was to perform a full qualitative analysis. Dewberry compared the breaklines against LiDAR intensity images to ensure breaklines were captured in the required locations. The quality control steps taken by Dewberry are outlined in the QA Checklist below.

BREAKLINE QA/QC CHECKLIST

Proje	ct Number/Description: TO G13PD00279 USGS Norfolk, VA LiDAR
Date:	1/29/2014
Overv ✓	
\boxtimes	All Feature Classes are present in GDB
	All features have been loaded into the geodatabase correctly. Ensure feature classes with subtypes are domained correctly.
	The breakline topology inside of the geodatabase has been validated. See Data Dictionary for specific rules
\boxtimes	Projection/coordinate system of GDB is accurate with project specifications
Perfo	rm Completeness check on breaklines using either intensity or ortho imagery Check entire dataset for missing features that were not captured, but should be to meet baseline specifications or for consistency (See Data Dictionary for specific collection rules). Features should be collected consistently across tile bounds within a dataset as well as be collected consistently between datasets.
	Check to make sure breaklines are compiled to correct tile grid boundary and there is full coverage without overlap
	Check to make sure breaklines are correctly edge-matched to adjoining datasets if applicable. Ensure breaklines from one dataset join breaklines from another dataset that are coded the same and all connecting vertices between the two datasets match in X,Y, and Z (elevation). There should be no breaklines abruptly ending at dataset boundaries and no discrepancies of Z-elevation in overlapping vertices between datasets.

Compare Breakline Z elevations to LiDAR elevations

Using a terrain created from LiDAR ground points and water points, drape breaklines on terrain to compare Z values. Breakline elevations should be at or below the elevations of the immediately surrounding terrain. This should be performed before other breakline checks are completed.

Perform automated data checks using ESRI's Data Reviewer

The following data checks are performed utilizing ESRI's Data Reviewer extension. These checks allow automated validation of 100% of the data. Error records can either be written to a table for future correction, or browsed for immediate correction. Data Reviewer checks should always be performed on the full dataset.

- Perform "adjacent vertex elevation change check" on the Inland Ponds feature class (Elevation Difference Tolerance=.001 meters). This check will return Waterbodies whose vertices are not all identical. This tool is found under "Z Value Checks."
- Perform "unnecessary polygon boundaries check" on Inland Ponds and Lakes, Tidal Waters, and Islands (if delivered as a separate feature class) feature classes. This tool is found under "Topology Checks."
- Perform "different Z-Value at intersection check" (Inland Streams and Rivers to Inland Streams and Rivers), (Ponds and Lakes to Ponds and Lakes), (Tidal Waters to Tidal Waters), (Streams and Rivers to Ponds and Lakes), (Streams and Rivers to Tidal Waters), (Ponds and Lakes to Tidal Waters), (Island to Inland Ponds and Lakes), (Island to Tidal Waters), (Island to Island), and (Islands to Inland Streams and Rivers) (Elevation Difference Tolerance= .01 meters Minimum, 200 meters Maximum, Touches). This tool is found under "Z Value Checks." Please note that polygon feature classes will need to be converted to lines for this check.
- Perform "duplicate geometry check" on (Inland Streams and Rivers to Inland Streams and Rivers), (Inland Ponds and Lakes to Inland Ponds and Lakes), (Tidal Waters to Tidal Waters), (Islands to Islands-if delivered as a separate shapefile), (Inland Streams and Rivers to Inland Ponds and Lakes), (Inland Streams and Rivers to Tidal Waters), (Inland Ponds and Lakes to Tidal Waters), (Islands to Tidal Waters), and (Islands to Inland Ponds and Lakes). Attributes do not need to be checked during this tool. This tool is found under "Duplicate Geometry Checks."
- Perform "geometry on geometry check" (Inland Streams and Rivers to Inland Ponds and Lakes), (Inland Streams and Rivers to Tidal Waters), (Inland Ponds and Lakes to Tidal Waters), (Inland Streams and Rivers to Inland Streams and Rivers), (Inland Ponds and Lakes to Inland Ponds and Lakes), (Tidal waters to Tidal waters), (Islands to Tidal Waters), and (Islands to Inland Ponds and Lakes), (Islands to Islands). Spatial relationship is crosses, attributes do not need to be checked. This tool is found under "Feature on Feature Checks." Please note that "crosses" only works with line feature

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 48 of 233

classes and not polygons. If the inputs are polygons, they will need to be converted to a line prior to running this tool.

- Perform "geometry on geometry check (Tidal Waters to Islands), and (Inland Ponds and Lakes to Islands), (Inland Streams and Rivers to Islands). Spatial relationship is contains, attributes do not need to be checked. This tool is found under "Feature on Feature Checks."
- Perform "geometry on geometry check" (Inland Streams and Rivers to Inland Ponds and Lakes), (Inland Streams and Rivers to Tidal Waters), (Inland Ponds and Lakes to Tidal Waters), (Inland Streams and Rivers to Inland Streams and Rivers), (Inland Ponds and Lakes to Inland Ponds and Lakes), (Tidal waters to Tidal waters), (Islands to Tidal Waters), and (Islands to Inland Ponds and Lakes), (Islands to Islands). Spatial relationship is intersect, attributes do not need to be checked. This tool is found under "Feature on Feature Checks." Please note that false positives may be returned with this tool but that this tool may identify issues not found with "crosses."
- Perform "polygon overlap/gap is sliver check" on (Tidal Waters to Tidal Waters), (Island to Island), (Island to Inland Ponds and Lakes) and (Inland Ponds and Lakes to Inland Ponds and Lakes), (Inland Ponds and Lakes to Tidal Waters). Maximum Polygon Area is not required. This tool is found under "Feature on Feature Checks."

Perform Dewberry Proprietary Tool Checks

- Perform monotonicity check on (Inland Streams and Rivers) and (Tidal Waters to Tidal Waters if they are not a constant elevation) using "A3_checkMonotonicityStreamLines." This tool looks at line direction as well as elevation. Features in the output shapefile attributed with a "d" are correct monotonically, but were compiled from low elevation to high elevation. These features are ok and can be ignored. Features in the output shapefile attributed with an "m" are not correct monotonically and need elevations to be corrected. Input features for this tool need to be in a geodatabase and must be a line. If features are a polygon they will need to be converted to a line feature. Z tolerance is 0.01 meters.
- Perform connectivity check between (Inland Streams and Rivers to Inland Streams and Rivers), (Ponds and Lakes to Ponds and Lakes), (Tidal Waters to Tidal Waters), (Streams and Rivers to Ponds and Lakes), (Streams and Rivers to Tidal Waters), (Ponds and Lakes to Tidal Waters), (Island to Inland Ponds and Lakes), (Island to Tidal Waters), (Island to Island), and (Islands to Inland Streams and Rivers) using the tool "o7_CheckConnectivityForHydro." The input for this tool needs to be in a geodatabase. The output is a shapefile showing the location of overlapping vertices from the polygon features and polyline features that are at different Z-elevation.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 49 of 233

Metadata

Each XML file (1 per feature class) is error free as determined by the USGS MP tool

Metadata content contains sufficient detail and all pertinent information regarding source materials, projections, datums, processing steps, etc. Content should be consistent across all feature classes.

Completion Comments: Complete – Approved

Data Dictionary

HORIZONTAL AND VERTICAL DATUM

The horizontal datum shall be North American Datum of 1983, Units in Meters. The vertical datum shall be referenced to the North American Vertical Datum of 1988 (NAVD 88), Units in Meters. Geoid12A shall be used to convert ellipsoidal heights to orthometric heights.

COORDINATE SYSTEM AND PROJECTION

All data shall be projected to UTM Zone 18, Horizontal Units in Meters and Vertical Units in Meters.

INLAND STREAMS AND RIVERS

Feature Dataset: BREAKLINES

Feature Type: Polygon Contains Z Values: Yes

XY Resolution: Accept Default Setting

XY Tolerance: 0.003

Feature Class: STREAMS_AND_RIVERS

Contains M Values: No **Annotation Subclass:** None

Z Resolution: Accept Default Setting

Z Tolerance: 0.001

Description

This polygon feature class will depict linear hydrographic features with a width greater than 100 feet.

Table Definition

Field Name	Data Type	Allow Null Values	Default Value	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID							Assigned by Software
SHAPE	Geometry							Assigned by Software
SHAPE_LENGTH	Double	Yes			0	0		Calculated by Software
SHAPE_AREA	Double	Yes			О	0		Calculated by Software

Description	Definition	Capture Rules
Streams and Rivers	Linear hydrographic features such as streams, rivers, canals, etc. with an average width greater than 100 feet. In the case of embankments, if the feature forms a natural dual line channel, then capture it consistent with the capture rules. Other natural or manmade embankments will not qualify for this project.	Capture features showing dual line (one on each side of the feature). Average width shall be greater than 100 feet to show as a double line. Each vertex placed should maintain vertical integrity. Generally both banks shall be collected to show consistent downhill flow. There are exceptions to this rule where a small branch or offshoot of the stream or river is present. The banks of the stream must be captured at the same elevation to ensure flatness of the water feature. If the elevation of the banks appears to be different see the task manager or PM for further guidance.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 51 of 233

> Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually.

> These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water.

Every effort should be made to avoid breaking a stream or river into segments.

Dual line features shall break at road crossings (culverts). In areas where a bridge is present the dual line feature shall continue through the bridge.

Islands: The double line stream shall be captured around an island if the island is greater than 1/2 acre. In this case a segmented polygon shall be used around the island in order to allow for the island feature to remain as a "hole" in the feature.

INLAND PONDS AND LAKES

Feature Dataset: BREAKLINES

Feature Type: Polygon Contains Z Values: Yes

XY Resolution: Accept Default Setting

XY Tolerance: 0.003

Feature Class: PONDS_AND_LAKES

Contains M Values: No **Annotation Subclass:** None

Z Resolution: Accept Default Setting

Z Tolerance: 0.001

Description

This polygon feature class will depict closed water body features that are at a constant elevation.

Table Definition

Field Name	Data Type	Allow Null Values	Default Value	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID							Assigned by Software
SHAPE	Geometry							Assigned by Software
SHAPE_LENGTH	Double	Yes			0	0		Calculated by Software
SHAPE_AREA	Double	Yes			0	0		Calculated by Software

reature ben		
Description	Definition	Capture Rules
Ponds and Lakes	Land/Water boundaries of constant elevation water bodies such as lakes, reservoirs, ponds, etc. Features shall be defined as closed polygons and contain an elevation value that reflects the best estimate of the water elevation at the time of data capture. Water body features will be captured for features 2 acres in size or greater. "Donuts" will exist where there are islands within a closed water body feature.	Water bodies shall be captured as closed polygons with the water feature to the right. The compiler shall take care to ensure that the z-value remains consistent for all vertices placed on the water body. Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually. An Island within a Closed Water Body Feature that is 1/2 acre in size or greater will also have a "donut polygon" compiled. These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it gap he researchly determined where the edge of water
	leature.	can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the

	water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 54 of 233

TIDAL WATERS

Feature Dataset: BREAKLINES

Feature Type: Polygon Contains Z Values: Yes

XY Resolution: Accept Default Setting

XY Tolerance: 0.003

Feature Class: TIDAL_WATERS
Contains M Values: No
Annotation Subclass: None
Z Resolution: Accept Default Setting

Z Tolerance: 0.001

Description

This polygon feature class will outline the land / water interface at the time of LiDAR acquisition.

Table Definition

Field Name	Data Type	Allow Null Values	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID						Assigned by Software
SHAPE	Geometry						Assigned by Software
SHAPE_LENGTH	Double	Yes		0	0		Calculated by Software
SHAPE_AREA	Double	Yes		0	0		Calculated by Software

Description	Definition	Capture Rules
TIDAL_WATERS	The coastal breakline will delineate the land water interface using LiDAR data as reference. In flight line boundary areas with tidal variation the coastal shoreline may show stair stepping as no feathering is allowed. Stair stepping is allowed to show as much ground as the collected data permits.	The feature shall be extracted at the apparent land/water interface, as determined by the LiDAR intensity data, to the extent of the tile boundaries. Differences caused by tidal variation are acceptable and breaklines delineated should reflect that change with no feathering. Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water. Breaklines shall snap and merge seamlessly with linear hydrographic features.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 55 of 233

2D BUILDINGS

Feature Dataset: Buildings Feature Type: Polygon Contains Z Values: No

XY Resolution: Accept Default Setting

XY Tolerance: 0.003

Feature Class: Buildings_2D Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting

Z Tolerance: 0.001

Description

This 2D polygon feature class will depict at least 98% of all buildings larger than 200 square meters and at least 95% of all buildings larger than 100 square meters. The positional accuracy of the collected features will be equal to 1.5 meters relative to the LiDAR data.

Table Definition

Field Name	Data Type	Allow Null Values	Default Value	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID							Assigned by Software
Id	Double	Yes						Polygon ID number for the building substructure assigned by user
ARA2d	Double	Yes						Area of the 2D sub structure calculated by software
LEN2d	Double	Yes						Length of the 2D polygon calculated by software
WID2d	Double	Yes						Width of the 2D polygon calculated by software
HGT2d	Double	Yes						Median height of the building substructure above ground level based on the difference between the DSM and the Bare Earth model calculated by software.
SHAPE_LENGTH	Double	Yes			0	0		Calculated by Software
SHAPE_AREA	Double	Yes			0	О		Calculated by Software

Description	Definition	Capture Rules
2D Buildings	2D buildings will include the majority of structures larger than 100 square meters. The positional accuracy of the collected features will be equal	from the true footprint in the imagery. Care should be taken to collect the actual or true footprint of each structure by collecting the base of the structure.
	to 1.5 meters relative to the LiDAR data.	All building footprints should be captured in 2D, but should still show correct topology.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 56 of 233

3D BUILDINGS

Feature Dataset: Buildings Feature Type: Polygon Contains Z Values: No

XY Resolution: Accept Default Setting

XY Tolerance: 0.003

Feature Class: Buildings_3D Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting

Z Tolerance: 0.001

Description

This 3D polygon feature class will depict at least 98% of all buildings larger than 200 square meters and at least 95% of all buildings larger than 100 square meters. The positional accuracy of the collected features will be equal to 1.5 meters relative to the LiDAR data.

Table Definition

ble Definition								
Field Name	Data Type	Allow Null Values	Default Value	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID							Assigned by Software
Id	Double	Yes						Polygon ID number for the building substructure assigned by user
BldgId	Double	Yes						ID number of the entire building footprint assigned by user
TopElev3D	Double	Yes						Elevation of the top of the bulding subsection. This is the arithmetic median of all LiDAR points within the polygon calculated by software
BaseElev3D	Double	Yes						Base elevation of the building subsection. This is the arithmetic minimum of all bare earth elevation points within the polygon calculated by software
ARA3D	Double	Yes						Area of the 3D substructure calculated by software
LEN3D	Double	Yes						Length of the 3D polygon calculated by software
WID3D	Double	Yes						Width of the 3D polygon calculated by software
HGT3D	Double	Yes						Median height of building substructure above ground level based on the difference between

							the DSM and the bare earth model calculated by software
SS	R	Double	Yes				Classified roof type identified in the NGA FACC coding schema. Flat=41, pitched=42 and complex(other)=999 assigned by user
SHAPE_L	ENGTH	Double	Yes		0	o	Calculated by Software
SHAPE_	_AREA	Double	Yes		0	0	Calculated by Software

Description	Definition	Capture Rules
3D Buildings	3D buildings will include the majority of structures larger than 100 square meters. The positional accuracy of the collected features will be equal to 1.5 meters relative to the LiDAR data.	The roofs of some buildings or structures may be offset from the true footprint in the imagery. Care should be taken to collect the actual or true footprint of each structure by collecting the base of the structure. All building footprints should correct topology.

FOREST POLYGONS

Feature Dataset: Vegetation Feature Type: Polygon Contains Z Values: No

XY Resolution: Accept Default Setting

XY Tolerance: 0.003

Feature Class: Forest_Polygons Contains M Values: No Annotation Subclass: None

Z Resolution: Accept Default Setting

Z Tolerance: 0.001

Description

This 2D polygon feature class will be delineated in areas where vegetation greater than 2m in height is predominant over a contiguous area 5,000 square meters or larger. Forests shall be de-conflicted from identifiable open water greater than 15 meters wide.

Table Definition

Field Name	Data Type	Allow Null Values	Default Value	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID							Assigned by Software
Id	Double	Yes						Polygon ID number assigned by user
ARA	Double	Yes						Area calculated by software
PHT	Double	Yes						Predominant height of stand calculated by software
TSC	Double	Yes						Average stem spacing distance for stand, in decimeters calculated by software
Type	Double	Yes						Tree type (deciduous or coniferous) assigned by user
SHAPE_LENGTH	Double	Yes						Calculated by Software
SHAPE_AREA	Double	Yes						Calculated by Software

Description	Definition	Capture Rules
Forest polygons	Areas of vegetation greater than 2m in height that are predominant over a contiguous area 5,000 square meters or larger will be included in the collect. Forests shall be de-conflicted from identifiable open water greater than 15 meters wide.	All polygons should have the correct topology.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 59 of 233

TREE POINTS

Feature Dataset: Vegetation
Feature Type: Point
Contains Z Values: No
Annotation Subclass: None
XY Resolution: Accept Default Setting
Centains Z Values: No
Annotation Subclass: None
Z Resolution: Accept Default Setting

XY Tolerance: 0.003 Z Tolerance: 0.001

Description

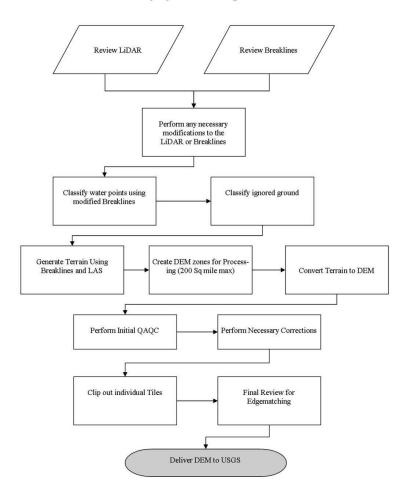
This point feature class will be extracted from identified vegetated areas that exceed 4 meters in height relative to the bare earth model.

Table Definition

Field Name	Data Type	Allow Null Values	Default Value	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID							Assigned by Software
Id	Double	Yes						Point ID number assigned by user
HGT	Double	Yes						The height of the tree calculated by software
BaseElev	Double	Yes						Base height of the tree calculated by software
Туре	Double	Yes						Tree type (deciduous or coniferous) assigned by user
SHAPE_LENGTH	Double	Yes						Calculated by Software
SHAPE_AREA	Double	Yes						Calculated by Software

Feature Definition

Description	Definition	Capture Rules
Tree Points	This point feature class will extracted from identified vegetated areas that exceed 4 meters in height relative to the bare earth model.	All points should have the correct topology.


DEM Production & Qualitative Assessment

DEM PRODUCTION METHODOLOGY

Dewberry utilized ESRI software and Global Mapper for the DEM production and QC process. ArcGIS software is used to generate the products and the QC is performed in both ArcGIS and Global Mapper.

Dewberry Hydro-Flattening Workflow

- 1. <u>Classify Water Points</u>: LAS point falling within hydrographic breaklines shall be classified to ASPRS class 9 using TerraScan. Breaklines must be prepared correctly prior to performing this task.
- 2. <u>Classify Ignored Ground Points</u>: Classify points in close proximity to the breaklines from Ground to class 10 (Ignored Ground). Close proximity will be defined as no more than 1x the nominal point spacing on the landward side of the breakline.
- 3. <u>Terrain Processing</u>: A Terrain will be generated using the Breaklines and LAS data that has been imported into Arc as a Multipoint File.
- 4. <u>Create DEM Zones for Processing</u>: Create DEM Zones that are buffered around the edges. Zones should be created in a logical manner to minimize the number of zones without creating zones too large for processing. Dewberry will make zones no larger than 200 square miles (taking into account that a DEM will fill in the entire extent not just where LiDAR is present). Once the first zone is created it must be verified against the tile grid to ensure that the cells line up perfectly with the tile grid edge.
- 5. <u>Convert Terrain to Raster</u>: Convert Terrain to raster using the DEM Zones created in step 4. In the environmental properties set the extents of the raster to the buffered Zone. For each subsequent zone, the first DEM will be utilized as the snap raster to ensure that zones consistently snap to one another.
- 6. <u>Perform Initial QAQC on Zones</u>: During the initial QA process anomalies will be identified and corrective polygons will be created.

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 61 of 233

- 7. <u>Correct Issues on Zones</u>: Dewberry will perform corrections on zones following Dewberry's correction process.
- 8. Extract Individual Tiles: Dewberry will extract individual tiles from the zones utilizing a Dewberry proprietary tool.
- 9. <u>Final QA</u>: Final QA will be performed on the dataset to ensure that tile boundaries are seamless.

The creation of first and last return DSMs follow a similar workflow as outlined above, except that breaklines are not used to enforce the first and last return terrains. Additionally, rather than ground only data, the first or last return of all point classes, except for noise-class 7, are used to create the multipoint files and subsequent terrains.

DEM QUALITATIVE ASSESSMENT

Dewberry performed a comprehensive qualitative assessment of the bare earth DEM deliverables to ensure that all tiled DEM products were delivered with the proper extents, were free of processing artifacts, and contained the proper referencing information. This process was performed in ArcGIS software with the use of a tool set Dewberry has developed to verify that the raster extents match those of the tile grid and contain the correct projection information. The DEM data was reviewed at a scale of 1:5000 to review for artifacts caused by the DEM generation process and to review the hydro-flattened features. To perform this review Dewberry creates HillShade models and overlays a partially transparent colorized elevation model to review for these issues. All corrections are completed using Dewberry's proprietary correction workflow. Upon completion of the corrections, the DEM data is loaded into Global Mapper for its second review and to verify corrections. Once the DEMs are tiled out, the final tiles are again loaded into Global Mapper to ensure coverage, extents, and that the final tiles are seamless.

The images below show an example of a bare earth DEM and first return DSM of the same tile.

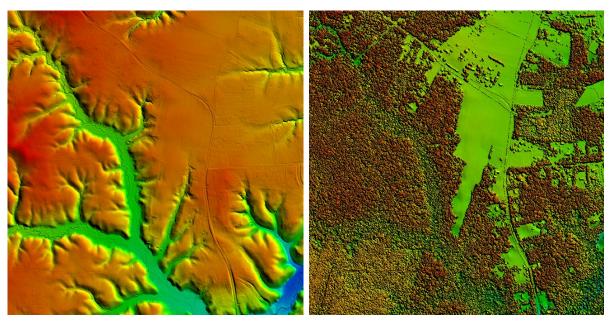


Figure 21-Tile 18SUG480340. The bare earth DEM is shown on the left while the first return DSM is shown on the right

DEM VERTICAL ACCURACY RESULTS

The same 100 checkpoints that were used to test the vertical accuracy of the LiDAR were used to validate the vertical accuracy of the final DEM products as well. Accuracy results may vary between the source LiDAR and final DEM deliverable. DEMs are created by averaging several LiDAR points within each pixel which may result in slightly different elevation values at each survey checkpoint when compared to the source LAS, which does not average several LiDAR points together but may interpolate (linearly) between two or three points to derive an elevation value.

Table 16 summarizes the tested vertical accuracy results from a comparison of the surveyed checkpoints to the elevation values present within the final DEM dataset.

Land Cover Category	# of Points	FVA — Fundamental Vertical Accuracy (RMSE _z x 1.9600) Spec=0.181 m	CVA — Consolidated Vertical Accuracy (95th Percentile) Spec=0.269 m	SVA — Supplemental Vertical Accuracy (95th Percentile) Target=0.269 m
Consolidated	100		0.197	
Bare Earth-Open Terrain	20	0.135		
Grass Weeds and Crops	20			0.194
Forest	20			0.168
Urban	20			0.216
Brush Land and Trees	20			0.211

Table 16 - FVA, CVA, and SVA Vertical Accuracy at 95% Confidence Level

The RMSE $_z$ for checkpoints in open terrain only tested 0.069 meters, within the target criteria of 0.092 meters. Compared with the 0.181 meters specification, the FVA tested 0.135 meters at the 95% confidence level based on RMSE $_z$ x 1.9600.

Compared with the 0.269 meters specification, CVA for all checkpoints in all land cover categories combined tested 0.197 meters based on the 95th percentile.

Compared with the target 0.269 meters specification, SVA for checkpoints in the grass weeds and crops land cover category tested 0.194 meters based on the 95th percentile, checkpoints in the forested and fully grown land cover category tested 0.168 meters based on the 95th percentile, checkpoints in the brush and small trees land cover category tested 0.211 meters based on the 95th percentile, and checkpoints in the urban land cover category tested 0.216 meters based on the 95th percentile.

Table 17 lists the 5% outliers that are larger than the 95th percentile.

Point ID	NAD83 U	ΓM Zone 18	NAVD88	DEM Z (m)	Delta	AbsDeltaZ
	Easting X (m)	Northing Y (m)	Survey Z (m)	DEM Z (III)	Z	ADSDCITAZ
BLT_17	381142.027	4051271.05	0.508	0.718	0.21	0.21
BLT_19	410587.042	4049846.41	0.215	0.432	0.22	0.22

FO_14B	376505.026	4067499.95	4.395	4.199	-0.20	0.20
GWC_1CHK	344779.087	4134125.52	35.999	36.215	0.22	0.22
UT_15CHK	417183.163	4061728.53	0.768	1.016	0.25	0.25

Table 17 − 5% Outliers

Table 18 provides overall descriptive statistics.

100 % of Totals	RMSE _z (m) Open Terrain Spec=0.092m	Mean (m)	Median (m)	Skew	Std Dev (m)	# of Points		Max (m)
Consolidated		0.051	0.059	-0.224	0.089	100	-0.196	0.248
Open Terrain	0.069	0.021	0.032	-0.880	0.067	20	-0.155	0.119
Grass, Weeds and Crops		0.062	0.065	-0.186	0.090	20	-0.196	0.216
Forest		0.011	0.013	-0.862	0.089	20	-0.196	0.125
Urban		0.068	0.071	0.141	0.091	20	-0.099	0.248
Brush Land and Trees		0.092	0.095	-0.386	0.085	20	-0.069	0.217

Table 18 – Overall Descriptive Statistics

Project Number/Description: TO G13PD00279 USGS Norfolk, VA LiDAR

DEM QA/QC CHECKLIST

Date:	1/29/2014
Overv	
\boxtimes	Correct number of files are delivered and all files are in ERDAS IMG format Verify Raster Extents
\boxtimes	Verify Projection/Coordinate System
Revie	w
	Manually review bare-earth DEMs in Arc with a hillshade to check for issues with the hydro-flattening process or any general anomalies that may be present. Specifically, water should be flowing downhill, water features should NOT be floating above surrounding terrain and bridges should NOT be present in bare-earth DEM. Hydrologic
\boxtimes	breaklines should be overlaid during review of DEMs. Manually review first return DSMs with a hillshade to check for processing issues or
\boxtimes	coverage issues. Manually review last return DSMs with a hillshade to check for processing issues or coverage issues.
\boxtimes	DEM cell size is 1 meter Perform all necessary corrections in Arc using Dewberry's proprietary correction
workfl	
	Review all corrections in Global Mapper
\boxtimes	Perform final overview on tiled data in Global Mapper to ensure seamless product.
Metad	•••
\boxtimes	Project level DEM metadata XML file is error free as determined by the USGS MP tool
\boxtimes	Metadata content contains sufficient detail and all pertinent information regarding

Completion Comments: Complete – Approved

source materials, projections, datums, processing steps, etc.

Appendix A: Survey Report

Check Point Survey Report "Norfolk, VA LiDAR Task Order" USGS Contract: G10PC00013 Task Order Number: G13PD000279

Prepared by:

Dewberry Engineers Inc. Charlotte, North Carolina, 282269 Phone: 704.509.9918 Fax: 704.509.9937

INTRODUTION

Project Summary

Dewberry Engineers Inc. is under contract to United States Geodetic Survey to provide 100 QA Check Points for 933 square miles in Chesapeake, Hampton, Newport News, Norfolk, Poquoson, Portsmouth, Virginia Beach, and York Counties in Virginia. Under the above USGS Task Order, Dewberry is tasked to complete the quality assurance of high resolution LiDAR-derived elevation products. As a part of this work Dewberry staff will complete checkpoint surveys that will be used to evaluate vertical accuracy on the bare-earth terrain derived from the LiDAR.

Existing NGC Control Points were located and surveyed to check the accuracy of the RTK/GPS survey equipment with the results shown in section 2.4 of this report.

As an internal QA/QC procedure and to verify that the Check Points meet the 95% confidence level approximately 50% of the points were re-observed and are shown in section 5 in this report.

Final horizontal coordinates are referenced to UTM Zone 18 North, NAD83, in meters. Final Vertical elevations are referenced to NAVD88, in meters.

Points of Contact

Questions regarding the technical aspects of this report should be addressed to:

Dewberry Engineers Inc. Matthew Rudolph 6135 Lakeview Road Suite 150 Charlotte, NC 20269 (704)264-1257direct (704)509-9937

1.3 Project Area

PROJECT DETAILS

Survey Equipment

In performing the GPS observations, Trimble R-8 GNSS receiver/antenna attached to a 2 meter fixed height pole with a Trimble TSC2 Data Collector to collect GPS raw data were used to perform the field surveys.

Survey Point Detail

The 100 Check Points were well distributed throughout the project area so as to cover as many flight lines as possible using "dispersed method" of placement.

A "Ground Control Point Documentation Report" sheet was used to show the placement of the nail and a sketch for each of the points surveyed.

Network Design

The GPS survey performed by Dewberry Engineers Inc. located in Charlotte, NC was tied to a Real Time Network (RTN) managed by KeyNetGPS inc. KeyNetGPS is a series of continuously operating, high precision GNSS reference stations. These reference stations have all been linked together using Trimble VRS3Net App software, creating a Virtual Reference Station System (VRS).

Field Survey Procedures and Analysis

Dewberry Engineers Inc. used Trimble R-8 GNSS receivers, which is a geodetic quality dual frequency GPS receiver, to collect data at each surveyed location.

All locations were occupied once with approximately 50% of the locations being re-observed. All re-observations matched the initially derived station positions within the allowable tolerances of 5cm or within the 95% confidence level. Each occupation which utilized the VRS network was occupied for approximately three (3) minutes in duration and measured to at least 180 epochs.

Field GPS observations are detailed on the" Ground Control Point Documentation Reports" submitted as part of this report.

Ten existing NGS monuments listed in the NSRS database were located as an additional QA/QC method to check the accuracy of the VRS network. Some of these monuments were used as Horizontal and Vertical control checks. Some monuments were used as Horizontal or Vertical checks only as shown in the table below.

		AS SURVEY	ED(m)			A	S PUBLIS	HED(m)		
NGS PT. ID	NORTHING	EASTING	ELEV	NORTHING	EASTING	ELEV	ΔΝ	ΔΕ	Δ ELEV	CHK TYPE
DOUGLAS	NORTHING	EASTING	ELEV	NORTHING	EASTING	ELEV	ΔΝ	ΔΕ	ΔELEV	TIPE
CHK	4075440.488	380599.04	3.73	4,075,440.59	380,599.12	3.75	-0.103	-0.084	-0.020	VERT.
STATION										
509	4100627.566	384554.955	2.124	4,100,627.56	384,554.95	2.3	0.010	0.007	X	HORIZ.
STATION										
537	4098672.971	376462.99	3.503	4,098,672.96	376,463.00	4	0.008	-0.006	X	HORIZ.
STATION										
538	4097985.036	375769.747	2.108	4,097,985.03	375,769.74	2	0.004	0.007	X	HORIZ.

F-455	4096857.383	376079.277	3.927	X	X	3.957	X	X	-0.030	VERT.
MON 007	4135651.82	349236.942	23.259	4,135,651.79	349,236.96	23.5	0.031	-0.022	X	HORIZ.
124	4107886.234	372228.771	8.579	4,107,886.28	372,228.77	8.7	-0.048	0.003	X	HORIZ.
PASCALE	4071366.848	371222.946	5.515	4,071,366.85	371,222.94	5.6	-0.003	0.009	X	HORIZ.
PEAKE	4094521.001	376414.781	2.479	4,094,520.99	376,414.77	2.5	0.008	0.013	-0.021	VERT.
D 470	4076051.123	3999352.192	3.401	X	X	3.447	X	X	-0.046	VERT.

The above results indicate that the VRS network is providing positional values within the 5cm parameters for this survey.

Data Processing Procedures

After field data is collected the information is downloaded from the data collectors into the office software. The software programs used Trimble Business Center and Arc Map 10.

Downloaded data is run through the Trimble Business Center program to obtain the following reports; points report, point comparison, and a point detail report. The reports are reviewed for point accuracy and precision.

After review of the point data an "ASCII" or "txt" file is created. Point files are loaded into Arc Map 10(GIS software) to make a visual check of the point data to make sure it also checks with the "Ground Control Point Documentation Report" sketch and description as well as the Pt#, Coordinates, and Elevation.

FINAL COORDINATES

The final coordinate system for checkpoints is as follows:

Coord System = UTM UTM Zone = Zone 18 Horiz Datum = NAD83 Vert Datum = NAVD88 Units = both in Meters Geoid Model = GEOID12A

	BRUSHLAND and Lo	OW TREES	
BLT-1	4127850.095	351760.734	18.183
BLT-2	4124969.354	354157.693	26.867
BLT-3	4116934.625	374985.334	1.681
BLT-4	4112722.605	377113.574	1.301
BLT-5	4105501.265	363984.403	5.313
BLT-6	4101703.518	376746.304	3.508
BLT-7	4091258.47	387491.887	0.708
BLT-8	4083420.214	376730.499	5.063
BLT-9	4083180.738	409359.513	1.461
BLT-10	4078664.264	381578.163	0.747

8			
BLT-11	4072438.855	393248.624	5.015
BLT-12	4071563.329	402227.485	3.332
BLT-13	4067495.229	392360.215	4.073
BLT-14	4060371.467	381270.904	4.561
BLT-15	4061689.787	400675.21	3.101
BLT-16	4058718.15	418260.165	0.336
BLT-17	4051271.046	381142.027	0.508
BLT-18	4051529.692	391753.707	3.966
BLT-19	4049846.406	410587.042	0.215
BLT-20	4045956.462	393929.901	1.76
	FORESTED		
FO-1	4136323.776	350228.113	23.871
FO-2	4126211.091	360014.272	8.932
FO-3	4118875.446	366402.057	16.648
FO-4	4112572.968	372250.758	4.076
FO-5	4108269.849	362705.508	9.253
FO-6	4101531.898	381648.883	2.403
FO-7	4096033.448	372274.821	5.794
FO-8	4084210.274	399373.443	5.089
FO-9	4078442.28	400259.407	3.628
FO-10	4073199.529	370329.394	6.472
FO-11	4071580.897	372624.23	4.829
FO-12	4067053.555	415396.475	0.702
FO-13	4068198.754	397579.131	2.607
FO-14	4067550.12	376314.026	4.690
FO-15	4060962.236	395885.204	2.266
FO-16	4055125.178	410438.562	0.44
FO-17	4056004.221	380058.909	4.986
FO-18	4049656.47	396892.944	2.857
FO-19	4045705.789	403974.708	1.817
FO-20	4046751.378	391556.197	3.545
	GRASS,WEEDS,and	CROPS	
GWC-1	4134125.481	344779.064	35.965
GWC-2	4118838.763	360405.124	13.727
GWC-3	4119343.897	373059.394	1.28
GWC-4	4109732.524	381475.24	0.319
GWC-5	4107208.362	376178.523	2.294
GWC-6	4096625.795	376137.546	4.989
GWC-7	4114829.507	365940.986	17.938
GWC-8	4082613.859	393786.442	6.043

GWC-9	4084165.948	404973.792	4.738
GWC-10	4078316.06	393746.948	1.982
GWC-11	4072545.385	375676.882	4.983
GWC-12	4073011.615	409067.175	5.377
GWC-13	4067042.59	403954.911	4.174
GWC-14	4066255.187	377981.16	3.71
GWC-15	4061512.702	392212.252	6.443
GWC-16	4055382.316	402351.116	2.44
GWC-17	4056359.548	386220.44	5.163
GWC-18	4049194.933	386712.905	3.966
GWC-19	4046257.13	409971.276	2.111
GWC-20	4046741.634	376541.932	4.16
	OPEN	0, 0, 1	·
OT-1	4133416.989	348684.803	25.196
OT-2	4120908.932	365374.175	19.117
OT-3	4113702.121	360651.125	10.775
OT-4	4105404.702	385773.144	1.138
OT-5	4107753.528	365920.254	9.605
OT-6	4101773.558	371637.824	6.304
OT-7	4097123.061	382129.104	2.298
OT-8	4086525.625	383472.444	3.377
OT-9	4078298.891	404011.498	4.043
OT-10	4078657.569	387312	2.843
OT-11	4072616.492	387581.48	5.668
OT-12	4066448.202	409482.049	2.486
OT-13	4067562.414	381818.542	2.601
OT-14	4061599.984	378660.721	4.475
OT-15	4060963.643	409784.125	1.461
OT-16	4055461.44	397899.773	3.726
OT-17	4051531.896	376373.966	5.115
OT-18	4049989.779	385337.991	4.057
OT-19	4045755.088	399629.718	2.501
OT-20	4046832.726	389710.031	3.427
	URBAN		
UT-1	4130867.113	350036.421	21.875
UT-2	4122275.214	366296.536	1.73
UT-3	4112855.286	365989.516	16.203
UT-4	4110977.445	360182.785	9.528
UT-5	4107289.791	371528.47	8.849
UT-6	4102065.181	365947.433	9.063

UT-7	4094026.888	375440.462	1.167
UT-8	4046143.784	386772.856	5.124
UT-9	4046143.784	386772.856	5.124
UT-10	4046143.784	386772.856	5.124
UT-11	4046143.784	386772.856	5.124
UT-12	4046143.784	386772.856	5.124
UT-13	4046143.784	386772.856	5.124
UT-14	4046143.784	386772.856	5.124
UT-15	4046143.784	386772.856	5.124
UT-16	4046143.784	386772.856	5.124
UT-17	4046143.784	386772.856	5.124
UT-18	4046143.784	386772.856	5.124
UT-19	4046143.784	386772.856	5.124
UT-20	4046143.784	386772.856	5.124

GPS OBSERVATIONS

	TO BE WATER THE				
	NORFOLK, VA	LiDAR 20			
D 0 73 755	0.00000		TIME	RE-	RE-
POINT	OBSERV.	JULIAN	OF	OBSERV.	OBSERV
ID	DATE	DATE	DAY	DATE	TIME
	BRUSHLANDS AN	D LOW T	REES		
BLT-1	5/6/2013	239	8:13	N/A	N/A
BLT-2	5/5/2013	240	12:15	N/A	N/A
BLT-3	5/5/2013	240	10:14	N/A	N/A
BLT-4	5/5/2013	240	8:58	N/A	N/A
BLT-5	5/4/2013	241	13:42	N/A	N/A
BLT-6	5/4/2013	241	11:22	N/A	N/A
BLT-7	5/4/2013	241	7:22	N/A	N/A
BLT-8	5/2/2013	243	14:53	N/A	N/A
BLT-9	5/3/2013	242	12:29	N/A	N/A
BLT-10	5/2/2013	243	15:28	N/A	N/A
BLT-11	5/2/2013	243	10:52	N/A	N/A
BLT-12	5/2/2013	243	19:30	N/A	N/A
BLT-13	5/1/2013	244	12:52	N/A	N/A
BLT-14	5/1/2013	244	16:45	5/22/2013	12:03
BLT-15	5/1/2013	244	11:15	N/A	N/A
BLT-16	4/30/2013	245	17:18	N/A	N/A
BLT-17	4/29/2013	246	12:18	N/A	N/A
BLT-18	4/29/2013	246	15:32	N/A	N/A

BLT-19	4/30/2013	245	12:07	N/A	N/A
BLT-	4/00/0010	0.46	15.05	NT / A	NT / A
20	4/29/2013	246 PRESTED	15:07	N/A	N/A
FO-1	5/6/2013		0:25	N/A	N/A
FO-2	5/5/2013	239	9:35	N/A	N/A
FO-3		240	13:43		
FO-4	5/5/2013	240	11:00	N/A	N/A
FO-5	5/5/2013	240	9:26	N/A	N/A
FO-6	5/4/2013	241	14:05	N/A	N/A
FO-7	5/4/2013	241	9:54	N/A	N/A
· · · · · · · · · · · · · · · · · · ·	5/4/2013	241	11:55	N/A	N/A
FO-8	5/3/2013	242	15:08	N/A	N/A
FO-9	5/3/2013	242	14:19	N/A	N/A
FO-10	5/2/2013	243	13:16	N/A	N/A
FO-11	5/2/2013	243	12:32	N/A	N/A
FO-12	4/30/2013	245	16:14	N/A	N/A
FO-13	5/1/2013	244	12:01	N/A	N/A
FO-14	5/1/2013	244	15:28	N/A	N/A
FO-15	5/1/2013	244	9:57	N/A	N/A
FO-16	4/30/2013	245	12:36	N/A	N/A
FO-17	4/29/2013	246	17:47	N/A	N/A
FO-18	4/30/2013	245	7:23	N/A	N/A
FO-19	4/30/2013	245	9:41	N/A	N/A
FO-20	4/29/2013	246	14:25	N/A	N/A
	GRASS,WI	EEDS,and CRO	PS		
GWC-1	5/6/2013	239	9:08	5/6/2013	10:42
GWC-2	5/5/2013	240	14:38	5/22/2013	17:15
GWC-3	5/5/2013	240	10:34	5/5/2013	17:53
GWC-4	5/5/2013	240	8:27	N/A	N/A
GWC-5	5/4/2013	241	15:31	N/A	N/A
GWC-6	5/4/2013	241	8:49	N/A	N/A
GWC-7	5/5/2013	240	16:04	5/22/2013	16:50
GWC-8	5/2/2013	243	18:02	5/3/2013	10:24
GWC-9	5/3/2013	242	13:09	5/22/2013	7:30
GWC-					
10	5/2/2013	243	18:26	N/A	N/A
GWC-	5/2/2013	0.40	12:01	5/3/2013	7.50
GWC-	ე/ 2/ 2013	243	12.01	3/3/2013	7:52
12	5/3/2013	242	11:24	5/3/2013	17:04
GWC-					
13	5/1/2013	244	11:39	5/22/2013	8:36

8-7 - 00					
GWC-				, ,	
GWC-	5/1/2013	244	15:08	5/22/2013	12:40
15	5/1/2301	244	19:21	N/A	N/A
GWC-	3/1/2301	<u>-44</u>	19.21	11/11	11/11
16	4/30/2013	245	10:51	N/A	N/A
GWC-					
17	4/29/2013	246	16:10	5/22/2013	11:31
GWC- 18	4/29/2013	246	12:52	N/A	N/A
GWC-	4/29/2013	240	12.02	11/11	11/11
19	4/30/2013	245	11:25	N/A	N/A
GWC-					
20	4/29/2013	246	11:52	4/29/2013	17:20
		OPEN	T	1	
OT-1	5/6/2013	239	10:31	5/22/2013	17:40
OT-2	5/5/2013	240	13:15	5/5/2013	17:24
OT-3	5/5/2013	240	14:58	5/22/2013	16:22
OT-4	5/4/2013	241	10:50	5/4/2013	17:48
OT-5	5/4/2013	241	14:44	5/22/2013	15:10
OT-6	5/4/2013	241	12:39	5/4/2013	16:46
OT-7	5/4/2013	241	9:37	5/4/2013	18:07
OT-8	5/2/2013	243	16:57	5/3/2013	9:59
OT-9	5/3/2013	242	14:01	5/22/2013	7:58
OT-10	5/2/2013	243	16:16	5/3/2013	9:27
OT-11	5/2/2013	243	11:16	5/3/2013	9:07
OT-12	4/30/2013	245	15:52	5/22/2013	9:02
OT-13	5/1/2013	244	14:44	5/2/2013	8:51
OT-14	5/1/2013	244	16:18	5/22/2013	12:23
OT-15	4/30/2013	245	15:36	5/1/2031	8:05
OT-16	4/30/2013	245	18:49	5/1/2013	9:28
OT-17	4/29/2013	246	11:25	4/29/2013	17:30
OT-18	4/29/2013	246	12:35	4/29/2013	17:03
OT-19	4/30/2013	245	8:53	N/A	N/A
OT-20	4/29/2013	246	14:04	5/22/2013	10:49
		IRBAN			
UT-1	5/6/2013	239	8:38	N/A	N/A
UT-2	5/5/2013	240	11:45	5/5/2013	17:34
UT-3	5/5/2013	240	15:43	5/6/2013	11:41
UT-4	5/5/2013	240	15:23	5/22/2013	15:48
UT-5	5/4/2013	241	15:08	5/6/2013	12:53
UT-6	5/4/2013	241	13:15	5/22/2013	14:35
UT-7	5/4/2013	241	8:04	5/4/2013	17:15
01/	5/4/2013	441	0.04	J/4/2013	1/.13

UT-8	5/2/2013	243	17:24	5/3/2013	9:43
UT-9	5/3/2013	242	11:51	5/3/2013	16:45
UT-10	5/2/2013	243	14:14	5/3/2013	8:18
UT-11	5/2/2013	243	11:38	5/3/2013	8:43
UT-12	5/2/2013	243	19:02	5/3/2013	10:54
UT-13	5/1/2013	244	14:18	5/2/2013	8:26
UT-14	5/1/2013	244	13:46	5/2/2013	9:11
UT-15	4/30/2013	245	17:01	5/22/2013	9:27
UT-16	4/30/2013	245	13:26	5/1/2013	8:27
UT-17	4/29/2013	246	15:47	5/6/2013	16:30
UT-18	4/30/2013	245	9:25	5/1/2013	7:10
UT-19	4/30/2013	245	11:43	5/1/2013	8:46
UT-20	4/29/2013	246	13:40	4/29/2013	13:45

POINT COMPARISON

	Lin	AR OA		
		DELTA	DELTA	DELTA
PT ID	СНК РТ	N	E	EL
BLT-14	BLT-14CHK3	0.007	-0.002	0.022
GWC-1	GWC-1CHK	-0.036	-0.023	-0.034
GWC-2	GWC-2CHK2	-0.018	0.021	-0.029
GWC-3	GWC-3CHK	-0.013	-0.007	0.051
GWC-7	GWC-7CHK2	-0.008	-0.031	0.002
GWC-8	GWC-8CHK	0.02	0.018	-0.001
GWC-9	GWC-9CHK2	-0.024	0.005	0.016
GWC-11	GWC-11CHK	-0.023	0.022	0.004
GWC-12	GWC-12CHK	0.001	-0.016	0.002
GWC-13	GWC-13CHK	0.012	-0.028	-0.026
GWC-14	GWC-14CHK2	-0.009	0.006	0.012
GWC-17	GWC-17CHK2	0.021	-0.024	0.016
GWC-				
20	GWC-20CHK	0	0.002	-0.008
OT-1	OT-1CHK2	-0.008	-0.015	0.017
OT-2	OT-2CHK	0.003	0.002	-0.012
OT-3	OT-3CHK2	-0.022	0.003	-0.045
OT-4	OT-4CHK	-0.019	0.009	-0.004
OT-5	OT-5CHK2	-0.014	-0.011	-0.043
OT-6	ОТ-6СНК	0.007	0.004	0.002
OT-7	OT-7CHK	-0.042	0.016	0.07
OT-8	OT-8CHK	-0.001	0.011	-0.008

OT-9	OT-9CHK2	-0.008	0.006	-0.007
OT-10	OT-10CHK	-0.002	0.001	-0.015
OT-11	OT-11CHK	-0.002	0.018	-0.011
OT-12	OT-12CHK2	-0.018	0.007	0.006
OT-13	OT-13CHK	-0.012	0.014	-0.007
OT-14	OT-14CHK2	0.002	0.026	0.025
OT-15	OT-15CHK	0.005	0.007	0.007
OT-16	OT-16CHK	-0.009	-0.007	0.072
OT-17	OT-17CHK	0.003	-0.012	0.009
OT-18	OT-18CHK	-0.01	-0.008	-0.01
OT-19	OT-19CHK	-0.012	0.003	-0.008
OT-20	OT-20CHK	0	-0.002	0.041
UT-2	UT-2CHK	-0.003	0.005	-0.019
UT-3	UT-3CHK2	-0.007	-0.011	-0.01
UT-4	UT-4CHK2	-0.018	-0.034	-0.047
UT-5	UT-5CHK2	-0.007	-0.012	-0.033
UT-6	UT-6CHK2	0.011	0.012	-0.046
UT-7	UT-7CHK	-0.015	-0.008	0.019
UT-8	UT-8CHK	0.003	-0.004	0.005
UT-9	UT-9CHK	-0.012	-0.004	0.011
UT-10	UT-10CHK	0.007	0	-0.021
UT-11	UT-11CHK	0.001	0.023	0.012
UT-12	UT-12CHK	0.013	-0.023	0.031
UT-13	UT-13CHK	-0.012	0.007	0.001
UT-14	UT-14CHK	-0.015	-0.002	0.027
UT-15	UT-15CHK2	0.01	0.007	-0.011
UT-16	UT-16CHK	-0.003	0.01	0.019
UT-17	UT-17CHK2	-0.038	0.006	-0.004
UT-18	UT-18CHK	0.007	0.009	-0.016
UT-19	UT-19CHK	0.009	0.02	0.03
UT-20	UT-20CHK	-0.004	0.007	-0.003

Appendix B: Complete List of Delivered Tiles

UTM TILES (1,458):

	UIMITILI	28 (1,450):	
18SUF825425	18SVF230440	18SUF735470	18SUF825485
18SUF840425	18SUF660455	18SUF750470	18SUF840485
18SUF855425	18SUF675455	18SUF765470	18SUF855485
18SUF870425	18SUF690455	18SUF780470	18SUF870485
18SUF885425	18SUF705455	18SUF795470	18SUF885485
18SUF900425	18SUF720455	18SUF810470	18SUF900485
18SUF660440	18SUF735455	18SUF825470	18SUF915485
18SUF675440	18SUF750455	18SUF840470	18SUF930485
18SUF690440	18SUF765455	18SUF855470	18SUF945485
18SUF705440	18SUF780455	18SUF870470	18SUF960485
18SUF720440	18SUF795455	18SUF885470	18SUF975485
18SUF735440	18SUF810455	18SUF900470	18SUF990485
18SUF750440	18SUF825455	18SUF915470	18SVF005485
18SUF765440	18SUF840455	18SUF930470	18SVF020485
18SUF780440	18SUF855455	18SUF945470	18SVF035485
18SUF795440	18SUF870455	18SUF960470	18SVF050485
18SUF810440	18SUF885455	18SUF975470	18SVF065485
18SUF825440	18SUF900455	18SUF990470	18SVF080485
18SUF840440	18SUF915455	18SVF005470	18SVF095485
18SUF855440	18SUF930455	18SVF020470	18SVF110485
18SUF870440	18SUF945455	18SVF035470	18SVF125485
18SUF885440	18SUF960455	18SVF050470	18SVF140485
18SUF900440	18SUF975455	18SVF065470	18SVF155485
18SUF915440	18SUF990455	18SVF080470	18SVF170485
18SUF930440	18SVF005455	18SVF095470	18SVF185485
18SUF945440	18SVF020455	18SVF110470	18SVF200485
18SUF960440	18SVF035455	18SVF125470	18SVF215485
18SUF975440	18SVF050455	18SVF140470	18SUF660500
18SUF990440	18SVF065455	18SVF155470	18SUF675500
18SVF005440	18SVF080455	18SVF170470	18SUF690500
18SVF020440	18SVF095455	18SVF185470	18SUF705500
18SVF035440	18SVF110455	18SVF200470	18SUF720500
18SVF050440	18SVF125455	18SVF215470	18SUF735500
18SVF065440	18SVF140455	18SUF660485	18SUF750500
18SVF080440	18SVF155455	18SUF675485	18SUF765500
18SVF095440	18SVF170455	18SUF690485	18SUF780500
18SVF110440	18SVF185455	18SUF705485	18SUF795500
18SVF125440	18SVF200455	18SUF720485	18SUF810500
18SVF140440	18SVF215455	18SUF735485	18SUF825500
18SVF155440	18SUF660470	18SUF750485	18SUF840500
18SVF170440	18SUF675470	18SUF765485	18SUF855500
18SVF185440	18SUF690470	18SUF780485	18SUF870500
18SVF200440	18SUF705470	18SUF795485	18SUF885500
18SVF215440	18SUF720470	18SUF810485	18SUF900500

100115015500	400/5050545	100/5200520	100115705500
18SUF915500	18SVF050515	18SVF200530	18SUF795560
18SUF930500	18SVF065515	18SUF660545	18SUF810560
18SUF945500	18SVF080515	18SUF675545	18SUF825560
18SUF960500	18SVF095515	18SUF690545	18SUF840560
18SUF975500	18SVF110515	18SUF705545	18SUF855560
18SUF990500	18SVF125515	18SUF720545	18SUF870560
18SVF005500	18SVF140515	18SUF735545	18SUF885560
18SVF020500	18SVF155515	18SUF750545	18SUF900560
18SVF035500	18SVF170515	18SUF765545	18SUF915560
18SVF050500	18SVF185515	18SUF780545	18SUF930560
18SVF065500	18SVF200515	18SUF795545	18SUF945560
18SVF080500	18SUF660530	18SUF810545	18SUF960560
18SVF095500	18SUF675530	18SUF825545	18SUF975560
18SVF110500	18SUF690530	18SUF840545	18SUF990560
18SVF125500	18SUF705530	18SUF855545	18SVF005560
18SVF140500	18SUF720530	18SUF870545	18SVF020560
18SVF155500	18SUF735530	18SUF885545	18SVF035560
18SVF170500	18SUF750530	18SUF900545	18SVF050560
18SVF185500	18SUF765530	18SUF915545	18SVF065560
18SVF200500	18SUF780530	18SUF930545	18SVF080560
18SVF215500	18SUF795530	18SUF945545	18SVF095560
18SUF660515	18SUF810530	18SUF960545	18SVF110560
18SUF675515	18SUF825530	18SUF975545	18SVF125560
18SUF690515	18SUF840530	18SUF990545	18SVF140560
18SUF705515	18SUF855530	18SVF005545	18SVF155560
18SUF720515	18SUF870530	18SVF020545	18SVF170560
18SUF735515	18SUF885530	18SVF035545	18SVF185560
18SUF750515	18SUF900530	18SVF050545	18SVF200560
18SUF765515	18SUF915530	18SVF065545	18SUF675575
18SUF780515	18SUF930530	18SVF080545	18SUF690575
18SUF795515	18SUF945530	18SVF095545	18SUF705575
18SUF810515	18SUF960530	18SVF110545	18SUF720575
18SUF825515	18SUF975530	18SVF125545	18SUF735575
18SUF840515	18SUF990530	18SVF140545	18SUF750575
18SUF855515	18SVF005530	18SVF155545	18SUF765575
18SUF870515	18SVF020530	18SVF170545	18SUF780575
18SUF885515	18SVF035530	18SVF185545	18SUF795575
18SUF900515	18SVF050530	18SVF200545	18SUF810575
18SUF915515	18SVF065530	18SUF660560	18SUF825575
18SUF930515	18SVF080530	18SUF675560	18SUF840575
18SUF945515	18SVF095530	18SUF690560	18SUF855575
18SUF960515	18SVF110530	18SUF705560	18SUF870575
18SUF975515	18SVF125530	18SUF720560	18SUF885575
18SUF990515	18SVF140530	18SUF735560	18SUF900575
18SVF005515	18SVF155530	18SUF750560	18SUF915575
18SVF020515	18SVF170530	18SUF765560	18SUF930575
18SVF035515	18SVF185530	18SUF780560	18SUF945575

	l	1	1
18SUF960575	18SVF140590	18SUF810620	18SVF005635
18SUF975575	18SVF155590	18SUF825620	18SVF020635
18SUF990575	18SVF170590	18SUF840620	18SVF035635
18SVF005575	18SVF185590	18SUF855620	18SVF050635
18SVF020575	18SUF675605	18SUF870620	18SVF065635
18SVF035575	18SUF690605	18SUF885620	18SVF080635
18SVF050575	18SUF705605	18SUF900620	18SVF095635
18SVF065575	18SUF720605	18SUF915620	18SVF110635
18SVF080575	18SUF735605	18SUF930620	18SVF125635
18SVF095575	18SUF750605	18SUF945620	18SVF140635
18SVF110575	18SUF765605	18SUF960620	18SVF155635
18SVF125575	18SUF780605	18SUF975620	18SVF170635
18SVF140575	18SUF795605	18SUF990620	18SUF675650
18SVF155575	18SUF810605	18SVF005620	18SUF690650
18SVF170575	18SUF825605	18SVF020620	18SUF705650
18SVF185575	18SUF840605	18SVF035620	18SUF720650
18SUF675590	18SUF855605	18SVF050620	18SUF735650
18SUF690590	18SUF870605	18SVF065620	18SUF750650
18SUF705590	18SUF885605	18SVF080620	18SUF765650
18SUF720590	18SUF900605	18SVF095620	18SUF780650
18SUF735590	18SUF915605	18SVF110620	18SUF795650
18SUF750590	18SUF930605	18SVF125620	18SUF810650
18SUF765590	18SUF945605	18SVF140620	18SUF825650
18SUF780590	18SUF960605	18SVF155620	18SUF840650
18SUF795590	18SUF975605	18SVF170620	18SUF855650
18SUF810590	18SUF990605	18SUF675635	18SUF870650
18SUF825590	18SVF005605	18SUF690635	18SUF885650
18SUF840590	18SVF020605	18SUF705635	18SUF900650
18SUF855590	18SVF035605	18SUF720635	18SUF915650
18SUF870590	18SVF050605	18SUF735635	18SUF930650
18SUF885590	18SVF065605	18SUF750635	18SUF945650
18SUF900590	18SVF080605	18SUF765635	18SUF960650
18SUF915590	18SVF095605	18SUF780635	18SUF975650
18SUF930590	18SVF110605	18SUF795635	18SUF990650
18SUF945590	18SVF125605	18SUF810635	18SVF005650
18SUF960590	18SVF140605	18SUF825635	18SVF020650
18SUF975590	18SVF155605	18SUF840635	18SVF035650
18SUF990590	18SVF170605	18SUF855635	18SVF050650
18SVF005590	18SUF675620	18SUF870635	18SVF065650
18SVF020590	18SUF690620	18SUF885635	18SVF080650
18SVF035590	18SUF705620	18SUF900635	18SVF095650
18SVF050590	18SUF720620	18SUF915635	18SVF110650
18SVF065590	18SUF735620	18SUF930635	18SVF125650
18SVF080590	18SUF750620	18SUF945635	18SVF140650
18SVF095590	18SUF765620	18SUF960635	18SVF155650
18SVF110590	18SUF780620	18SUF975635	18SUF675665
18SVF125590	18SUF795620	18SUF990635	18SUF690665

	l	1	1
18SUF705665	18SUF915680	18SVF125695	18SUF885725
18SUF720665	18SUF930680	18SVF140695	18SUF900725
18SUF735665	18SUF945680	18SVF155695	18SUF915725
18SUF750665	18SUF960680	18SUF690710	18SUF930725
18SUF765665	18SUF975680	18SUF705710	18SUF945725
18SUF780665	18SUF990680	18SUF720710	18SUF960725
18SUF795665	18SVF005680	18SUF735710	18SUF975725
18SUF810665	18SVF020680	18SUF750710	18SUF990725
18SUF825665	18SVF035680	18SUF765710	18SVF005725
18SUF840665	18SVF050680	18SUF780710	18SVF020725
18SUF855665	18SVF065680	18SUF795710	18SVF035725
18SUF870665	18SVF080680	18SUF810710	18SVF050725
18SUF885665	18SVF095680	18SUF825710	18SVF065725
18SUF900665	18SVF110680	18SUF840710	18SVF080725
18SUF915665	18SVF125680	18SUF855710	18SVF095725
18SUF930665	18SVF140680	18SUF870710	18SVF110725
18SUF945665	18SVF155680	18SUF885710	18SVF125725
18SUF960665	18SUF675695	18SUF900710	18SVF140725
18SUF975665	18SUF690695	18SUF915710	18SUF690740
18SUF990665	18SUF705695	18SUF930710	18SUF705740
18SVF005665	18SUF720695	18SUF945710	18SUF720740
18SVF020665	18SUF735695	18SUF960710	18SUF735740
18SVF035665	18SUF750695	18SUF975710	18SUF750740
18SVF050665	18SUF765695	18SUF990710	18SUF765740
18SVF065665	18SUF780695	18SVF005710	18SUF780740
18SVF080665	18SUF795695	18SVF020710	18SUF795740
18SVF095665	18SUF810695	18SVF035710	18SUF810740
18SVF110665	18SUF825695	18SVF050710	18SUF825740
18SVF125665	18SUF840695	18SVF065710	18SUF840740
18SVF140665	18SUF855695	18SVF080710	18SUF855740
18SVF155665	18SUF870695	18SVF095710	18SUF870740
18SUF675680	18SUF885695	18SVF110710	18SUF885740
18SUF690680	18SUF900695	18SVF125710	18SUF900740
18SUF705680	18SUF915695	18SVF140710	18SUF915740
18SUF720680	18SUF930695	18SUF690725	18SUF930740
18SUF735680	18SUF945695	18SUF705725	18SUF945740
18SUF750680	18SUF960695	18SUF720725	18SUF960740
18SUF765680	18SUF975695	18SUF735725	18SUF975740
18SUF780680	18SUF990695	18SUF750725	18SUF990740
18SUF795680	18SVF005695	18SUF765725	18SVF005740
18SUF810680	18SVF020695	18SUF780725	18SVF020740
18SUF825680	18SVF035695	18SUF795725	18SVF035740
18SUF840680	18SVF050695	18SUF810725	18SVF050740
18SUF855680	18SVF065695	18SUF825725	18SVF065740
18SUF870680	18SVF080695	18SUF840725	18SVF080740
18SUF885680	18SVF095695	18SUF855725	18SVF095740
18SUF900680	18SVF110695	18SUF870725	18SVF110740

4001-4040		10011-0-00	1
18SVF125740	18SUF900770	18SUF705800	18SUF960815
18SVF140740	18SUF915770	18SUF720800	18SUF975815
18SUF690755	18SUF930770	18SUF735800	18SUF990815
18SUF705755	18SUF945770	18SUF750800	18SVF005815
18SUF720755	18SUF960770	18SUF765800	18SVF020815
18SUF735755	18SUF975770	18SUF780800	18SVF035815
18SUF750755	18SUF990770	18SUF795800	18SVF050815
18SUF765755	18SVF005770	18SUF810800	18SVF065815
18SUF780755	18SVF020770	18SUF825800	18SVF080815
18SUF795755	18SVF035770	18SUF840800	18SVF095815
18SUF810755	18SVF050770	18SUF855800	18SVF110815
18SUF825755	18SVF065770	18SUF870800	18SVF125815
18SUF840755	18SVF080770	18SUF885800	18SUF690830
18SUF855755	18SVF095770	18SUF900800	18SUF705830
18SUF870755	18SVF110770	18SUF915800	18SUF720830
18SUF885755	18SVF125770	18SUF930800	18SUF735830
18SUF900755	18SUF690785	18SUF945800	18SUF750830
18SUF915755	18SUF705785	18SUF960800	18SUF765830
18SUF930755	18SUF720785	18SUF975800	18SUF780830
18SUF945755	18SUF735785	18SUF990800	18SUF795830
18SUF960755	18SUF750785	18SVF005800	18SUF810830
18SUF975755	18SUF765785	18SVF020800	18SUF825830
18SUF990755	18SUF780785	18SVF035800	18SUF840830
18SVF005755	18SUF795785	18SVF050800	18SUF855830
18SVF020755	18SUF810785	18SVF065800	18SUF870830
18SVF035755	18SUF825785	18SVF080800	18SUF885830
18SVF050755	18SUF840785	18SVF095800	18SUF900830
18SVF065755	18SUF855785	18SVF110800	18SUF915830
18SVF080755	18SUF870785	18SVF125800	18SUF930830
18SVF095755	18SUF885785	18SUF690815	18SUF945830
18SVF110755	18SUF900785	18SUF705815	18SUF960830
18SVF125755	18SUF915785	18SUF720815	18SUF975830
18SVF140755	18SUF930785	18SUF735815	18SUF990830
18SUF690770	18SUF945785	18SUF750815	18SVF005830
18SUF705770	18SUF960785	18SUF765815	18SVF020830
18SUF720770	18SUF975785	18SUF780815	18SVF035830
18SUF735770	18SUF990785	18SUF795815	18SVF050830
18SUF750770	18SVF005785	18SUF810815	18SVF065830
18SUF765770	18SVF020785	18SUF825815	18SVF080830
18SUF780770	18SVF035785	18SUF840815	18SVF095830
18SUF795770	18SVF050785	18SUF855815	18SVF110830
18SUF810770	18SVF065785	18SUF870815	18SUF690845
18SUF825770	18SVF080785	18SUF885815	18SUF705845
18SUF840770	18SVF095785	18SUF900815	18SUF720845
18SUF855770	18SVF110785	18SUF915815	18SUF735845
18SUF870770	18SVF125785	18SUF930815	18SUF750845
18SUF885770	18SUF690800	18SUF945815	18SUF765845
	•	•	•

	1	ı	I
18SUF780845	18SVF050860	18SUF900905	18SUF645980
18SUF795845	18SVF065860	18SUF705920	18SUF660980
18SUF810845	18SVF080860	18SUF720920	18SUF675980
18SUF825845	18SVF095860	18SUF735920	18SUF690980
18SUF840845	18SVF110860	18SUF750920	18SUF705980
18SUF855845	18SUF750875	18SUF795920	18SUF720980
18SUF870845	18SUF765875	18SUF810920	18SUF735980
18SUF885845	18SUF780875	18SUF825920	18SUF750980
18SUF900845	18SUF795875	18SUF840920	18SUF765980
18SUF915845	18SUF810875	18SUF855920	18SUF780980
18SUF930845	18SUF825875	18SUF870920	18SUF795980
18SUF945845	18SUF840875	18SUF885920	18SUF810980
18SUF960845	18SUF855875	18SUF690935	18SUF825980
18SUF975845	18SUF870875	18SUF705935	18SUF840980
18SUF990845	18SUF885875	18SUF720935	18SUF855980
18SVF005845	18SUF900875	18SUF735935	18SUF645995
18SVF020845	18SUF915875	18SUF750935	18SUF660995
18SVF035845	18SUF930875	18SUF765935	18SUF675995
18SVF050845	18SUF945875	18SUF810935	18SUF690995
18SVF065845	18SUF960875	18SUF825935	18SUF705995
18SVF080845	18SUF975875	18SUF840935	18SUF720995
18SVF095845	18SVF050875	18SUF855935	18SUF735995
18SVF110845	18SVF065875	18SUF675950	18SUF750995
18SUF690860	18SVF080875	18SUF690950	18SUF765995
18SUF705860	18SVF095875	18SUF705950	18SUF780995
18SUF720860	18SVF110875	18SUF720950	18SUF795995
18SUF735860	18SUF795890	18SUF735950	18SUF810995
18SUF750860	18SUF810890	18SUF750950	18SUF825995
18SUF765860	18SUF825890	18SUF765950	18SUF840995
18SUF780860	18SUF840890	18SUF780950	18SUF855995
18SUF795860	18SUF855890	18SUF795950	18SUG630010
18SUF810860	18SUF870890	18SUF810950	18SUG645010
18SUF825860	18SUF885890	18SUF825950	18SUG660010
18SUF840860	18SUF900890	18SUF840950	18SUG675010
18SUF855860	18SUF915890	18SUF660965	18SUG690010
18SUF870860	18SUF930890	18SUF675965	18SUG705010
18SUF885860	18SUF945890	18SUF690965	18SUG720010
18SUF900860	18SUF720905	18SUF705965	18SUG735010
18SUF915860	18SUF735905	18SUF720965	18SUG750010
18SUF930860	18SUF750905	18SUF735965	18SUG765010
18SUF945860	18SUF795905	18SUF750965	18SUG780010
18SUF960860	18SUF810905	18SUF765965	18SUG795010
18SUF975860	18SUF825905	18SUF780965	18SUG810010
18SUF990860	18SUF840905	18SUF795965	18SUG825010
18SVF005860	18SUF855905	18SUF810965	18SUG840010
18SVF020860	18SUF870905	18SUF825965	18SUG855010
18SVF035860	18SUF885905	18SUF840965	18SUG615025

18SUG630025 18SUG720055 18SUG750085 18SUG555130 18SUG660025 18SUG750055 18SUG790085 18SUG585130 18SUG670025 18SUG765055 18SUG810085 18SUG600130 18SUG690025 18SUG790055 18SUG820085 18SUG600130 18SUG70025 18SUG795055 18SUG820085 18SUG663130 18SUG720025 18SUG810055 18SUG85085 18SUG665130 18SUG750025 18SUG840055 18SUG85085 18SUG665130 18SUG750025 18SUG885055 18SUG555100 18SUG675130 18SUG750025 18SUG885055 18SUG570100 18SUG669130 18SUG795025 18SUG885055 18SUG555100 18SUG69130 18SUG795025 18SUG850055 18SUG660100 18SUG720130 18SUG82025 18SUG8570070 18SUG661000 18SUG759130 18SUG840025 18SUG6570070 18SUG663100 18SUG759130 18SUG855025 18SUG6650070 18SUG665100 18SUG785130 18SUG855040 18SUG665070 18SUG669010 18SUG785130			1	l
18SUG660025 18SUG750055 18SUG750055 18SUG675025 18SUG660130 18SUG690025 18SUG780055 18SUG82085 18SUG6613130 18SUG705025 18SUG780055 18SUG840085 18SUG630130 18SUG720025 18SUG810055 18SUG85085 18SUG660130 18SUG750025 18SUG825055 18SUG8540100 18SUG666130 18SUG750025 18SUG850055 18SUG555100 18SUG675130 18SUG76025 18SUG850055 18SUG570100 18SUG6690130 18SUG780025 18SUG870055 18SUG685100 18SUG765130 18SUG795025 18SUG870055 18SUG685100 18SUG765130 18SUG810025 18SUG760070 18SUG600100 18SUG720130 18SUG82025 18SUG855070 18SUG630100 18SUG750130 18SUG870025 18SUG660070 18SUG665100 18SUG765130 18SUG850025 18SUG6615070 18SUG660100 18SUG780130 18SUG650025 18SUG669070 18SUG675010 18SUG780130 18SUG6650040 18SUG675070 18SUG750100 18SUG780130				
18SUG675025 18SUG780055 18SUG825085 18SUG600130 18SUG75025 18SUG795055 18SUG825085 18SUG630130 18SUG75025 18SUG795055 18SUG840085 18SUG630130 18SUG73025 18SUG825055 18SUG550100 18SUG660130 18SUG750025 18SUG840055 18SUG555100 18SUG660130 18SUG750025 18SUG85055 18SUG555100 18SUG690130 18SUG780025 18SUG870055 18SUG650100 18SUG690130 18SUG795025 18SUG870055 18SUG600100 18SUG705130 18SUG810025 18SUG555070 18SUG60100 18SUG735130 18SUG825025 18SUG555070 18SUG6615100 18SUG755130 18SUG825025 18SUG655070 18SUG665100 18SUG756130 18SUG85025 18SUG6615070 18SUG66100 18SUG780130 18SUG85025 18SUG6615070 18SUG66100 18SUG780130 18SUG8780025 18SUG6615070 18SUG675010 18SUG780130 18SUG7800040 18SUG660070 18SUG765100 18SUG780140 1				
18SUG690025 18SUG780055 18SUG825085 18SUG615130 18SUG705025 18SUG795055 18SUG840085 18SUG635130 18SUG73025 18SUG8410055 18SUG855085 18SUG660130 18SUG750025 18SUG840055 18SUG555100 18SUG660130 18SUG750025 18SUG85085 18SUG555100 18SUG660130 18SUG76025 18SUG850055 18SUG5857010 18SUG690130 18SUG780025 18SUG850055 18SUG585100 18SUG705130 18SUG810025 18SUG570070 18SUG660100 18SUG720130 18SUG810025 18SUG6585070 18SUG665100 18SUG755130 18SUG840025 18SUG6600070 18SUG66100 18SUG756130 18SUG85025 18SUG650070 18SUG66100 18SUG756130 18SUG850025 18SUG6630070 18SUG675100 18SUG780130 18SUG655040 18SUG6630070 18SUG675100 18SUG675130 18SUG655040 18SUG6675070 18SUG720100 18SUG675145 18SUG645040 18SUG720100 18SUG675145 18SUG645040 <				
18SUG705025 18SUG795055 18SUG840085 18SUG630130 18SUG720025 18SUG810055 18SUG855085 18SUG660130 18SUG750025 18SUG840055 18SUG55100 18SUG660130 18SUG750025 18SUG855055 18SUG570100 18SUG676130 18SUG780025 18SUG870055 18SUG570100 18SUG705130 18SUG780025 18SUG555070 18SUG600100 18SUG720130 18SUG810025 18SUG570070 18SUG661100 18SUG735130 18SUG825025 18SUG585070 18SUG645100 18SUG755130 18SUG840025 18SUG600070 18SUG645100 18SUG756130 18SUG85025 18SUG660070 18SUG660100 18SUG786130 18SUG87025 18SUG665070 18SUG675100 18SUG780130 18SUG685040 18SUG665070 18SUG675100 18SUG780130 18SUG6650040 18SUG660070 18SUG720100 18SUG55145 18SUG6650040 18SUG75070 18SUG750100 18SUG65145 18SUG675040 18SUG75070 18SUG750100 18SUG660145 18S	18SUG675025	18SUG765055	18SUG810085	18SUG600130
18SUG720025 18SUG810055 18SUG55085 18SUG6540100 18SUG665130 18SUG750025 18SUG825055 18SUG540100 18SUG6675130 18SUG750025 18SUG885055 18SUG555100 18SUG679130 18SUG780025 18SUG870055 18SUG585100 18SUG705130 18SUG795025 18SUG570070 18SUG600100 18SUG750130 18SUG810025 18SUG555070 18SUG661100 18SUG750130 18SUG825025 18SUG6850070 18SUG661100 18SUG750130 18SUG850025 18SUG6600070 18SUG66100 18SUG750130 18SUG850025 18SUG615070 18SUG66100 18SUG780130 18SUG850025 18SUG610070 18SUG675100 18SUG795130 18SUG850025 18SUG630070 18SUG675100 18SUG795130 18SUG655040 18SUG660070 18SUG675100 18SUG575130 18SUG655040 18SUG675070 18SUG720100 18SUG650145 18SUG645040 18SUG75070 18SUG750100 18SUG650145 18SUG660040 18SUG75070 18SUG780100 18SUG660145	18SUG690025	18SUG780055	18SUG825085	18SUG615130
18SUG735025 18SUG840055 18SUG555100 18SUG660130 18SUG750025 18SUG840055 18SUG555100 18SUG6790130 18SUG75025 18SUG850555 18SUG570100 18SUG690130 18SUG780025 18SUG8555070 18SUG600100 18SUG720130 18SUG810025 18SUG570070 18SUG600100 18SUG720130 18SUG825025 18SUG685070 18SUG630100 18SUG755130 18SUG840025 18SUG600070 18SUG665100 18SUG765130 18SUG870025 18SUG615070 18SUG6675100 18SUG795130 18SUG870025 18SUG630070 18SUG6675100 18SUG795130 18SUG685040 18SUG645070 18SUG6690100 18SUG795130 18SUG660040 18SUG660070 18SUG675100 18SUG575145 18SUG630040 18SUG675070 18SUG735100 18SUG555145 18SUG645040 18SUG75070 18SUG735100 18SUG655145 18SUG660040 18SUG735070 18SUG750100 18SUG655145 18SUG660040 18SUG735070 18SUG785100 18SUG630145	18SUG705025	18SUG795055	18SUG840085	18SUG630130
18SUG750025 18SUG840055 18SUG555100 18SUG679130 18SUG76025 18SUG850055 18SUG570100 18SUG690130 18SUG780025 18SUG870055 18SUG55500 18SUG70130 18SUG795025 18SUG555070 18SUG600100 18SUG735130 18SUG810025 18SUG555070 18SUG6615100 18SUG750130 18SUG840025 18SUG6600070 18SUG645100 18SUG750130 18SUG85025 18SUG615070 18SUG660100 18SUG765130 18SUG85025 18SUG630070 18SUG660100 18SUG785130 18SUG870025 18SUG630070 18SUG660100 18SUG785130 18SUG870025 18SUG630070 18SUG690100 18SUG785130 18SUG680040 18SUG660070 18SUG690100 18SUG785130 18SUG655040 18SUG660070 18SUG720100 18SUG555145 18SUG645040 18SUG720070 18SUG735100 18SUG555145 18SUG660040 18SUG720070 18SUG780100 18SUG645145 18SUG690040 18SUG78070 18SUG780100 18SUG645145 18	18SUG720025	18SUG810055	18SUG855085	18SUG645130
18SUG765025 18SUG855055 18SUG750100 18SUG690130 18SUG780025 18SUG870055 18SUG685100 18SUG705130 18SUG795025 18SUG555070 18SUG600100 18SUG720130 18SUG810025 18SUG570070 18SUG615100 18SUG735130 18SUG840025 18SUG600070 18SUG645100 18SUG750130 18SUG850025 18SUG660070 18SUG660100 18SUG765130 18SUG850025 18SUG630070 18SUG660100 18SUG780130 18SUG850025 18SUG630070 18SUG660100 18SUG780130 18SUG55040 18SUG630070 18SUG690100 18SUG795130 18SUG6600040 18SUG6660070 18SUG705100 18SUG555145 18SUG6630040 18SUG690070 18SUG795100 18SUG5565145 18SUG660040 18SUG750070 18SUG750100 18SUG660145 18SUG6690040 18SUG750070 18SUG750100 18SUG6615145 18SUG750040 18SUG750070 18SUG8570100 18SUG660145 18SUG735040 18SUG780600 18SUG660145 18SUG735040	18SUG735025	18SUG825055	18SUG540100	18SUG660130
18SUG780025 18SUG870055 18SUG655070 18SUG600100 18SUG720130 18SUG810025 18SUG555070 18SUG610100 18SUG720130 18SUG810025 18SUG585070 18SUG630100 18SUG735130 18SUG825025 18SUG680070 18SUG630100 18SUG750130 18SUG840025 18SUG660070 18SUG6650100 18SUG780130 18SUG855025 18SUG6615070 18SUG665100 18SUG795130 18SUG855040 18SUG645070 18SUG690100 18SUG795130 18SUG635040 18SUG645070 18SUG705100 18SUG5795130 18SUG6415040 18SUG660070 18SUG705100 18SUG575145 18SUG630040 18SUG690070 18SUG735100 18SUG555145 18SUG645040 18SUG705070 18SUG755100 18SUG6555145 18SUG660040 18SUG750070 18SUG750100 18SUG60145 18SUG675040 18SUG750070 18SUG785100 18SUG645145 18SUG795040 18SUG785070 18SUG8780100 18SUG660145 18SUG735040 18SUG785070 18SUG840000 18SUG690145<	18SUG750025	18SUG840055	18SUG555100	18SUG675130
18SUG795025 18SUG550070 18SUG610100 18SUG720130 18SUG810025 18SUG570070 18SUG615100 18SUG755130 18SUG825025 18SUG685070 18SUG630100 18SUG750130 18SUG840025 18SUG615070 18SUG665100 18SUG786133 18SUG855025 18SUG615070 18SUG660100 18SUG780130 18SUG870025 18SUG645070 18SUG69100 18SUG785130 18SUG680040 18SUG660070 18SUG705100 18SUG575145 18SUG615040 18SUG675070 18SUG720100 18SUG570145 18SUG630040 18SUG690070 18SUG755100 18SUG5750145 18SUG645040 18SUG705070 18SUG755100 18SUG5750145 18SUG660040 18SUG720070 18SUG755100 18SUG65145 18SUG660040 18SUG720070 18SUG785100 18SUG65145 18SUG675040 18SUG755070 18SUG780100 18SUG660145 18SUG720040 18SUG755070 18SUG840100 18SUG660145 18SUG755040 18SUG75070 18SUG840100 18SUG660145	18SUG765025	18SUG855055	18SUG570100	18SUG690130
18SUG810025 18SUG570070 18SUG615100 18SUG735130 18SUG825025 18SUG585070 18SUG630100 18SUG750130 18SUG840025 18SUG600070 18SUG645100 18SUG765130 18SUG855025 18SUG615070 18SUG660100 18SUG780130 18SUG585040 18SUG645070 18SUG690100 18SUG795130 18SUG600040 18SUG660070 18SUG705100 18SUG555145 18SUG615040 18SUG660070 18SUG705100 18SUG555145 18SUG645040 18SUG690070 18SUG750100 18SUG575145 18SUG645040 18SUG705070 18SUG755100 18SUG660145 18SUG660040 18SUG705070 18SUG755100 18SUG660145 18SUG6675040 18SUG720070 18SUG785100 18SUG6615145 18SUG75040 18SUG75070 18SUG780100 18SUG6615145 18SUG7505040 18SUG780070 18SUG825100 18SUG660145 18SUG750040 18SUG8075070 18SUG840100 18SUG675145 18SUG750040 18SUG85070 18SUG8550115 18SUG750145	18SUG780025	18SUG870055	18SUG585100	18SUG705130
18SUG825025 18SUG585070 18SUG630100 18SUG750130 18SUG840025 18SUG600070 18SUG645100 18SUG765130 18SUG855025 18SUG615070 18SUG660100 18SUG780130 18SUG85025 18SUG630070 18SUG6675100 18SUG795130 18SUG585040 18SUG665070 18SUG690100 18SUG5810130 18SUG600040 18SUG660070 18SUG720100 18SUG555145 18SUG615040 18SUG679070 18SUG720100 18SUG555145 18SUG645040 18SUG705070 18SUG755100 18SUG660145 18SUG665040 18SUG705070 18SUG755100 18SUG660145 18SUG660040 18SUG720070 18SUG755100 18SUG6615145 18SUG675040 18SUG750070 18SUG780100 18SUG665145 18SUG795040 18SUG750070 18SUG825100 18SUG660145 18SUG720040 18SUG750070 18SUG825100 18SUG660145 18SUG750040 18SUG810070 18SUG8555115 18SUG705145 18SUG750040 18SUG8800070 18SUG6555115 18SUG705145	18SUG795025	18SUG555070	18SUG600100	18SUG720130
18SUG840025 18SUG600070 18SUG645100 18SUG780130 18SUG855025 18SUG615070 18SUG660100 18SUG780130 18SUG585025 18SUG630070 18SUG675100 18SUG795130 18SUG585040 18SUG645070 18SUG690100 18SUG810130 18SUG600040 18SUG660070 18SUG705100 18SUG555145 18SUG615040 18SUG690070 18SUG720100 18SUG555145 18SUG630040 18SUG705070 18SUG735100 18SUG658145 18SUG660040 18SUG720070 18SUG750100 18SUG660145 18SUG6675040 18SUG735070 18SUG780100 18SUG630145 18SUG690040 18SUG750070 18SUG780100 18SUG630145 18SUG705040 18SUG750070 18SUG8810100 18SUG660145 18SUG720040 18SUG780070 18SUG825100 18SUG660145 18SUG750040 18SUG8810070 18SUG68555115 18SUG6795145 18SUG78040 18SUG8850070 18SUG570115 18SUG750145 18SUG795040 18SUG8806004 18SUG680015 18SUG750145	18SUG810025	18SUG570070	18SUG615100	18SUG735130
18SUG855025 18SUG615070 18SUG660100 18SUG780130 18SUG870025 18SUG630070 18SUG675100 18SUG795130 18SUG585040 18SUG645070 18SUG690100 18SUG810130 18SUG600040 18SUG660070 18SUG720100 18SUG555145 18SUG615040 18SUG675070 18SUG720100 18SUG570145 18SUG630040 18SUG705070 18SUG720100 18SUG585145 18SUG645040 18SUG705070 18SUG750100 18SUG60145 18SUG660040 18SUG720070 18SUG780100 18SUG60145 18SUG675040 18SUG735070 18SUG780100 18SUG63145 18SUG795040 18SUG750070 18SUG7895100 18SUG645145 18SUG720040 18SUG780070 18SUG825100 18SUG660145 18SUG735040 18SUG780070 18SUG8825100 18SUG690145 18SUG755040 18SUG8810070 18SUG5570115 18SUG795145 18SUG795040 18SUG825070 18SUG5570115 18SUG705145 18SUG795040 18SUG880040 18SUG860115 18SUG705145	18SUG825025	18SUG585070	18SUG630100	18SUG750130
18SUG870025 18SUG630070 18SUG675100 18SUG795130 18SUG585040 18SUG645070 18SUG690100 18SUG810130 18SUG600040 18SUG660070 18SUG705100 18SUG555145 18SUG615040 18SUG675070 18SUG720100 18SUG555145 18SUG630040 18SUG690070 18SUG720100 18SUG5585145 18SUG645040 18SUG705070 18SUG750100 18SUG600145 18SUG660040 18SUG720070 18SUG780100 18SUG615145 18SUG690040 18SUG735070 18SUG780100 18SUG630145 18SUG690040 18SUG750070 18SUG780100 18SUG630145 18SUG795040 18SUG765070 18SUG825100 18SUG660145 18SUG720040 18SUG780070 18SUG825100 18SUG660145 18SUG735040 18SUG795070 18SUG825100 18SUG690145 18SUG750040 18SUG8810070 18SUG8555115 18SUG705145 18SUG795040 18SUG8855070 18SUG600115 18SUG70145 18SUG795040 18SUG855065 18SUG600115 18SUG750145	18SUG840025	18SUG600070	18SUG645100	18SUG765130
18SUG870025 18SUG630070 18SUG675100 18SUG795130 18SUG585040 18SUG645070 18SUG690100 18SUG810130 18SUG600040 18SUG660070 18SUG705100 18SUG555145 18SUG615040 18SUG675070 18SUG720100 18SUG555145 18SUG630040 18SUG690070 18SUG720100 18SUG5585145 18SUG645040 18SUG705070 18SUG750100 18SUG600145 18SUG660040 18SUG720070 18SUG780100 18SUG615145 18SUG690040 18SUG735070 18SUG780100 18SUG630145 18SUG690040 18SUG750070 18SUG780100 18SUG630145 18SUG795040 18SUG765070 18SUG825100 18SUG660145 18SUG720040 18SUG780070 18SUG825100 18SUG660145 18SUG735040 18SUG795070 18SUG825100 18SUG690145 18SUG750040 18SUG8810070 18SUG8555115 18SUG705145 18SUG795040 18SUG8855070 18SUG600115 18SUG70145 18SUG795040 18SUG855065 18SUG600115 18SUG750145	18SUG855025	18SUG615070	18SUG660100	18SUG780130
18SUG585040 18SUG645070 18SUG690100 18SUG810130 18SUG600040 18SUG660070 18SUG705100 18SUG555145 18SUG615040 18SUG675070 18SUG720100 18SUG570145 18SUG630040 18SUG690070 18SUG735100 18SUG585145 18SUG645040 18SUG705070 18SUG750100 18SUG600145 18SUG660040 18SUG720070 18SUG765100 18SUG615145 18SUG675040 18SUG735070 18SUG780100 18SUG630145 18SUG690040 18SUG750070 18SUG795100 18SUG645145 18SUG795040 18SUG780070 18SUG810100 18SUG660145 18SUG735040 18SUG780070 18SUG825100 18SUG660145 18SUG750040 18SUG780070 18SUG855115 18SUG705145 18SUG750040 18SUG80070 18SUG570115 18SUG705145 18SUG780040 18SUG840070 18SUG570115 18SUG735145 18SUG78040 18SUG855070 18SUG600115 18SUG780145 18SUG825040 18SUG55085 18SUG6615115 18SUG780145				
18SUG600040 18SUG660070 18SUG705100 18SUG555145 18SUG615040 18SUG675070 18SUG720100 18SUG570145 18SUG630040 18SUG690070 18SUG735100 18SUG585145 18SUG645040 18SUG705070 18SUG750100 18SUG6600145 18SUG660040 18SUG720070 18SUG765100 18SUG615145 18SUG675040 18SUG750070 18SUG780100 18SUG630145 18SUG690040 18SUG750070 18SUG795100 18SUG645145 18SUG705040 18SUG765070 18SUG810100 18SUG660145 18SUG735040 18SUG780070 18SUG825100 18SUG660145 18SUG750040 18SUG810070 18SUG840100 18SUG705145 18SUG750040 18SUG810070 18SUG5570115 18SUG705145 18SUG780040 18SUG825070 18SUG585115 18SUG720145 18SUG780040 18SUG840070 18SUG585115 18SUG750145 18SUG82040 18SUG855070 18SUG600115 18SUG750145 18SUG85040 18SUG55085 18SUG65115 18SUG780145				
18SUG615040 18SUG675070 18SUG720100 18SUG570145 18SUG630040 18SUG690070 18SUG735100 18SUG585145 18SUG645040 18SUG705070 18SUG750100 18SUG600145 18SUG660040 18SUG720070 18SUG755100 18SUG615145 18SUG675040 18SUG735070 18SUG780100 18SUG630145 18SUG690040 18SUG750070 18SUG795100 18SUG665145 18SUG705040 18SUG7565070 18SUG810100 18SUG660145 18SUG720040 18SUG780070 18SUG825100 18SUG660145 18SUG735040 18SUG795070 18SUG840100 18SUG690145 18SUG750040 18SUG810070 18SUG840100 18SUG690145 18SUG780040 18SUG8825070 18SUG570115 18SUG720145 18SUG780040 18SUG885070 18SUG585115 18SUG735145 18SUG795040 18SUG550085 18SUG6615115 18SUG750145 18SUG80040 18SUG550085 18SUG6615115 18SUG780145 18SUG825040 18SUG570085 18SUG665115 18SUG780145				
18SUG630040 18SUG690070 18SUG735100 18SUG585145 18SUG645040 18SUG705070 18SUG750100 18SUG600145 18SUG660040 18SUG720070 18SUG765100 18SUG615145 18SUG675040 18SUG735070 18SUG780100 18SUG630145 18SUG690040 18SUG750070 18SUG795100 18SUG645145 18SUG705040 18SUG765070 18SUG810100 18SUG660145 18SUG720040 18SUG780070 18SUG825100 18SUG665145 18SUG735040 18SUG795070 18SUG825000 18SUG690145 18SUG750040 18SUG810070 18SUG555115 18SUG705145 18SUG750040 18SUG825070 18SUG555115 18SUG720145 18SUG780040 18SUG8840070 18SUG6585115 18SUG735145 18SUG780040 18SUG555085 18SUG660115 18SUG750145 18SUG825040 18SUG555085 18SUG665115 18SUG795145 18SUG825040 18SUG555085 18SUG660115 18SUG795145 18SUG855040 18SUG585085 18SUG660115 18SUG675145				
18SUG645040 18SUG705070 18SUG750100 18SUG600145 18SUG660040 18SUG720070 18SUG765100 18SUG615145 18SUG675040 18SUG735070 18SUG780100 18SUG630145 18SUG690040 18SUG750070 18SUG795100 18SUG645145 18SUG705040 18SUG765070 18SUG810100 18SUG660145 18SUG720040 18SUG780070 18SUG825100 18SUG660145 18SUG735040 18SUG795070 18SUG840100 18SUG690145 18SUG750040 18SUG810070 18SUG555115 18SUG705145 18SUG765040 18SUG825070 18SUG570115 18SUG720145 18SUG780040 18SUG885070 18SUG6585115 18SUG735145 18SUG795040 18SUG855070 18SUG600115 18SUG735145 18SUG810040 18SUG555085 18SUG6615115 18SUG780145 18SUG825040 18SUG570085 18SUG645115 18SUG780145 18SUG870040 18SUG585085 18SUG660115 18SUG570160 18SUG570055 18SUG660085 18SUG795115 18SUG65160 <				
18SUG660040 18SUG720070 18SUG765100 18SUG615145 18SUG675040 18SUG735070 18SUG780100 18SUG630145 18SUG690040 18SUG750070 18SUG795100 18SUG645145 18SUG705040 18SUG765070 18SUG810100 18SUG660145 18SUG720040 18SUG780070 18SUG825100 18SUG6675145 18SUG735040 18SUG780070 18SUG840100 18SUG690145 18SUG750040 18SUG810070 18SUG555115 18SUG795145 18SUG780040 18SUG825070 18SUG570115 18SUG735145 18SUG780040 18SUG840070 18SUG685115 18SUG735145 18SUG795040 18SUG855070 18SUG600115 18SUG750145 18SUG810040 18SUG540085 18SUG660115 18SUG750145 18SUG825040 18SUG555085 18SUG630115 18SUG780145 18SUG840040 18SUG55085 18SUG660115 18SUG795145 18SUG870040 18SUG685085 18SUG660115 18SUG57060 18SUG55055 18SUG615085 18SUG690115 18SUG6570160 <td< td=""><td></td><td></td><td></td><td></td></td<>				
18SUG675040 18SUG735070 18SUG780100 18SUG630145 18SUG690040 18SUG750070 18SUG795100 18SUG645145 18SUG705040 18SUG765070 18SUG810100 18SUG660145 18SUG720040 18SUG780070 18SUG825100 18SUG675145 18SUG735040 18SUG795070 18SUG840100 18SUG690145 18SUG750040 18SUG810070 18SUG555115 18SUG705145 18SUG765040 18SUG825070 18SUG570115 18SUG720145 18SUG780040 18SUG840070 18SUG585115 18SUG735145 18SUG795040 18SUG855070 18SUG600115 18SUG750145 18SUG810040 18SUG555085 18SUG615115 18SUG750145 18SUG825040 18SUG570085 18SUG630115 18SUG780145 18SUG855040 18SUG558085 18SUG665115 18SUG795145 18SUG870040 18SUG660085 18SUG675115 18SUG570160 18SUG585055 18SUG615085 18SUG690115 18SUG6585160 18SUG680055 18SUG665085 18SUG720115 18SUG6615160				
18SUG690040 18SUG750070 18SUG795100 18SUG645145 18SUG705040 18SUG765070 18SUG810100 18SUG660145 18SUG720040 18SUG780070 18SUG825100 18SUG675145 18SUG735040 18SUG795070 18SUG840100 18SUG690145 18SUG750040 18SUG810070 18SUG555115 18SUG705145 18SUG765040 18SUG825070 18SUG570115 18SUG720145 18SUG780040 18SUG840070 18SUG585115 18SUG735145 18SUG795040 18SUG855070 18SUG600115 18SUG750145 18SUG810040 18SUG555085 18SUG615115 18SUG750145 18SUG825040 18SUG555085 18SUG630115 18SUG780145 18SUG855040 18SUG570085 18SUG665115 18SUG795145 18SUG870040 18SUG660085 18SUG675115 18SUG570160 18SUG585055 18SUG615085 18SUG690115 18SUG585160 18SUG6800055 18SUG645085 18SUG720115 18SUG60160 18SUG6600055 18SUG660085 18SUG720115 18SUG630160 <				
18SUG705040 18SUG765070 18SUG810100 18SUG660145 18SUG720040 18SUG780070 18SUG825100 18SUG675145 18SUG735040 18SUG795070 18SUG840100 18SUG690145 18SUG750040 18SUG810070 18SUG555115 18SUG705145 18SUG765040 18SUG825070 18SUG570115 18SUG720145 18SUG780040 18SUG840070 18SUG6855115 18SUG735145 18SUG795040 18SUG855070 18SUG600115 18SUG750145 18SUG810040 18SUG540085 18SUG6615115 18SUG750145 18SUG825040 18SUG555085 18SUG630115 18SUG780145 18SUG840040 18SUG570085 18SUG645115 18SUG795145 18SUG870040 18SUG600085 18SUG660115 18SUG570160 18SUG570055 18SUG615085 18SUG690115 18SUG585160 18SUG600055 18SUG645085 18SUG705115 18SUG660160 18SUG630055 18SUG660085 18SUG720115 18SUG630160 18SUG645055 18SUG675085 18SUG795115 18SUG645160				
18SUG720040 18SUG780070 18SUG825100 18SUG675145 18SUG735040 18SUG795070 18SUG840100 18SUG690145 18SUG750040 18SUG810070 18SUG555115 18SUG705145 18SUG765040 18SUG825070 18SUG570115 18SUG720145 18SUG780040 18SUG840070 18SUG600115 18SUG735145 18SUG795040 18SUG855070 18SUG600115 18SUG750145 18SUG810040 18SUG540085 18SUG615115 18SUG765145 18SUG825040 18SUG555085 18SUG630115 18SUG780145 18SUG840040 18SUG570085 18SUG660115 18SUG795145 18SUG855040 18SUG585085 18SUG660115 18SUG795145 18SUG870040 18SUG6585085 18SUG660115 18SUG570160 18SUG570055 18SUG615085 18SUG690115 18SUG585160 18SUG6600055 18SUG645085 18SUG705115 18SUG660160 18SUG645055 18SUG660085 18SUG735115 18SUG645160 18SUG660055 18SUG690085 18SUG755115 18SUG660160				
18SUG735040 18SUG795070 18SUG840100 18SUG690145 18SUG750040 18SUG810070 18SUG555115 18SUG705145 18SUG765040 18SUG825070 18SUG570115 18SUG720145 18SUG780040 18SUG840070 18SUG585115 18SUG735145 18SUG795040 18SUG855070 18SUG600115 18SUG750145 18SUG810040 18SUG540085 18SUG61515 18SUG765145 18SUG825040 18SUG555085 18SUG630115 18SUG780145 18SUG840040 18SUG570085 18SUG645115 18SUG795145 18SUG855040 18SUG585085 18SUG660115 18SUG810145 18SUG870040 18SUG6585085 18SUG660115 18SUG570160 18SUG570055 18SUG615085 18SUG675115 18SUG585160 18SUG585055 18SUG630085 18SUG705115 18SUG600160 18SUG615055 18SUG660085 18SUG720115 18SUG630160 18SUG645055 18SUG675085 18SUG750115 18SUG645160 18SUG660055 18SUG705085 18SUG780115 18SUG675160 <t< td=""><td></td><td></td><td></td><td></td></t<>				
18SUG750040 18SUG810070 18SUG555115 18SUG705145 18SUG765040 18SUG825070 18SUG570115 18SUG720145 18SUG780040 18SUG840070 18SUG585115 18SUG735145 18SUG795040 18SUG855070 18SUG600115 18SUG750145 18SUG810040 18SUG540085 18SUG615115 18SUG765145 18SUG825040 18SUG555085 18SUG630115 18SUG780145 18SUG840040 18SUG570085 18SUG645115 18SUG795145 18SUG870040 18SUG585085 18SUG660115 18SUG810145 18SUG570055 18SUG615085 18SUG690115 18SUG585160 18SUG585055 18SUG630085 18SUG705115 18SUG600160 18SUG615055 18SUG645085 18SUG720115 18SUG630160 18SUG630055 18SUG675085 18SUG750115 18SUG645160 18SUG645055 18SUG690085 18SUG750115 18SUG660160 18SUG675055 18SUG705085 18SUG780115 18SUG675160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 <t< td=""><td></td><td></td><td></td><td></td></t<>				
18SUG765040 18SUG825070 18SUG570115 18SUG720145 18SUG780040 18SUG840070 18SUG585115 18SUG735145 18SUG795040 18SUG855070 18SUG600115 18SUG750145 18SUG810040 18SUG540085 18SUG615115 18SUG765145 18SUG825040 18SUG555085 18SUG630115 18SUG780145 18SUG840040 18SUG570085 18SUG645115 18SUG795145 18SUG855040 18SUG585085 18SUG660115 18SUG810145 18SUG870040 18SUG600085 18SUG675115 18SUG570160 18SUG570055 18SUG615085 18SUG690115 18SUG585160 18SUG585055 18SUG630085 18SUG705115 18SUG600160 18SUG660055 18SUG660085 18SUG720115 18SUG630160 18SUG645055 18SUG675085 18SUG750115 18SUG645160 18SUG660055 18SUG705085 18SUG780115 18SUG675160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG795115 18SUG690160				
18SUG780040 18SUG840070 18SUG585115 18SUG735145 18SUG795040 18SUG855070 18SUG600115 18SUG750145 18SUG810040 18SUG540085 18SUG615115 18SUG765145 18SUG825040 18SUG555085 18SUG630115 18SUG780145 18SUG840040 18SUG570085 18SUG645115 18SUG795145 18SUG855040 18SUG585085 18SUG660115 18SUG810145 18SUG870040 18SUG600085 18SUG675115 18SUG570160 18SUG570055 18SUG615085 18SUG690115 18SUG585160 18SUG585055 18SUG630085 18SUG705115 18SUG600160 18SUG615055 18SUG645085 18SUG720115 18SUG630160 18SUG630055 18SUG675085 18SUG750115 18SUG645160 18SUG660055 18SUG705085 18SUG780115 18SUG660160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG795115 18SUG690160				
18SUG795040 18SUG855070 18SUG600115 18SUG750145 18SUG810040 18SUG540085 18SUG615115 18SUG765145 18SUG825040 18SUG555085 18SUG630115 18SUG780145 18SUG840040 18SUG570085 18SUG645115 18SUG795145 18SUG855040 18SUG585085 18SUG660115 18SUG810145 18SUG870040 18SUG600085 18SUG675115 18SUG570160 18SUG570055 18SUG615085 18SUG690115 18SUG585160 18SUG585055 18SUG630085 18SUG705115 18SUG600160 18SUG615055 18SUG645085 18SUG720115 18SUG630160 18SUG630055 18SUG660085 18SUG735115 18SUG630160 18SUG645055 18SUG690085 18SUG765115 18SUG660160 18SUG660055 18SUG705085 18SUG780115 18SUG675160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG810115 18SUG690160				
18SUG810040 18SUG540085 18SUG615115 18SUG765145 18SUG825040 18SUG555085 18SUG630115 18SUG780145 18SUG840040 18SUG570085 18SUG645115 18SUG795145 18SUG855040 18SUG585085 18SUG660115 18SUG810145 18SUG870040 18SUG600085 18SUG675115 18SUG570160 18SUG570055 18SUG615085 18SUG690115 18SUG585160 18SUG585055 18SUG630085 18SUG705115 18SUG600160 18SUG600055 18SUG645085 18SUG720115 18SUG615160 18SUG630055 18SUG660085 18SUG735115 18SUG630160 18SUG645055 18SUG675085 18SUG750115 18SUG645160 18SUG660055 18SUG705085 18SUG780115 18SUG660160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG795115 18SUG690160				
18SUG825040 18SUG555085 18SUG630115 18SUG780145 18SUG840040 18SUG570085 18SUG645115 18SUG795145 18SUG855040 18SUG585085 18SUG660115 18SUG810145 18SUG870040 18SUG600085 18SUG675115 18SUG570160 18SUG570055 18SUG615085 18SUG690115 18SUG585160 18SUG585055 18SUG630085 18SUG705115 18SUG600160 18SUG600055 18SUG645085 18SUG720115 18SUG630160 18SUG630055 18SUG660085 18SUG735115 18SUG630160 18SUG645055 18SUG690085 18SUG750115 18SUG660160 18SUG660055 18SUG705085 18SUG780115 18SUG660160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG795115 18SUG690160				
18SUG840040 18SUG570085 18SUG645115 18SUG795145 18SUG855040 18SUG585085 18SUG660115 18SUG810145 18SUG870040 18SUG600085 18SUG675115 18SUG570160 18SUG570055 18SUG615085 18SUG690115 18SUG585160 18SUG585055 18SUG630085 18SUG705115 18SUG600160 18SUG600055 18SUG645085 18SUG720115 18SUG615160 18SUG630055 18SUG660085 18SUG735115 18SUG630160 18SUG645055 18SUG690085 18SUG750115 18SUG660160 18SUG660055 18SUG705085 18SUG780115 18SUG660160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG795115 18SUG690160				
18SUG855040 18SUG585085 18SUG660115 18SUG810145 18SUG870040 18SUG600085 18SUG675115 18SUG570160 18SUG570055 18SUG615085 18SUG690115 18SUG585160 18SUG585055 18SUG630085 18SUG705115 18SUG600160 18SUG600055 18SUG645085 18SUG720115 18SUG615160 18SUG615055 18SUG660085 18SUG735115 18SUG630160 18SUG645055 18SUG690085 18SUG750115 18SUG660160 18SUG660055 18SUG705085 18SUG780115 18SUG675160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG810115 18SUG705160				
18SUG870040 18SUG600085 18SUG675115 18SUG570160 18SUG570055 18SUG615085 18SUG690115 18SUG585160 18SUG585055 18SUG630085 18SUG705115 18SUG600160 18SUG600055 18SUG645085 18SUG720115 18SUG615160 18SUG630055 18SUG660085 18SUG735115 18SUG630160 18SUG645055 18SUG690085 18SUG750115 18SUG660160 18SUG660055 18SUG705085 18SUG780115 18SUG675160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG810115 18SUG705160				
18SUG570055 18SUG615085 18SUG690115 18SUG585160 18SUG585055 18SUG630085 18SUG705115 18SUG600160 18SUG600055 18SUG645085 18SUG720115 18SUG615160 18SUG615055 18SUG660085 18SUG735115 18SUG630160 18SUG630055 18SUG675085 18SUG750115 18SUG645160 18SUG645055 18SUG690085 18SUG765115 18SUG660160 18SUG660055 18SUG705085 18SUG780115 18SUG675160 18SUG690055 18SUG735085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG810115 18SUG705160				
18SUG585055 18SUG630085 18SUG705115 18SUG600160 18SUG600055 18SUG645085 18SUG720115 18SUG615160 18SUG615055 18SUG660085 18SUG735115 18SUG630160 18SUG630055 18SUG675085 18SUG750115 18SUG645160 18SUG645055 18SUG690085 18SUG765115 18SUG660160 18SUG660055 18SUG705085 18SUG780115 18SUG675160 18SUG690055 18SUG735085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG810115 18SUG705160				
18SUG600055 18SUG645085 18SUG720115 18SUG615160 18SUG615055 18SUG660085 18SUG735115 18SUG630160 18SUG630055 18SUG675085 18SUG750115 18SUG645160 18SUG645055 18SUG690085 18SUG765115 18SUG660160 18SUG660055 18SUG705085 18SUG780115 18SUG675160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG810115 18SUG705160				
18SUG615055 18SUG660085 18SUG735115 18SUG630160 18SUG630055 18SUG675085 18SUG750115 18SUG645160 18SUG645055 18SUG690085 18SUG765115 18SUG660160 18SUG660055 18SUG705085 18SUG780115 18SUG675160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG810115 18SUG705160				
18SUG630055 18SUG675085 18SUG750115 18SUG645160 18SUG645055 18SUG690085 18SUG765115 18SUG660160 18SUG660055 18SUG705085 18SUG780115 18SUG675160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG810115 18SUG705160				
18SUG645055 18SUG690085 18SUG765115 18SUG660160 18SUG660055 18SUG705085 18SUG780115 18SUG675160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG810115 18SUG705160				
18SUG660055 18SUG705085 18SUG780115 18SUG675160 18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG810115 18SUG705160				
18SUG675055 18SUG720085 18SUG795115 18SUG690160 18SUG690055 18SUG735085 18SUG810115 18SUG705160				
18SUG690055 18SUG735085 18SUG810115 18SUG705160				
18SUG/05055 18SUG/50085 18SUG825115 18SUG720160				
	185UG/05055	185UG/50085	185UG825115	18SUG/20160

18SUG735160	18SUG645205	18SUG600250	18SUG525310
18SUG750160	18SUG660205	18SUG615250	18SUG540310
18SUG765160	18SUG675205	18SUG630250	18SUG555310
18SUG780160	18SUG690205	18SUG465265	18SUG570310
18SUG570175	18SUG705205	18SUG480265	18SUG435325
18SUG585175	18SUG720205	18SUG495265	18SUG450325
18SUG600175	18SUG735205	18SUG510265	18SUG465325
18SUG615175	18SUG750205	18SUG525265	18SUG480325
18SUG630175	18SUG765205	18SUG540265	18SUG495325
18SUG645175	18SUG510220	18SUG555265	18SUG510325
18SUG660175	18SUG525220	18SUG570265	18SUG525325
18SUG675175	18SUG540220	18SUG585265	18SUG540325
18SUG690175	18SUG555220	18SUG600265	18SUG555325
18SUG705175	18SUG570220	18SUG615265	18SUG570325
18SUG720175	18SUG585220	18SUG465280	18SUG435340
18SUG735175	18SUG600220	18SUG480280	18SUG450340
18SUG750175	18SUG615220	18SUG495280	18SUG465340
18SUG765175	18SUG630220	18SUG510280	18SUG480340
18SUG570190	18SUG645220	18SUG525280	18SUG495340
18SUG585190	18SUG660220	18SUG540280	18SUG510340
18SUG600190	18SUG495235	18SUG555280	18SUG525340
18SUG615190	18SUG510235	18SUG570280	18SUG540340
18SUG630190	18SUG525235	18SUG585280	18SUG555340
18SUG645190	18SUG540235	18SUG600280	18SUG435355
18SUG660190	18SUG555235	18SUG450295	18SUG450355
18SUG675190	18SUG570235	18SUG465295	18SUG465355
18SUG690190	18SUG585235	18SUG480295	18SUG480355
18SUG705190	18SUG600235	18SUG495295	18SUG495355
18SUG720190	18SUG615235	18SUG510295	18SUG510355
18SUG735190	18SUG630235	18SUG525295	18SUG525355
18SUG750190	18SUG645235	18SUG540295	18SUG540355
18SUG765190	18SUG480250	18SUG555295	18SUG450370
18SUG540205	18SUG495250	18SUG570295	18SUG465370
18SUG555205	18SUG510250	18SUG585295	18SUG480370
18SUG570205	18SUG525250	18SUG450310	18SUG495370
18SUG585205	18SUG540250	18SUG465310	18SUG510370
18SUG600205	18SUG555250	18SUG480310	18SUG525370
18SUG615205	18SUG570250	18SUG495310	
18SUG630205	18SUG585250	18SUG510310	
	SPCS TIL	ES (1,400):	
DO S13 9696 10	DO S23 1509 40	DO_S23_1518_40	DO_S23_1505_40
DO_S13_9696_40	DO_S23_1508_40	DO_S23_1518_30	DO S23 1505 30
DO_S13_9695_20	DO_S23_1508_30	DO_S23_1507_30	DO_S23_1504_40
DO_S13_9695_10	DO_S23_1519_10	DO_523_1507_40	DO_523_1504_30
DO_S13_9695_30	DO_S23_1518_10	DO_S23_1506_40	DO_S13_9685_30
DO_S13_9695_40	DO_S23_1518_20	DO_S23_1506_30	DO_S13_9685_40
= ===	2 -	1	1 2 2 2 2 3 3 3 3 2 1 0

DO 633 0550 30	DO 533 0535 40	DO 633 0538 40	DO 633 0540 30
DO_S23_0559_20	DO_S23_0626_10	DO_S23_0528_40	DO_S23_0548_30
DO_S23_0559_30	DO_S23_0625_20	DO_S23_0634_10	DO_S23_0548_40
DO_S23_0559_40	DO_S23_0625_10	DO_S23_0634_20	DO_S23_0652_10
DO_S23_0558_20	DO_S23_0604_10	DO_S23_0634_40	DO_S23_0652_20
DO_S23_0558_10	DO_S23_0604_20	DO_S23_0633_20	DO_S23_0652_40
DO_S23_0558_30	DO_S23_0604_40	DO_S23_0633_10	DO_S23_0651_10
DO_S23_0558_40	DO_S23_0604_30	DO_S23_0633_40	DO_S23_0651_20
DO_S23_0661_10	DO_S23_0603_20	DO_S23_0633_30	DO_S23_0651_40
DO_S23_0661_20	DO_S23_0603_10	DO_S23_0632_20	DO_S23_0651_30
DO_S23_0661_30	DO_S23_0603_30	DO_S23_0632_10	DO_S23_0650_20
DO_S23_0661_40	DO_S23_0603_40	DO_S23_0632_40	DO_S23_0650_10
DO_S23_0660_20	DO_S23_0602_20	DO_S23_0632_30	DO_S23_0650_30
DO_S23_0660_10	DO_S23_0602_30	DO_S23_0631_10	DO_S23_0650_40
DO_S23_0660_30	DO_S23_0602_40	DO_S23_0631_20	DO_S23_0559_10
DO_S23_0660_40	DO_S23_0614_10	DO_S23_0631_30	DO_S23_0579_10
DO_S23_0569_20	DO_S23_0614_20	DO_S23_0631_40	DO_S23_0579_20
DO_S23_0569_10	DO_S23_0614_30	DO_S23_0630_20	DO_S23_0579_40
DO_S23_0569_40	DO_S23_0614_40	DO_S23_0630_30	DO_S23_0579_30
DO_S23_0569_30	DO_S23_0613_20	DO_S23_0630_40	DO_S23_0578_10
DO_S23_0568_20	DO_S23_0613_10	DO_S23_0539_10	DO_S23_0578_20
DO_S23_0568_10	DO_S23_0613_40	DO_S23_0539_40	DO_S23_0578_30
DO_S23_0568_40	DO_S23_0613_30	DO_S23_0539_30	DO_S23_0578_40
DO_S23_0568_30	DO_S23_0612_20	DO_S23_0538_20	DO_S23_0681_10
DO_S23_0671_10	DO_S23_0612_10	DO_S23_0538_10	DO_S23_0681_40
DO_S23_0671_40	DO_S23_0612_30	DO_S23_0538_40	DO_S23_0680_20
DO_S23_0670_20	DO_S23_0612_40	DO_S23_0538_30	DO_S23_0680_10
DO_S23_0670_10	DO_S23_0611_40	DO_S23_0643_10	DO_S23_0680_40
DO_S23_0670_30	DO_S23_0611_30	DO_S23_0643_20	DO_S23_0680_30
DO_S23_0670_40	DO_S23_0624_20	DO_S23_0643_40	DO_S23_0589_10
DO_S23_1528_10	DO_S23_0624_10	DO_S23_0642_10	DO_S23_0589_20
DO_S13_9694_20	DO_S23_0623_10	DO_S23_0642_20	DO_S23_0589_30
DO_S13_9694_40	DO_S23_0623_20	DO_S23_0642_40	DO_S23_0589_40
DO_S13_9694_30	DO_S23_0622_20	DO_523_0642_40 DO_\$23_0642_30	DO S23 0588 20
DO_S13_9693_30	DO_523_0622_10	DO_S23_0641_20	DO_323_0588_20 DO_\$23_0588_10
DO_S13_9693_40	DO_523_0621_10	DO_523_0641_20 DO_S23_0641_10	DO_323_0588_40
DO_S13_9093_40 DO_S23_0606_10	DO_S23_0621_10 DO_S23_0621_20	DO_323_0641_40	DO_323_0588_40 DO_\$23_0588_30
DO_S23_0606_40	DO_S23_0625_40	DO_323_0641_40 DO_S23_0641_30	DO_323_0388_30 DO_\$23_0691_10
DO_S23_0605_20	DO_S23_0625_30	DO_323_0640_20	DO_323_0091_10 DO_S23_0691_40
DO_S23_0605_10	DO_S23_0635_10	DO_S23_0640_10	DO_S23_0690_10
DO_S23_0605_30	DO_S23_0624_40	DO_S23_0640_30	DO_S23_0690_20
DO_S23_0605_40	DO_S23_0624_30	DO_S23_0640_40	DO_S23_0690_30
DO_S23_0616_10	DO_S23_0623_30	DO_S23_0549_10	DO_S23_0690_40
DO_S23_0616_40	DO_S23_0623_40	DO_S23_0549_20	DO_S23_0599_20
DO_S23_0615_20	DO_S23_0622_30	DO_S23_0549_40	DO_S23_0599_10
DO_S23_0615_10	DO_S23_0622_40	DO_S23_0549_30	DO_S23_0599_40
DO_S23_0615_30	DO_S23_0621_40	DO_S23_0548_10	DO_S23_0599_30
DO_S23_0615_40	DO_S23_0621_30	DO_S23_0548_20	DO_S23_0598_10

DO S23_0598_40 DO S23_0565_20 DO S23_0583_40 DO S23_0565_20 DO S23_0583_30 DO S23_1502_20 DO S23_0598_30 DO S23_0565_40 DO S23_0583_40 DO S23_1502_20 DO S23_0574_40 DO S23_0572_40 DO S23_0572_40	DO 633 0500 30	DO (33 0ECE 30	DO 633 0503 40	L DO 633 4503 40
DO S23 DO DO S23 DO S23 LOR DO S23 LOR DO S23 LOR LOR S23 LOR LOR S23 LOR LOR S23 LOR				
DO_S23_1508_10 DO_S23_0564_10 DO_S23_0582_10 DO_S23_0476_30 DO_S23_1508_20 DO_S23_0564_10 DO_S23_0582_10 DO_S23_0475_40 DO_S23_1508_20 DO_S23_0564_30 DO_S23_0475_40 DO_S23_0567_30 DO_S23_0563_30 DO_S23_0581_20 DO_S23_0475_30 DO_S23_0537_10 DO_S23_0577_20 DO_S23_0577_10 DO_S23_0581_30 DO_S23_0474_30 DO_S23_0537_20 DO_S23_0577_40 DO_S23_0597_20 DO_S23_0489_10 DO_S23_0537_30 DO_S23_0577_40 DO_S23_0597_20 DO_S23_0489_30 DO_S23_0537_40 DO_S23_0597_20 DO_S23_0489_30 DO_S23_0537_40 DO_S23_0597_30 DO_S23_0489_30 DO_S23_0536_20 DO_S23_0576_10 DO_S23_0597_30 DO_S23_0489_40 DO_S23_0536_30 DO_S23_0576_40 DO_S23_0597_40 DO_S23_0489_40 DO_S23_0547_20 DO_S23_0576_40 DO_S23_0584_81_00 DO_S23_0584_81_00 DO_S23_0547_20 DO_S23_0575_50 DO_S23_0596_20 DO_S23_0488_10 DO_S23_0547_30 DO_S23_0575_00 DO_S23_0596_00 DO_S23_0488_10 DO_S23_0547_30				
DO_S23_1508_10 DO_S23_0564_30 DO_S23_0582_30 DO_S23_0476_40 DO_S23_0527_40 DO_S23_0564_30 DO_S23_0582_30 DO_S23_0475_40 DO_S23_0527_30 DO_S23_0563_30 DO_S23_0581_20 DO_S23_0474_40 DO_S23_0537_10 DO_S23_0577_10 DO_S23_0581_20 DO_S23_0474_40 DO_S23_0537_20 DO_S23_0581_30 DO_S23_0581_30 DO_S23_0489_10 DO_S23_0537_30 DO_S23_0577_10 DO_S23_0589_10 DO_S23_0489_20 DO_S23_0536_20 DO_S23_0576_10 DO_S23_0597_10 DO_S23_0489_40 DO_S23_0536_30 DO_S23_0576_10 DO_S23_0597_40 DO_S23_0599_40 DO_S23_0489_40 DO_S23_0536_30 DO_S23_0576_10 DO_S23_0599_40 DO_S23_0489_40 DO_S23_0540_0 DO_S23_0576_40 DO_S23_0599_40 DO_S23_0488_40 DO_S23_0547_20 DO_S23_0575_30 DO_S23_0596_20 DO_S23_0488_40 DO_S23_0547_20 DO_S23_0575_30 DO_S23_0488_40 DO_S23_0547_20 DO_S23_0575_30 DO_S23_0488_40 DO_S23_0547_40 DO_S23_0556_40 DO_S23_0566_40 DO_S23_0486_40 <t< td=""><td></td><td></td><td></td><td></td></t<>				
DO_S23_1508_20 DO_S23_0564_40 DO_S23_0582_40 DO_S23_0475_40 DO_S23_0577_40 DO_S23_0564_40 DO_S23_0582_40 DO_S23_0474_40 DO_S23_0577_10 DO_S23_0577_20 DO_S23_0581_20 DO_S23_0474_30 DO_S23_0537_20 DO_S23_0577_10 DO_S23_0581_30 DO_S23_0474_30 DO_S23_0537_30 DO_S23_0577_40 DO_S23_0597_20 DO_S23_0489_20 DO_S23_0537_40 DO_S23_0597_30 DO_S23_0489_30 DO_S23_0537_40 DO_S23_0597_30 DO_S23_0489_30 DO_S23_0536_20 DO_S23_0576_10 DO_S23_0597_30 DO_S23_0489_40 DO_S23_0536_30 DO_S23_0576_20 DO_S23_0549_40 DO_S23_0488_40 DO_S23_0536_40 DO_S23_0576_20 DO_S23_0596_20 DO_S23_0488_40 DO_S23_0547_20 DO_S23_0576_30 DO_S23_0596_20 DO_S23_0488_40 DO_S23_0547_30 DO_S23_0575_10 DO_S23_0596_20 DO_S23_0488_40 DO_S23_0547_30 DO_S23_0575_30 DO_S23_0596_20 DO_S23_0488_40 DO_S23_0547_30 DO_S23_0575_30 DO_S23_0596_30 DO_S23_0486_40 DO_S23_0546_40 <				
DO_S23_0527_40 DO_S23_0563_30 DO_S23_0582_40 DO_S23_0474_40 DO_S23_0577_30 DO_S23_0563_30 DO_S23_0581_40 DO_S23_0474_40 DO_S23_0537_10 DO_S23_0581_40 DO_S23_0489_10 DO_S23_0537_30 DO_S23_0577_40 DO_S23_0581_30 DO_S23_0489_10 DO_S23_0536_20 DO_S23_0577_40 DO_S23_0597_10 DO_S23_0489_30 DO_S23_0536_20 DO_S23_0576_10 DO_S23_0597_10 DO_S23_0489_30 DO_S23_0536_20 DO_S23_0576_20 DO_S23_0597_40 DO_S23_0489_40 DO_S23_0547_20 DO_S23_0576_40 DO_S23_0596_10 DO_S23_0488_10 DO_S23_0547_10 DO_S23_0547_20 DO_S23_0596_20 DO_S23_0488_10 DO_S23_0547_30 DO_S23_0575_20 DO_S23_0596_30 DO_S23_0488_10 DO_S23_0547_30 DO_S23_0575_10 DO_S23_0584_10 DO_S23_0584_10 DO_S23_0547_40 DO_S23_0596_40 DO_S23_0584_10 DO_S23_0584_10 DO_S23_0546_10 DO_S23_0574_10 DO_S23_0587_10 DO_S23_0587_10 DO_S23_0546_20 DO_S23_0574_20 DO_S23_0587_20 DO_S23_0587_20 DO_S23_0587_20 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0527_30 DO_S23_0577_20 DO_S23_0581_20 DO_S23_0474_40 DO_S23_0537_10 DO_S23_0577_20 DO_S23_0581_30 DO_S23_0474_30 DO_S23_0537_30 DO_S23_0577_40 DO_S23_0587_20 DO_S23_0489_10 DO_S23_0537_30 DO_S23_0577_30 DO_S23_0597_10 DO_S23_0489_20 DO_S23_0536_20 DO_S23_0576_10 DO_S23_0597_30 DO_S23_0489_40 DO_S23_0536_30 DO_S23_0576_20 DO_S23_0597_40 DO_S23_0596_10 DO_S23_0488_40 DO_S23_0536_30 DO_S23_0576_20 DO_S23_0596_10 DO_S23_0488_40 DO_S23_0547_20 DO_S23_0576_30 DO_S23_0596_10 DO_S23_0488_10 DO_S23_0547_10 DO_S23_0576_30 DO_S23_0596_10 DO_S23_0488_10 DO_S23_0547_10 DO_S23_0575_10 DO_S23_0596_20 DO_S23_0488_10 DO_S23_0547_10 DO_S23_0596_40 DO_S23_0487_40 DO_S23_0575_10 DO_S23_0595_20 DO_S23_0487_40 DO_S23_0546_20 DO_S23_0574_20 DO_S23_0595_10 DO_S23_0487_40 DO_S23_0546_40 DO_S23_0546_40 DO_S23_0546_40 DO_S23_0546_40 DO_S23_0546_40 DO_S23_0546_40				
DO 523 0537 10 DO 523 0577 20 DO 523 0581 40 DO 523 0489 10 DO 523 0537 20 DO 523 0577 10 DO 523 0597 20 DO 523 0489 10 DO 523 0537 30 DO 523 0597 20 DO 523 0489 20 DO 523 0537 40 DO 523 0576 10 DO 523 0597 30 DO 523 0597 30 DO 523 0489 40 DO 523 0536 20 DO 523 0576 20 DO 523 0597 40 DO 523 0489 40 DO 523 0536 40 DO 523 0576 30 DO 523 0597 40 DO 523 0488 10 DO 523 0536 40 DO 523 0576 30 DO 523 0596 20 DO 523 0488 10 DO 523 0547 10 DO 523 0575 20 DO 523 0596 20 DO 523 0488 10 DO 523 0547 40 DO 523 0595 20 DO 523 0596 20 DO 523 0488 10 DO 523 0547 40 DO 523 0575 20 DO 523 0595 20 DO 523 0487 20 DO 523 0546 10 DO 523 0575 40 DO 523 0595 20 DO 523 0487 20 DO 523 0546 10 DO 523 0574 20 DO 523 0595 30 DO 523 0487 40 DO 523 0546 10 DO 523 0574 20 DO 523 0595 30 DO 523 0487 40 DO 523 0546 20 DO 523 0574 40 DO 523 0595 30 DO 523 0487 40 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0537_20 DO_S23_0577_10 DO_S23_0597_20 DO_S23_0489_20 DO_S23_0537_40 DO_S23_0577_30 DO_S23_0597_20 DO_S23_0489_20 DO_S23_0536_20 DO_S23_0576_10 DO_S23_0597_30 DO_S23_0489_40 DO_S23_0536_30 DO_S23_0576_20 DO_S23_0597_40 DO_S23_0489_40 DO_S23_0536_40 DO_S23_0576_20 DO_S23_0596_10 DO_S23_0488_10 DO_S23_0547_20 DO_S23_0576_20 DO_S23_0596_20 DO_S23_0488_30 DO_S23_0547_10 DO_S23_0575_20 DO_S23_0596_20 DO_S23_0488_40 DO_S23_0547_40 DO_S23_0575_10 DO_S23_0596_30 DO_S23_0487_40 DO_S23_0547_40 DO_S23_0575_10 DO_S23_0596_30 DO_S23_0487_40 DO_S23_0546_40 DO_S23_0575_40 DO_S23_0595_10 DO_S23_0487_40 DO_S23_0546_40 DO_S23_0574_20 DO_S23_0595_30 DO_S23_0487_40 DO_S23_0546_40 DO_S23_0574_40 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0546_30 DO_S23_0574_40 DO_S23_0599_40 DO_S23_0486_20 DO_S23_0545_30 DO_S23_0573_40 DO_S23_0594_20 DO_S23_0486_20 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0537_30 DO_S23_0577_40 DO_S23_0597_20 DO_S23_0489_20 DO_S23_0536_20 DO_S23_0576_10 DO_S23_0597_10 DO_S23_0489_40 DO_S23_0536_30 DO_S23_0576_20 DO_S23_0597_40 DO_S23_0488_20 DO_S23_0536_40 DO_S23_0576_40 DO_S23_0597_40 DO_S23_0488_10 DO_S23_0547_10 DO_S23_0576_30 DO_S23_0586_10 DO_S23_0488_10 DO_S23_0547_10 DO_S23_0575_20 DO_S23_0596_20 DO_S23_0488_40 DO_S23_0547_30 DO_S23_0575_10 DO_S23_0596_40 DO_S23_0487_40 DO_S23_0547_40 DO_S23_0575_30 DO_S23_0596_40 DO_S23_0487_40 DO_S23_0546_10 DO_S23_0575_40 DO_S23_0595_20 DO_S23_0487_40 DO_S23_0546_10 DO_S23_0574_20 DO_S23_0595_10 DO_S23_0487_40 DO_S23_0546_10 DO_S23_0574_20 DO_S23_0595_40 DO_S23_0487_40 DO_S23_0546_30 DO_S23_0574_40 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0545_20 DO_S23_0574_30 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0557_20 DO_S23_0599_40 DO_S23_0486_20 DO_S23_0486_20 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0537_40 DO_S23_0577_30 DO_S23_0597_10 DO_S23_0489_30 DO_S23_0536_20 DO_S23_0576_20 DO_S23_0597_30 DO_S23_0488_40 DO_S23_0536_30 DO_S23_0576_20 DO_S23_0597_40 DO_S23_0488_40 DO_S23_0536_40 DO_S23_0596_10 DO_S23_0488_10 DO_S23_0547_20 DO_S23_0576_30 DO_S23_0596_20 DO_S23_0488_40 DO_S23_0547_10 DO_S23_0575_10 DO_S23_0596_40 DO_S23_0488_40 DO_S23_0547_40 DO_S23_0557_50 DO_S23_0596_20 DO_S23_0488_40 DO_S23_0547_40 DO_S23_0575_30 DO_S23_0596_20 DO_S23_0487_20 DO_S23_0546_20 DO_S23_0575_30 DO_S23_0595_20 DO_S23_0487_20 DO_S23_0546_10 DO_S23_0574_20 DO_S23_0595_10 DO_S23_0487_30 DO_S23_0546_30 DO_S23_0574_40 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0545_20 DO_S23_0574_30 DO_S23_0594_20 DO_S23_0486_40 DO_S23_0557_20 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_20 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_20 DO_S23_0599_20 <				
DO_S23_0536_20 DO_S23_0576_10 DO_S23_0597_30 DO_S23_0489_40 DO_S23_0536_30 DO_S23_0576_20 DO_S23_0596_10 DO_S23_0488_10 DO_S23_0547_20 DO_S23_0576_40 DO_S23_0596_20 DO_S23_0488_30 DO_S23_0547_10 DO_S23_0575_20 DO_S23_0596_20 DO_S23_0488_40 DO_S23_0547_30 DO_S23_0596_30 DO_S23_0488_40 DO_S23_0547_40 DO_S23_0575_10 DO_S23_0596_40 DO_S23_0487_20 DO_S23_0546_20 DO_S23_0575_40 DO_S23_0595_10 DO_S23_0487_40 DO_S23_0546_10 DO_S23_0574_10 DO_S23_0595_10 DO_S23_0487_40 DO_S23_0546_40 DO_S23_0574_10 DO_S23_0595_30 DO_S23_0487_40 DO_S23_0546_40 DO_S23_0574_40 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0545_20 DO_S23_0574_40 DO_S23_0595_40 DO_S23_0486_10 DO_S23_0545_20 DO_S23_0574_40 DO_S23_0595_40 DO_S23_0486_10 DO_S23_0557_20 DO_S23_0573_20 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_10 DO_S23_0573_30 DO_S23_0593_20 DO_S23_0486_20 <	DO_S23_0537_30	DO_S23_0577_40	DO_S23_0597_20	DO_S23_0489_20
DO_S23_0536_30 DO_S23_0576_20 DO_S23_0597_40 DO_S23_0488_20 DO_S23_0536_40 DO_S23_0576_40 DO_S23_0596_10 DO_S23_0488_10 DO_S23_0547_20 DO_S23_0576_30 DO_S23_0596_20 DO_S23_0488_830 DO_S23_0547_10 DO_S23_0575_20 DO_S23_0596_30 DO_S23_0488_40 DO_S23_0547_40 DO_S23_0575_30 DO_S23_0595_20 DO_S23_0487_20 DO_S23_0546_20 DO_S23_0574_20 DO_S23_0595_10 DO_S23_0487_40 DO_S23_0546_10 DO_S23_0574_20 DO_S23_0595_30 DO_S23_0487_30 DO_S23_0546_30 DO_S23_0574_40 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0546_30 DO_S23_0574_30 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0545_20 DO_S23_0574_30 DO_S23_0594_20 DO_S23_0486_30 DO_S23_0575_30 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0586_40 DO_S23_0557_20 DO_S23_0573_30 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_20 DO_S23_0589_40 DO_S23_0485_40 DO_S23_0485_40 DO_S23_0557_30 DO_S23_0589_40 DO_S23_0485_40 DO_S23_0485_40<	DO_S23_0537_40	DO_S23_0577_30	DO_S23_0597_10	DO_S23_0489_30
DO_S23_0536_40 DO_S23_0576_40 DO_S23_0596_10 DO_S23_0488_10 DO_S23_0547_20 DO_S23_0576_30 DO_S23_0596_20 DO_S23_0488_40 DO_S23_0547_10 DO_S23_0575_20 DO_S23_0596_40 DO_S23_0487_10 DO_S23_0547_40 DO_S23_0575_10 DO_S23_0596_40 DO_S23_0487_10 DO_S23_0546_20 DO_S23_0575_40 DO_S23_0595_10 DO_S23_0487_40 DO_S23_0546_10 DO_S23_0574_10 DO_S23_0595_30 DO_S23_0487_30 DO_S23_0546_40 DO_S23_0574_10 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0546_30 DO_S23_0574_40 DO_S23_0594_20 DO_S23_0486_10 DO_S23_0545_20 DO_S23_0574_40 DO_S23_0594_20 DO_S23_0486_10 DO_S23_0545_20 DO_S23_0574_30 DO_S23_0594_10 DO_S23_0486_30 DO_S23_0557_20 DO_S23_0573_20 DO_S23_05994_40 DO_S23_0486_40 DO_S23_0557_10 DO_S23_0573_30 DO_S23_05992_40 DO_S23_0486_40 DO_S23_0557_10 DO_S23_0573_30 DO_S23_05992_40 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0572_00 DO_S23_0593_20 DO_S23_0485_4	DO_S23_0536_20	DO_S23_0576_10	DO_S23_0597_30	DO_S23_0489_40
DO_S23_0547_20 DO_S23_0576_30 DO_S23_0596_20 DO_S23_0488_30 DO_S23_0547_10 DO_S23_0575_20 DO_S23_0596_30 DO_S23_0488_40 DO_S23_0547_30 DO_S23_0575_10 DO_S23_0596_40 DO_S23_0487_10 DO_S23_0546_20 DO_S23_0575_30 DO_S23_0595_20 DO_S23_0487_20 DO_S23_0546_10 DO_S23_0574_20 DO_S23_0595_30 DO_S23_0487_30 DO_S23_0546_40 DO_S23_0574_20 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0546_30 DO_S23_0574_40 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0545_20 DO_S23_0574_30 DO_S23_0594_20 DO_S23_0486_10 DO_S23_0545_30 DO_S23_0574_30 DO_S23_0594_20 DO_S23_0486_30 DO_S23_0557_30 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_10 DO_S23_0573_20 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_40 DO_S23_0573_40 DO_S23_0593_10 DO_S23_0485_20 DO_S23_0557_30 DO_S23_0593_10 DO_S23_0485_40 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0587_40 DO_S23_0592_20 DO_S23_0484_10 <	DO_S23_0536_30	DO_S23_0576_20	DO_S23_0597_40	DO_S23_0488_20
DO_S23_0547_10 DO_S23_0575_20 DO_S23_0596_30 DO_S23_0488_40 DO_S23_0547_30 DO_S23_0575_10 DO_S23_0596_40 DO_S23_0487_20 DO_S23_0546_20 DO_S23_0575_40 DO_S23_0595_20 DO_S23_0487_20 DO_S23_0546_10 DO_S23_0574_20 DO_S23_0595_30 DO_S23_0487_30 DO_S23_0546_40 DO_S23_0574_20 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0546_30 DO_S23_0574_40 DO_S23_0594_20 DO_S23_0486_10 DO_S23_0545_20 DO_S23_0574_30 DO_S23_0594_10 DO_S23_0486_30 DO_S23_0545_30 DO_S23_0573_10 DO_S23_0486_30 DO_S23_0573_10 DO_S23_0486_30 DO_S23_0557_20 DO_S23_0573_20 DO_S23_0594_40 DO_S23_0486_10 DO_S23_0557_10 DO_S23_0573_30 DO_S23_0594_30 DO_S23_0485_10 DO_S23_0557_40 DO_S23_0573_30 DO_S23_0593_10 DO_S23_0485_20 DO_S23_0557_30 DO_S23_0572_40 DO_S23_0589_10 DO_S23_0485_40 DO_S23_0556_20 DO_S23_0587_20 DO_S23_0586_40 DO_S23_0484_40 DO_S23_0556_30 DO_S23_0587_40 DO_S23_0592_40 </td <td>DO_S23_0536_40</td> <td>DO_S23_0576_40</td> <td>DO_S23_0596_10</td> <td>DO_S23_0488_10</td>	DO_S23_0536_40	DO_S23_0576_40	DO_S23_0596_10	DO_S23_0488_10
DO_S23_0547_30 DO_S23_0575_10 DO_S23_0596_40 DO_S23_0487_10 DO_S23_0547_40 DO_S23_0575_30 DO_S23_0595_20 DO_S23_0487_20 DO_S23_0546_20 DO_S23_0575_40 DO_S23_0595_10 DO_S23_0487_40 DO_S23_0546_10 DO_S23_0574_20 DO_S23_0595_30 DO_S23_0487_30 DO_S23_0546_30 DO_S23_0574_10 DO_S23_0594_40 DO_S23_0486_20 DO_S23_0545_20 DO_S23_0574_30 DO_S23_0594_10 DO_S23_0486_30 DO_S23_0575_20 DO_S23_0573_10 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_20 DO_S23_0573_20 DO_S23_0594_30 DO_S23_0485_10 DO_S23_0557_40 DO_S23_0573_30 DO_S23_0594_30 DO_S23_0485_10 DO_S23_0557_10 DO_S23_0573_30 DO_S23_0594_30 DO_S23_0485_10 DO_S23_0557_30 DO_S23_0559_30 DO_S23_0485_10 DO_S23_0556_10 DO_S23_0572_40 DO_S23_0586_40 DO_S23_0485_40 DO_S23_0556_20 DO_S23_0587_40 DO_S23_0484_40 DO_S23_0484_40 DO_S23_0556_30 DO_S23_0587_40 DO_S23_0586_40 DO_S23_0599_20 DO_S23_0484_40 </td <td>DO_S23_0547_20</td> <td>DO_S23_0576_30</td> <td>DO_S23_0596_20</td> <td>DO_S23_0488_30</td>	DO_S23_0547_20	DO_S23_0576_30	DO_S23_0596_20	DO_S23_0488_30
DO_S23_0547_40 DO_S23_0575_30 DO_S23_0595_20 DO_S23_0487_20 DO_S23_0546_20 DO_S23_0575_40 DO_S23_0595_10 DO_S23_0487_40 DO_S23_0546_10 DO_S23_0574_20 DO_S23_0595_30 DO_S23_0487_30 DO_S23_0546_40 DO_S23_0574_10 DO_S23_0594_40 DO_S23_0486_20 DO_S23_0546_30 DO_S23_0574_40 DO_S23_0594_20 DO_S23_0486_30 DO_S23_0545_20 DO_S23_0573_10 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_20 DO_S23_0573_20 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_10 DO_S23_0573_30 DO_S23_0594_30 DO_S23_0485_10 DO_S23_0557_40 DO_S23_0573_30 DO_S23_0599_30 DO_S23_0485_20 DO_S23_0557_30 DO_S23_0573_30 DO_S23_0599_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0572_40 DO_S23_0599_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0587_10 DO_S23_0599_30 DO_S23_0484_40 DO_S23_0556_20 DO_S23_0587_10 DO_S23_0580_10 DO_S23_0484_40 DO_S23_0556_10 DO_S23_0586_10 DO_S23_0586_10 DO_S23_0586_10 </td <td>DO_S23_0547_10</td> <td>DO_S23_0575_20</td> <td>DO_S23_0596_30</td> <td>DO_S23_0488_40</td>	DO_S23_0547_10	DO_S23_0575_20	DO_S23_0596_30	DO_S23_0488_40
DO_S23_0546_20 DO_S23_0575_40 DO_S23_0595_10 DO_S23_0487_40 DO_S23_0546_10 DO_S23_0574_20 DO_S23_0595_30 DO_S23_0487_30 DO_S23_0546_40 DO_S23_0574_10 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0545_20 DO_S23_0574_40 DO_S23_0594_20 DO_S23_0486_10 DO_S23_0545_20 DO_S23_0573_10 DO_S23_0486_40 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_20 DO_S23_0573_20 DO_S23_0594_30 DO_S23_0485_40 DO_S23_0557_10 DO_S23_0573_30 DO_S23_0593_20 DO_S23_0485_20 DO_S23_0557_30 DO_S23_0573_30 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0557_30 DO_S23_0572_30 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0572_40 DO_S23_0593_30 DO_S23_0484_40 DO_S23_0556_20 DO_S23_0587_20 DO_S23_0593_40 DO_S23_0484_10 DO_S23_0556_20 DO_S23_0587_20 DO_S23_0584_20 DO_S23_0484_20 DO_S23_0556_30 DO_S23_0587_40 DO_S23_0592_40 DO_S23_0484_40 DO_S23_0555_10 DO_S23_0586_40 DO_S23_0591_20 </td <td>DO_S23_0547_30</td> <td>DO_S23_0575_10</td> <td>DO S23 0596 40</td> <td>DO_S23_0487_10</td>	DO_S23_0547_30	DO_S23_0575_10	DO S23 0596 40	DO_S23_0487_10
DO_S23_0546_20 DO_S23_0575_40 DO_S23_0595_10 DO_S23_0487_40 DO_S23_0546_10 DO_S23_0574_20 DO_S23_0595_30 DO_S23_0487_30 DO_S23_0546_40 DO_S23_0574_10 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0545_20 DO_S23_0574_40 DO_S23_0594_10 DO_S23_0486_30 DO_S23_0574_30 DO_S23_0594_10 DO_S23_0486_40 DO_S23_0555_20 DO_S23_0573_10 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_20 DO_S23_0573_20 DO_S23_0594_30 DO_S23_0485_10 DO_S23_0557_10 DO_S23_0573_30 DO_S23_0593_20 DO_S23_0485_20 DO_S23_0557_30 DO_S23_0572_30 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0572_40 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_20 DO_S23_0587_20 DO_S23_0593_30 DO_S23_0484_10 DO_S23_0556_10 DO_S23_0587_20 DO_S23_0593_20 DO_S23_0484_20 DO_S23_0556_20 DO_S23_0587_20 DO_S23_0592_20 DO_S23_0484_20 DO_S23_0555_20 DO_S23_0586_10 DO_S23_0592_30 DO_S23_0484_40 <	DO_S23_0547_40	DO_S23_0575_30	DO_S23_0595_20	DO_S23_0487_20
DO_S23_0546_10 DO_S23_0574_20 DO_S23_0595_30 DO_S23_0487_30 DO_S23_0546_40 DO_S23_0574_10 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0546_30 DO_S23_0574_40 DO_S23_0594_20 DO_S23_0486_10 DO_S23_0545_20 DO_S23_0574_30 DO_S23_0594_10 DO_S23_0486_40 DO_S23_0555_20 DO_S23_0573_10 DO_S23_0594_40 DO_S23_0485_10 DO_S23_0557_10 DO_S23_0573_20 DO_S23_0594_30 DO_S23_0485_10 DO_S23_0557_40 DO_S23_0573_30 DO_S23_0593_10 DO_S23_0485_20 DO_S23_0557_30 DO_S23_0573_40 DO_S23_0593_10 DO_S23_0485_30 DO_S23_0556_10 DO_S23_0572_30 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0572_40 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_20 DO_S23_0587_10 DO_S23_0593_40 DO_S23_0484_10 DO_S23_0556_20 DO_S23_0587_20 DO_S23_0592_20 DO_S23_0484_20 DO_S23_0556_40 DO_S23_0586_40 DO_S23_0586_40 DO_S23_0592_40 DO_S23_0484_40 DO_S23_0555_20 DO_S23_0586_40 DO_S23_0591_30 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0546_40 DO_S23_0574_10 DO_S23_0595_40 DO_S23_0486_20 DO_S23_0546_30 DO_S23_0574_40 DO_S23_0594_20 DO_S23_0486_10 DO_S23_0545_20 DO_S23_0574_30 DO_S23_0594_10 DO_S23_0486_30 DO_S23_0557_20 DO_S23_0573_20 DO_S23_0594_40 DO_S23_0485_10 DO_S23_0557_10 DO_S23_0573_30 DO_S23_0593_20 DO_S23_0485_20 DO_S23_0557_40 DO_S23_0573_40 DO_S23_0593_10 DO_S23_0485_40 DO_S23_0557_30 DO_S23_0572_30 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0572_40 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0572_40 DO_S23_0593_40 DO_S23_0484_10 DO_S23_0556_10 DO_S23_0587_10 DO_S23_0592_20 DO_S23_0484_20 DO_S23_0556_20 DO_S23_0587_20 DO_S23_0592_20 DO_S23_0484_20 DO_S23_0556_10 DO_S23_0587_30 DO_S23_0592_20 DO_S23_0484_30 DO_S23_0555_20 DO_S23_0587_40 DO_S23_0592_40 DO_S23_0484_40 DO_S23_0555_10 DO_S23_0586_10 DO_S23_0591_20 DO_S23_0484_40 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0546_30 DO_S23_0574_40 DO_S23_0594_20 DO_S23_0486_10 DO_S23_0545_20 DO_S23_0574_30 DO_S23_0594_10 DO_S23_0486_30 DO_S23_0545_30 DO_S23_0573_10 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_20 DO_S23_0573_20 DO_S23_0594_30 DO_S23_0485_10 DO_S23_0557_10 DO_S23_0573_30 DO_S23_0593_20 DO_S23_0485_20 DO_S23_0557_40 DO_S23_0572_40 DO_S23_0593_10 DO_S23_0485_40 DO_S23_0557_30 DO_S23_0572_40 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0587_10 DO_S23_0593_40 DO_S23_0485_40 DO_S23_0556_20 DO_S23_0587_10 DO_S23_0593_40 DO_S23_0485_40 DO_S23_0556_30 DO_S23_0587_20 DO_S23_0592_20 DO_S23_0484_20 DO_S23_0556_40 DO_S23_0587_40 DO_S23_0592_10 DO_S23_0484_40 DO_S23_0555_10 DO_S23_0586_10				
DO_S23_0545_20 DO_S23_0574_30 DO_S23_0594_10 DO_S23_0486_30 DO_S23_0545_30 DO_S23_0573_10 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_20 DO_S23_0573_20 DO_S23_0594_30 DO_S23_0485_10 DO_S23_0557_10 DO_S23_0573_30 DO_S23_0593_20 DO_S23_0485_20 DO_S23_0557_40 DO_S23_0572_30 DO_S23_0593_10 DO_S23_0485_30 DO_S23_0557_30 DO_S23_0572_40 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0572_40 DO_S23_0593_40 DO_S23_0484_10 DO_S23_0556_20 DO_S23_0587_10 DO_S23_0484_10 DO_S23_0556_30 DO_S23_0587_20 DO_S23_0592_20 DO_S23_0484_40 DO_S23_0556_40 DO_S23_0587_30 DO_S23_0592_10 DO_S23_0484_40 DO_S23_0555_20 DO_S23_0587_40 DO_S23_0592_40 DO_S23_0484_30 DO_S23_0555_10 DO_S23_0586_40 DO_S23_0586_10 DO_S23_0591_10 DO_S23_0484_40 DO_S23_0555_10 DO_S23_0586_20 DO_S23_0586_20 DO_S23_0586_20 DO_S23_0591_20 DO_S23_0499_40 DO_S23_0555_30 DO_S23_0586_30 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0545_30 DO_S23_0573_10 DO_S23_0594_40 DO_S23_0486_40 DO_S23_0557_20 DO_S23_0573_20 DO_S23_0594_30 DO_S23_0485_10 DO_S23_0557_10 DO_S23_0573_30 DO_S23_0593_20 DO_S23_0485_20 DO_S23_0557_40 DO_S23_0573_40 DO_S23_0593_10 DO_S23_0485_30 DO_S23_0557_30 DO_S23_0572_30 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0572_40 DO_S23_0593_40 DO_S23_0484_10 DO_S23_0556_20 DO_S23_0587_10 DO_S23_0592_20 DO_S23_0484_40 DO_S23_0556_30 DO_S23_0587_20 DO_S23_0592_10 DO_S23_0484_40 DO_S23_0555_20 DO_S23_0587_30 DO_S23_0592_40 DO_S23_0484_40 DO_S23_0555_20 DO_S23_0587_40 DO_S23_0592_40 DO_S23_0484_40 DO_S23_0555_10 DO_S23_0586_10 DO_S23_0591_10 DO_S23_0590_40 DO_S23_0555_40 DO_S23_0586_10 DO_S23_0591_20 DO_S23_0499_20 DO_S23_0555_40 DO_S23_0586_20 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0556_30 DO_S23_0586_30 DO_S23_0591_30 DO_S23_0499_40 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0557_20 DO_S23_0573_20 DO_S23_0594_30 DO_S23_0485_10 DO_S23_0557_10 DO_S23_0573_30 DO_S23_0593_20 DO_S23_0485_20 DO_S23_0557_40 DO_S23_0573_40 DO_S23_0593_10 DO_S23_0485_30 DO_S23_0557_30 DO_S23_0572_30 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0572_40 DO_S23_0593_40 DO_S23_0484_10 DO_S23_0556_20 DO_S23_0587_10 DO_S23_0592_20 DO_S23_0484_20 DO_S23_0556_30 DO_S23_0587_20 DO_S23_0592_10 DO_S23_0484_40 DO_S23_0556_40 DO_S23_0587_40 DO_S23_0592_40 DO_S23_0484_30 DO_S23_0555_10 DO_S23_0586_10 DO_S23_0592_40 DO_S23_0590_40 DO_S23_0555_10 DO_S23_0586_10 DO_S23_0591_10 DO_S23_0590_40 DO_S23_0555_40 DO_S23_0586_20 DO_S23_0591_20 DO_S23_0499_20 DO_S23_0555_30 DO_S23_0586_40 DO_S23_0591_20 DO_S23_0499_40 DO_S23_0554_30 DO_S23_0586_30 DO_S23_1507_20 DO_S23_0499_40 DO_S23_0567_10 DO_S23_0585_10 DO_S23_0586_10 DO_S23_0590_40 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0557_10 DO_S23_0573_30 DO_S23_0593_20 DO_S23_0485_20 DO_S23_0557_40 DO_S23_0573_40 DO_S23_0593_10 DO_S23_0485_30 DO_S23_0557_30 DO_S23_0572_30 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0572_40 DO_S23_0593_40 DO_S23_0484_10 DO_S23_0556_20 DO_S23_0587_10 DO_S23_0592_20 DO_S23_0484_20 DO_S23_0556_30 DO_S23_0587_20 DO_S23_0592_10 DO_S23_0484_40 DO_S23_0556_40 DO_S23_0587_30 DO_S23_0592_40 DO_S23_0484_30 DO_S23_0555_20 DO_S23_0586_10 DO_S23_0592_30 DO_S23_0590_40 DO_S23_0555_10 DO_S23_0586_10 DO_S23_0591_10 DO_S23_0590_40 DO_S23_0555_40 DO_S23_0586_20 DO_S23_0591_20 DO_S23_0499_20 DO_S23_0555_30 DO_S23_0586_40 DO_S23_0591_20 DO_S23_0499_40 DO_S23_0554_30 DO_S23_0586_30 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0567_10 DO_S23_0585_10 DO_S23_1506_20 DO_S23_0498_20 DO_S23_0567_20 DO_S23_0585_30 DO_S23_1506_20 DO_S23_0498_10 </td <td></td> <td></td> <td></td> <td></td>				
DO S23 0557 40 DO S23 0573 40 DO S23 0593 10 DO S23 0485 30 DO S23 0557 30 DO S23 0572 30 DO S23 0593 30 DO S23 0485 40 DO S23 0556 10 DO S23 0572 40 DO S23 0593 40 DO S23 0484 10 DO S23 0556 20 DO S23 0587 10 DO S23 0592 20 DO S23 0484 20 DO S23 0556 30 DO S23 0587 20 DO S23 0592 10 DO S23 0484 40 DO S23 0555 40 DO S23 0587 30 DO S23 0592 40 DO S23 0484 30 DO S23 0555 10 DO S23 0587 40 DO S23 0592 30 DO S23 0484 30 DO S23 0555 10 DO S23 0586 10 DO S23 0592 30 DO S23 0590 40 DO S23 0555 40 DO S23 0586 10 DO S23 0591 10 DO S23 0484 30 DO S23 0555 30 DO S23 0586 20 DO S23 0591 20 DO S23 0499 20 DO S23 0555 30 DO S23 0586 20 DO S23 0591 20 DO S23 0499 40 DO S23 0556 30 DO S23 0586 30 DO S23 0591 30 DO S23 0499 40 DO S23 0566 30 DO S23 0586 30 DO S23 1507 20 DO S23 0499 30 DO S23 0566 10 DO S23 0585 10 DO S23 1506 20 DO S23 0498 10 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0557_30 DO_S23_0572_30 DO_S23_0593_30 DO_S23_0485_40 DO_S23_0556_10 DO_S23_0572_40 DO_S23_0593_40 DO_S23_0484_10 DO_S23_0556_20 DO_S23_0587_10 DO_S23_0592_20 DO_S23_0484_20 DO_S23_0556_30 DO_S23_0587_20 DO_S23_0592_10 DO_S23_0484_40 DO_S23_0556_40 DO_S23_0587_30 DO_S23_0592_40 DO_S23_0484_30 DO_S23_0555_20 DO_S23_0586_10 DO_S23_0592_30 DO_S23_0590_40 DO_S23_0555_10 DO_S23_0586_10 DO_S23_0591_10 DO_S23_0499_20 DO_S23_0555_40 DO_S23_0586_20 DO_S23_0591_20 DO_S23_0499_10 DO_S23_0555_30 DO_S23_0586_40 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0554_30 DO_S23_0586_30 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0567_10 DO_S23_0585_20 DO_S23_1507_20 DO_S23_0499_30 DO_S23_0567_20 DO_S23_0585_10 DO_S23_1506_20 DO_S23_0492_10 DO_S23_0567_40 DO_S23_0585_40 DO_S23_1506_20 DO_S23_0492_10 DO_S23_0566_20 DO_S23_0584_40 DO_S23_1505_10 DO_S23_0492_10 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0556_10 DO_S23_0572_40 DO_S23_0593_40 DO_S23_0484_10 DO_S23_0556_20 DO_S23_0587_10 DO_S23_0592_20 DO_S23_0484_20 DO_S23_0556_30 DO_S23_0587_20 DO_S23_0592_10 DO_S23_0484_40 DO_S23_0556_40 DO_S23_0587_30 DO_S23_0592_40 DO_S23_0484_30 DO_S23_0555_20 DO_S23_0586_10 DO_S23_0592_30 DO_S23_0590_40 DO_S23_0555_10 DO_S23_0586_10 DO_S23_0591_10 DO_S23_0499_20 DO_S23_0555_30 DO_S23_0586_20 DO_S23_0591_20 DO_S23_0499_10 DO_S23_0554_30 DO_S23_0586_40 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0557_10 DO_S23_0586_30 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0556_30 DO_S23_0586_30 DO_S23_1507_20 DO_S23_0499_40 DO_S23_0567_10 DO_S23_0585_20 DO_S23_1507_20 DO_S23_0498_20 DO_S23_0567_20 DO_S23_0585_10 DO_S23_1506_20 DO_S23_0498_10 DO_S23_0567_40 DO_S23_0585_40 DO_S23_1506_10 DO_S23_0498_30 DO_S23_0566_20 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0497_20 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0556_20 DO_S23_0587_10 DO_S23_0592_20 DO_S23_0484_20 DO_S23_0556_30 DO_S23_0587_20 DO_S23_0592_10 DO_S23_0484_40 DO_S23_0556_40 DO_S23_0587_30 DO_S23_0592_40 DO_S23_0484_30 DO_S23_0555_20 DO_S23_0587_40 DO_S23_0592_30 DO_S23_0590_40 DO_S23_0555_10 DO_S23_0586_10 DO_S23_0591_10 DO_S23_0499_20 DO_S23_0555_40 DO_S23_0586_20 DO_S23_0591_20 DO_S23_0499_10 DO_S23_0555_30 DO_S23_0586_40 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0554_30 DO_S23_0586_30 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0567_10 DO_S23_0585_20 DO_S23_1507_20 DO_S23_0499_30 DO_S23_0567_20 DO_S23_0585_10 DO_S23_1506_20 DO_S23_0498_20 DO_S23_0567_30 DO_S23_0585_30 DO_S23_1506_20 DO_S23_0498_10 DO_S23_0566_20 DO_S23_0586_40 DO_S23_1506_10 DO_S23_0497_10 DO_S23_0566_20 DO_S23_0586_40 DO_S23_1506_10 DO_S23_0498_20 DO_S23_0566_20 DO_S23_0584_10 DO_S23_1504_10 DO_S23_0496_20 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0556_30 DO_S23_0587_20 DO_S23_0592_10 DO_S23_0484_40 DO_S23_0556_40 DO_S23_0587_30 DO_S23_0592_40 DO_S23_0484_30 DO_S23_0555_20 DO_S23_0587_40 DO_S23_0592_30 DO_S23_0590_40 DO_S23_0555_10 DO_S23_0586_10 DO_S23_0591_10 DO_S23_0499_20 DO_S23_0555_40 DO_S23_0586_20 DO_S23_0591_20 DO_S23_0499_10 DO_S23_0555_30 DO_S23_0586_40 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0554_30 DO_S23_0586_30 DO_S23_1507_20 DO_S23_0499_30 DO_S23_0567_10 DO_S23_0585_20 DO_S23_1507_10 DO_S23_0499_30 DO_S23_0567_20 DO_S23_0585_10 DO_S23_1506_20 DO_S23_0498_20 DO_S23_0567_30 DO_S23_0585_30 DO_S23_1506_20 DO_S23_0498_30 DO_S23_0566_40 DO_S23_0584_40 DO_S23_1505_20 DO_S23_0497_10 DO_S23_0566_10 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0496_20 DO_S23_0566_40 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0556_40 DO_S23_0587_30 DO_S23_0592_40 DO_S23_0484_30 DO_S23_0555_20 DO_S23_0587_40 DO_S23_0592_30 DO_S23_0590_40 DO_S23_0555_10 DO_S23_0586_10 DO_S23_0591_10 DO_S23_0499_20 DO_S23_0555_40 DO_S23_0586_20 DO_S23_0591_20 DO_S23_0499_10 DO_S23_0555_30 DO_S23_0586_40 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0554_30 DO_S23_0586_30 DO_S23_1507_20 DO_S23_0499_30 DO_S23_0567_10 DO_S23_0585_20 DO_S23_1507_10 DO_S23_0498_20 DO_S23_0567_20 DO_S23_0585_10 DO_S23_1506_20 DO_S23_0498_10 DO_S23_0567_30 DO_S23_0585_30 DO_S23_1506_10 DO_S23_0498_30 DO_S23_0566_20 DO_S23_0584_40 DO_S23_1505_20 DO_S23_0497_10 DO_S23_0566_10 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0496_20 DO_S23_0566_40 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40				
DO S23 0555 20 DO S23 0587 40 DO S23 0592 30 DO S23 0590 40 DO S23 0555 10 DO S23 0586 10 DO S23 0591 10 DO S23 0499 20 DO S23 0555 40 DO S23 0586 20 DO S23 0591 20 DO S23 0499 10 DO S23 0555 30 DO S23 0586 40 DO S23 0591 30 DO S23 0499 40 DO S23 0554 30 DO S23 0586 30 DO S23 1507 20 DO S23 0499 30 DO S23 0567 10 DO S23 0585 20 DO S23 1507 10 DO S23 0498 20 DO S23 0567 20 DO S23 0585 30 DO S23 1506 20 DO S23 0498 30 DO S23 0567 30 DO S23 0585 30 DO S23 1506 10 DO S23 0498 30 DO S23 0567 40 DO S23 0585 40 DO S23 1505 20 DO S23 0497 10 DO S23 0566 20 DO S23 0584 10 DO S23 1505 10 DO S23 0497 20 DO S23 0566 40 DO S23 0584 30 DO S23 1504 20 DO S23 0496 20 DO S23 0566 30 DO S23 0584 40 DO S23 1503 20 DO S23 0496 40				
DO_S23_0555_10 DO_S23_0586_10 DO_S23_0591_10 DO_S23_0499_20 DO_S23_0555_40 DO_S23_0586_20 DO_S23_0591_20 DO_S23_0499_10 DO_S23_0555_30 DO_S23_0586_40 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0554_30 DO_S23_0586_30 DO_S23_1507_20 DO_S23_0499_30 DO_S23_0567_10 DO_S23_0585_20 DO_S23_1507_10 DO_S23_0498_20 DO_S23_0567_20 DO_S23_0585_10 DO_S23_1506_20 DO_S23_0498_10 DO_S23_0567_30 DO_S23_0585_30 DO_S23_1506_10 DO_S23_0498_30 DO_S23_0567_40 DO_S23_0585_40 DO_S23_1506_10 DO_S23_0497_10 DO_S23_0566_20 DO_S23_0584_10 DO_S23_1505_10 DO_S23_0497_20 DO_S23_0566_10 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0496_20 DO_S23_0566_30 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40				
DO_S23_0555_40 DO_S23_0586_20 DO_S23_0591_20 DO_S23_0499_10 DO_S23_0555_30 DO_S23_0586_40 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0554_30 DO_S23_0586_30 DO_S23_1507_20 DO_S23_0499_30 DO_S23_0567_10 DO_S23_0585_20 DO_S23_1507_10 DO_S23_0498_20 DO_S23_0567_20 DO_S23_0585_10 DO_S23_1506_20 DO_S23_0498_10 DO_S23_0567_30 DO_S23_0585_30 DO_S23_1506_10 DO_S23_0498_30 DO_S23_0567_40 DO_S23_0585_40 DO_S23_1505_20 DO_S23_0497_10 DO_S23_0566_20 DO_S23_0584_10 DO_S23_1505_10 DO_S23_0497_20 DO_S23_0566_10 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0496_20 DO_S23_0566_40 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40				
DO_S23_0555_30 DO_S23_0586_40 DO_S23_0591_30 DO_S23_0499_40 DO_S23_0554_30 DO_S23_0586_30 DO_S23_1507_20 DO_S23_0499_30 DO_S23_0567_10 DO_S23_0585_20 DO_S23_1507_10 DO_S23_0498_20 DO_S23_0567_20 DO_S23_0585_10 DO_S23_1506_20 DO_S23_0498_10 DO_S23_0567_30 DO_S23_0585_30 DO_S23_1506_10 DO_S23_0498_30 DO_S23_0567_40 DO_S23_0585_40 DO_S23_1505_20 DO_S23_0497_10 DO_S23_0566_20 DO_S23_0584_10 DO_S23_1505_10 DO_S23_0497_20 DO_S23_0566_10 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0496_20 DO_S23_0566_40 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40				
DO_S23_0554_30 DO_S23_0586_30 DO_S23_1507_20 DO_S23_0499_30 DO_S23_0567_10 DO_S23_0585_20 DO_S23_1507_10 DO_S23_0498_20 DO_S23_0567_20 DO_S23_0585_10 DO_S23_1506_20 DO_S23_0498_10 DO_S23_0567_30 DO_S23_0585_30 DO_S23_1506_10 DO_S23_0498_30 DO_S23_0567_40 DO_S23_0585_40 DO_S23_1505_20 DO_S23_0497_10 DO_S23_0566_20 DO_S23_0584_10 DO_S23_1505_10 DO_S23_0497_20 DO_S23_0566_10 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0496_20 DO_S23_0566_40 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40				
DO_S23_0567_10 DO_S23_0585_20 DO_S23_1507_10 DO_S23_0498_20 DO_S23_0567_20 DO_S23_0585_10 DO_S23_1506_20 DO_S23_0498_10 DO_S23_0567_30 DO_S23_0585_30 DO_S23_1506_10 DO_S23_0498_30 DO_S23_0567_40 DO_S23_0585_40 DO_S23_1505_20 DO_S23_0497_10 DO_S23_0566_20 DO_S23_0584_10 DO_S23_1505_10 DO_S23_0497_20 DO_S23_0566_10 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0496_20 DO_S23_0566_40 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40				
DO_S23_0567_20 DO_S23_0585_10 DO_S23_1506_20 DO_S23_0498_10 DO_S23_0567_30 DO_S23_0585_30 DO_S23_1506_10 DO_S23_0498_30 DO_S23_0567_40 DO_S23_0585_40 DO_S23_1505_20 DO_S23_0497_10 DO_S23_0566_20 DO_S23_0584_10 DO_S23_1505_10 DO_S23_0497_20 DO_S23_0566_10 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0496_20 DO_S23_0566_40 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40				
DO_S23_0567_30 DO_S23_0585_30 DO_S23_1506_10 DO_S23_0498_30 DO_S23_0567_40 DO_S23_0585_40 DO_S23_1505_20 DO_S23_0497_10 DO_S23_0566_20 DO_S23_0584_10 DO_S23_1505_10 DO_S23_0497_20 DO_S23_0566_10 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0496_20 DO_S23_0566_40 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40				
DO_S23_0567_40 DO_S23_0585_40 DO_S23_1505_20 DO_S23_0497_10 DO_S23_0566_20 DO_S23_0584_10 DO_S23_1505_10 DO_S23_0497_20 DO_S23_0566_10 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0496_20 DO_S23_0566_40 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40				
DO_S23_0566_20 DO_S23_0584_10 DO_S23_1505_10 DO_S23_0497_20 DO_S23_0566_10 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0496_20 DO_S23_0566_40 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40				
DO_S23_0566_10 DO_S23_0584_20 DO_S23_1504_10 DO_S23_0496_20 DO_S23_0566_40 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40				
DO_S23_0566_40 DO_S23_0584_30 DO_S23_1504_20 DO_S23_0496_10 DO_S23_0566_30 DO_S23_0584_40 DO_S23_1503_20 DO_S23_0496_40				
DO_S23_0566_30				
DO_323_0303_10				
	עט_323_0305_10	טט_323_0583_20	עט_323_1503_10	UU_323_0495_20

DO_S23_0495_40 DO_S23_0495_30 DO_S23_0495_30 DO_S23_0494_10 DO_S23_0494_10 DO_S23_0494_20 DO_S23_0494_20 DO_S23_0494_20 DO_S23_0494_30 DO_S23_0494_30 DO_S23_0494_30 DO_S23_0494_30 DO_S23_0494_40 DO_S23_0480_40 DO_S23_0386_10 DO_S23_1405_40 DO_S23_1405_40 DO_S23_0494_30 DO_S23_0494_40 DO_S23_1409_10 DO_S23_0494_40 DO_S23_0494_40 DO_S23_1408_20 DO_S23_1408_20 DO_S23_1408_20 DO_S23_1408_10 DO_S23_0494_20 DO_S23_0494_20 DO_S23_0494_20 DO_S23_0494_20 DO_S23_1405_10 DO_S23_0494_20 DO_S23_0494_20 DO_S23_0494_20 DO_S23_0494_20 DO_S23_0494_20 DO_S23_0494_20 DO_S23_0494_30 DO_S23_0494_40 DO_S23_0494_30 DO_S23_0494_40 DO_S23_0494_30 DO_S23_0494_40 DO_S23_0494_30 DO_S23_0494_40 DO_S23_0494_40 DO_S23_0494_40 DO_S23_0494_30 DO_S23_0494_40 DO_S23	DO 633 040F 40	DO 522 0491 20	DO 533 0395 10	DO 533 1407 40
DO S23_0494_10 DO S23_0480_20 DO S23_0494_20 DO S23_0480_10 DO S23_1406_30 DO S23_0494_20 DO S23_0396_10 DO S23_1405_30 DO S23_1405_30 DO S23_1405_40 DO S23_0396_10 DO S23_1405_40 DO S23_1500_10 DO S23_1500_10 DO S23_1500_10 DO S23_1500_10 DO S23_1500_10 DO S23_1500_10 DO S23_1409_10 DO S23_1503_30 DO S23_1409_10 DO S23_1503_30 DO S23_1403_30 DO S23_1503_30 DO S23_1403_50 DO S23_15103_30	DO_S23_0495_10	DO_S23_0481_20	DO_S23_0386_10	DO_S23_1407_40
DO S23_0494_10 DO S23_0480_10 DO S23_0496_30 DO S23_1406_30 DO S23_0494_30 DO S23_0480_40 DO S23_0396_10 DO S23_1405_40 DO S23_0494_40 DO S23_0480_30 DO S23_1306_10 DO S23_1404_40 DO S23_0389_10 DO S23_1306_10 DO S23_1404_40 DO S23_0389_10 DO S23_1503_30 DO S23_1510_10 DO S23_1409_20 DO S23_0389_40 DO S23_1503_30 DO S23_1510_40 DO S23_1406_10 DO S23_0388_40 DO S23_1517_20 DO S23_1419_10 DO S23_0388_40 DO S23_1405_20 DO S23_0388_40 DO S23_1419_10 DO S23_0388_40 DO S23_1517_40 DO S23_1419_10 DO S23_0388_40 DO S23_1517_40 DO S23_1419_40 DO S23_0387_40 DO				
DO_S23_0494_20 DO_S23_0480_40 DO_S23_0396_20 DO_S23_1405_30 DO_S23_0494_40 DO_S23_0396_20 DO_S23_1404_40 DO_S23_0494_40 DO_S23_0396_20 DO_S23_1404_40 DO_S23_1500_10 DO_S23_0389_20 DO_S23_1503_30 DO_S23_1404_30 DO_S23_1409_10 DO_S23_0389_10 DO_S23_1503_30 DO_S23_1510_140 DO_S23_1408_20 DO_S23_0389_30 DO_S23_1503_30 DO_S23_1510_140 DO_S23_1408_10 DO_S23_0388_20 DO_S23_1502_30 DO_S23_1510_30 DO_S23_1406_10 DO_S23_0388_20 DO_S23_1517_20 DO_S23_1419_10 DO_S23_1405_10 DO_S23_0388_30 DO_S23_1517_30 DO_S23_1419_20 DO_S23_1405_20 DO_S23_0388_30 DO_S23_1517_40 DO_S23_1419_20 DO_S23_1405_20 DO_S23_0388_30 DO_S23_1516_10 DO_S23_1419_40 DO_S23_0473_30 DO_S23_0387_40 DO_S23_1516_10 DO_S23_1418_20 DO_S23_0473_30 DO_S23_0387_40 DO_S23_1516_10 DO_S23_1418_10 DO_S23_0472_30 DO_S23_0387_40 DO_S23_1516_30 DO_S23_1417_40 DO_S23_0472_40				
DO_S23_0494_a0 DO_S23_0480_a0 DO_S23_0396_a0 DO_S23_1405_40 DO_S23_1500_10 DO_S23_0389_20 DO_S23_1306_10 DO_S23_1306_10 DO_S23_1404_30 DO_S23_1409_10 DO_S23_0389_10 DO_S23_1503_30 DO_S23_1510_10 DO_S23_1409_20 DO_S23_0389_30 DO_S23_1500_30 DO_S23_1510_30 DO_S23_1406_10 DO_S23_0388_20 DO_S23_1500_30 DO_S23_1510_30 DO_S23_1406_10 DO_S23_0388_10 DO_S23_1517_10 DO_S23_1419_10 DO_S23_1405_10 DO_S23_0388_10 DO_S23_1517_10 DO_S23_1419_20 DO_S23_1404_20 DO_S23_0388_40 DO_S23_1517_40 DO_S23_1419_20 DO_S23_1404_20 DO_S23_0388_10 DO_S23_1517_40 DO_S23_1419_20 DO_S23_1404_210 DO_S23_0387_10 DO_S23_1516_10 DO_S23_1418_20 DO_S23_0473_30 DO_S23_0387_20 DO_S23_1516_20 DO_S23_1418_20 DO_S23_0473_40 DO_S23_0473_40 DO_S23_0473_40 DO_S23_0473_40 DO_S23_1516_40 DO_S23_1418_40 DO_S23_0472_40 DO_S23_0493_20 DO_S23_1515_00 DO_S23_1417_10 DO_S23_1417_10				
DO 523 0494 40 DO 523 0480 30 DO 523 0396 40 DO 523 1404 40 DO 523 1500 10 DO 523 0389 20 DO 523 1503 30 DO 523 1504 30 DO 523 1409 10 DO 523 0389 30 DO 523 1503 30 DO 523 1510 10 DO 523 1408 20 DO 523 0389 40 DO 523 1503 30 DO 523 1510 30 DO 523 1406 10 DO 523 0388 40 DO 523 1517 20 DO 523 1419 10 DO 523 1405 10 DO 523 0388 10 DO 523 1517 30 DO 523 1419 20 DO 523 1404 20 DO 523 0388 40 DO 523 1517 30 DO 523 1419 20 DO 523 1404 20 DO 523 0387 10 DO 523 1517 40 DO 523 1419 20 DO 523 1404 20 DO 523 0387 10 DO 523 1517 40 DO 523 1419 20 DO 523 1404 10 DO 523 0387 20 DO 523 1516 20 DO 523 1418 20 DO 523 0473 30 DO 523 0387 20 DO 523 1516 20 DO 523 1418 10 DO 523 0472 40 DO 523 0487 30 DO 523 1516 20 DO 523 1418 20 DO 523 0472 40 DO 523 0493 20 DO 523 1515 20 DO 523 1417 20 DO 523 0471 40 DO 523 0493 10 DO 523 1515 20 DO 523 1417 10 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_1500_10 DO_S23_0389_20 DO_S23_1306_10 DO_S23_1404_30 DO_S23_1409_10 DO_S23_0389_10 DO_S23_1503_30 DO_S23_1503_30 DO_S23_1503_30 DO_S23_1409_20 DO_S23_0389_40 DO_S23_1502_30 DO_S23_1510_10 DO_S23_1406_10 DO_S23_0388_20 DO_S23_1557_20 DO_S23_1419_10 DO_S23_1405_10 DO_S23_0388_10 DO_S23_1557_10 DO_S23_1419_20 DO_S23_1405_20 DO_S23_0388_30 DO_S23_1557_30 DO_S23_1419_20 DO_S23_1404_20 DO_S23_0387_10 DO_S23_1557_30 DO_S23_1419_40 DO_S23_0473_30 DO_S23_0387_10 DO_S23_1557_40 DO_S23_1418_20 DO_S23_0473_30 DO_S23_0387_30 DO_S23_1556_20 DO_S23_1418_40 DO_S23_0473_40 DO_S23_0387_40 DO_S23_1556_30 DO_S23_1418_40 DO_S23_0473_30 DO_S23_0493_20 DO_S23_1551_40 DO_S23_1418_40 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1551_50 DO_S23_1417_20 DO_S23_0471_40 DO_S23_0492_10 DO_S23_1551_40 DO_S23_1417_40 DO_S23_0471_40 DO_S23_0492_0 DO_S23_1551_40 <td></td> <td></td> <td></td> <td></td>				
DO_S23_1409_10 DO_S23_0389_10 DO_S23_1503_30 DO_S23_1510_10 DO_S23_1408_20 DO_S23_0389_30 DO_S23_1502_30 DO_S23_1510_40 DO_S23_1406_10 DO_S23_0388_20 DO_S23_1517_20 DO_S23_1419_10 DO_S23_1405_10 DO_S23_0388_10 DO_S23_1517_30 DO_S23_1419_10 DO_S23_1405_20 DO_S23_0388_40 DO_S23_1517_30 DO_S23_1419_30 DO_S23_1404_10 DO_S23_0387_10 DO_S23_1516_10 DO_S23_1419_40 DO_S23_0473_30 DO_S23_0387_20 DO_S23_1516_20 DO_S23_1418_10 DO_S23_0473_30 DO_S23_0387_40 DO_S23_1516_40 DO_S23_1418_10 DO_S23_0472_30 DO_S23_0387_40 DO_S23_1516_20 DO_S23_1418_10 DO_S23_0472_40 DO_S23_0493_10 DO_S23_1516_30 DO_S23_1418_30 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_30 DO_S23_1417_20 DO_S23_0471_30 DO_S23_0493_10 DO_S23_1515_30 DO_S23_1417_10 DO_S23_0471_00 DO_S23_0492_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_20 DO_S23_0490_10 DO_S23_1514_20 DO_S23_1416_20 </td <td></td> <td></td> <td></td> <td></td>				
DO_523_1409_20 DO_523_0389_30 DO_523_1503_40 DO_523_1510_40 DO_523_1406_10 DO_523_0388_40 DO_523_1502_30 DO_523_1510_30 DO_523_1405_10 DO_523_0388_20 DO_523_1517_20 DO_523_1419_10 DO_523_1405_20 DO_523_0388_10 DO_523_1517_10 DO_523_1419_20 DO_523_1404_20 DO_523_0388_30 DO_523_1517_40 DO_523_1419_40 DO_523_1404_10 DO_523_0387_10 DO_523_1516_10 DO_523_1418_20 DO_523_0473_30 DO_523_0387_20 DO_523_1516_20 DO_523_1418_10 DO_523_0472_30 DO_523_0387_40 DO_523_1516_30 DO_523_1418_30 DO_523_0472_40 DO_523_0493_20 DO_523_1515_30 DO_523_1418_30 DO_523_0471_40 DO_523_0493_10 DO_523_1515_30 DO_523_1417_20 DO_523_0470_10 DO_523_0492_10 DO_523_1515_30 DO_523_1417_30 DO_523_0470_10 DO_523_0492_10 DO_523_1515_20 DO_523_1417_30 DO_523_0470_10 DO_523_0492_10 DO_523_1515_40 DO_523_1416_10 DO_523_0470_20 DO_523_0492_10 DO_523_1514_40 DO_523_1416_20 </td <td></td> <td></td> <td></td> <td></td>				
DO_523_1408_20 DO_523_0389_40 DO_523_1502_30 DO_523_1510_30 DO_523_1405_10 DO_523_0388_20 DO_523_1517_20 DO_523_1419_10 DO_523_1405_20 DO_523_0388_40 DO_523_1517_30 DO_523_1419_30 DO_523_1404_20 DO_523_0388_30 DO_523_1517_40 DO_523_1419_40 DO_523_0473_30 DO_523_0387_20 DO_523_1516_20 DO_523_1418_20 DO_523_0473_30 DO_523_0387_30 DO_523_1516_20 DO_523_1418_40 DO_523_0473_40 DO_523_0387_40 DO_523_1516_40 DO_523_1418_30 DO_523_0472_40 DO_523_0493_10 DO_523_1515_0 DO_523_1417_20 DO_523_0471_40 DO_523_0493_10 DO_523_1515_0 DO_523_1417_30 DO_523_0471_40 DO_523_0493_10 DO_523_1515_0 DO_523_1417_20 DO_523_0470_10 DO_523_0493_0 DO_523_1515_0 DO_523_1417_30 DO_523_0470_10 DO_523_0492_0 DO_523_1514_0 DO_523_1417_0 DO_523_0470_10 DO_523_0491_0 DO_523_1514_0 DO_523_1416_10 DO_523_0470_30 DO_523_0491_0 DO_523_1514_0 DO_523_1416_10 <td></td> <td></td> <td></td> <td></td>				
DO_S23_1406_10 DO_S23_0388_20 DO_S23_1517_20 DO_S23_1419_10 DO_S23_1405_10 DO_S23_0388_40 DO_S23_1517_10 DO_S23_1419_20 DO_S23_1404_20 DO_S23_0388_30 DO_S23_1517_40 DO_S23_1419_40 DO_S23_1404_10 DO_S23_0387_10 DO_S23_1516_20 DO_S23_1418_20 DO_S23_0473_40 DO_S23_0387_30 DO_S23_1516_20 DO_S23_1418_40 DO_S23_0472_30 DO_S23_0387_40 DO_S23_1516_30 DO_S23_1418_40 DO_S23_0472_40 DO_S23_0493_20 DO_S23_1516_30 DO_S23_1417_20 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_10 DO_S23_1417_10 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_10 DO_S23_1417_10 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_30 DO_S23_1417_30 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1514_10 DO_S23_1416_10 DO_S23_0470_30 DO_S23_0491_20 DO_S23_1514_20 DO_S23_1416_20 DO_S23_0470_40 DO_S23_0491_40 DO_S23_1513_40 DO_S23_1416_40 DO_S23_0379_20 DO_S23_0490_0 DO_S23_1513_0 DO_S23_1416_40 <td>DO_S23_1409_20</td> <td>DO_S23_0389_30</td> <td>DO_S23_1503_40</td> <td></td>	DO_S23_1409_20	DO_S23_0389_30	DO_S23_1503_40	
DO_S23_1405_10 DO_S23_0388_10 DO_S23_1517_10 DO_S23_1419_20 DO_S23_1404_20 DO_S23_0388_30 DO_S23_1517_40 DO_S23_1419_40 DO_S23_1404_10 DO_S23_0388_710 DO_S23_1516_10 DO_S23_1418_20 DO_S23_0473_30 DO_S23_0387_20 DO_S23_1516_20 DO_S23_1418_10 DO_S23_0472_30 DO_S23_0387_40 DO_S23_1516_30 DO_S23_1418_30 DO_S23_0472_40 DO_S23_0493_20 DO_S23_1516_30 DO_S23_1417_20 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_10 DO_S23_1417_10 DO_S23_0470_10 DO_S23_0493_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_10 DO_S23_0493_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1516_40 DO_S23_1416_10 DO_S23_0470_20 DO_S23_0491_20 DO_S23_1514_10 DO_S23_1416_10 DO_S23_0470_40 DO_S23_0491_40 DO_S23_1513_20 DO_S23_1416_30 DO_S23_0379_10 DO_S23_0492_0 DO_S23_1513_20 DO_S23_1415_10 </td <td>DO_S23_1408_20</td> <td>DO_S23_0389_40</td> <td>DO_S23_1502_30</td> <td>DO_S23_1510_30</td>	DO_S23_1408_20	DO_S23_0389_40	DO_S23_1502_30	DO_S23_1510_30
DO_S23_1405_20 DO_S23_0388_40 DO_S23_1517_30 DO_S23_1419_30 DO_S23_1404_20 DO_S23_0388_30 DO_S23_1517_40 DO_S23_1419_40 DO_S23_1473_30 DO_S23_0387_10 DO_S23_1516_10 DO_S23_1418_10 DO_S23_0473_40 DO_S23_0387_20 DO_S23_1516_20 DO_S23_1418_40 DO_S23_0472_30 DO_S23_0387_40 DO_S23_1516_30 DO_S23_1418_30 DO_S23_0471_40 DO_S23_0493_20 DO_S23_1515_20 DO_S23_1417_20 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_20 DO_S23_1417_30 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_20 DO_S23_1417_40 DO_S23_0470_10 DO_S23_0493_10 DO_S23_1515_30 DO_S23_1417_30 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_20 DO_S23_0491_20 DO_S23_1514_20 DO_S23_1416_20 DO_S23_0470_30 DO_S23_0491_40 DO_S23_1514_40 DO_S23_1416_20 DO_S23_0379_20 DO_S23_0491_40 DO_S23_1514_40 DO_S23_1416_30 DO_S23_0379_40 DO_S23_0490_40 DO_S23_1513_30 DO_S23_1415_40 </td <td>DO_S23_1406_10</td> <td>DO_S23_0388_20</td> <td>DO_S23_1517_20</td> <td>DO_S23_1419_10</td>	DO_S23_1406_10	DO_S23_0388_20	DO_S23_1517_20	DO_S23_1419_10
DO_S23_1404_20 DO_S23_0388_30 DO_S23_1517_40 DO_S23_1419_40 DO_S23_1404_10 DO_S23_0387_10 DO_S23_1516_10 DO_S23_1418_10 DO_S23_0473_30 DO_S23_0387_30 DO_S23_1516_20 DO_S23_1418_10 DO_S23_0472_40 DO_S23_0387_40 DO_S23_1516_30 DO_S23_1418_30 DO_S23_0471_40 DO_S23_0493_20 DO_S23_1515_20 DO_S23_1417_10 DO_S23_0470_10 DO_S23_0493_30 DO_S23_1515_30 DO_S23_1417_40 DO_S23_0470_10 DO_S23_0493_10 DO_S23_1515_30 DO_S23_1417_40 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_30 DO_S23_1417_40 DO_S23_0470_10 DO_S23_0492_20 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_20 DO_S23_0492_20 DO_S23_1514_40 DO_S23_1416_10 DO_S23_0470_20 DO_S23_0491_20 DO_S23_1514_40 DO_S23_1416_10 DO_S23_0379_20 DO_S23_0379_10 DO_S23_0379_10 DO_S23_1514_40 DO_S23_1416_40 DO_S23_0379_40 DO_S23_0490_20 DO_S23_1513_20 DO_S23_1415_40 DO_S23_0378_20 DO_S23_0399_10 DO_S23_1513_40 </td <td>DO_S23_1405_10</td> <td>DO_S23_0388_10</td> <td>DO_S23_1517_10</td> <td>DO_S23_1419_20</td>	DO_S23_1405_10	DO_S23_0388_10	DO_S23_1517_10	DO_S23_1419_20
DO_S23_1404_10 DO_S23_0387_10 DO_S23_1516_10 DO_S23_1418_20 DO_S23_0473_30 DO_S23_0387_20 DO_S23_1516_20 DO_S23_1418_10 DO_S23_0472_30 DO_S23_0387_30 DO_S23_1516_40 DO_S23_1418_30 DO_S23_0472_30 DO_S23_0487_40 DO_S23_1515_30 DO_S23_1418_30 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_20 DO_S23_1417_10 DO_S23_0471_30 DO_S23_0493_30 DO_S23_1515_30 DO_S23_1417_30 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_20 DO_S23_0492_20 DO_S23_1514_40 DO_S23_1416_10 DO_S23_0470_30 DO_S23_0491_20 DO_S23_1514_40 DO_S23_1416_10 DO_S23_0470_40 DO_S23_0491_10 DO_S23_1514_40 DO_S23_1416_40 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_30 DO_S23_0490_20 DO_S23_1513_30 DO_S23_1415_10 DO_S23_0379_40 DO_S23_0399_20 DO_S23_1513_30 DO_S23_1415_10 DO_S23_0378_20 DO_S23_0399_40 DO_S23_1513_30 DO_S23_1415_30 </td <td>DO_S23_1405_20</td> <td>DO_S23_0388_40</td> <td>DO_S23_1517_30</td> <td>DO_S23_1419_30</td>	DO_S23_1405_20	DO_S23_0388_40	DO_S23_1517_30	DO_S23_1419_30
DO_S23_0473_30 DO_S23_0387_20 DO_S23_1516_20 DO_S23_1418_10 DO_S23_0473_40 DO_S23_0387_30 DO_S23_1516_40 DO_S23_1418_40 DO_S23_0472_40 DO_S23_0473_20 DO_S23_1515_30 DO_S23_1418_30 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_20 DO_S23_1417_20 DO_S23_0471_30 DO_S23_0493_30 DO_S23_1515_30 DO_S23_1417_30 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_20 DO_S23_0492_20 DO_S23_1515_40 DO_S23_1416_10 DO_S23_0470_30 DO_S23_0491_20 DO_S23_1514_40 DO_S23_1416_20 DO_S23_0470_40 DO_S23_0491_10 DO_S23_1514_40 DO_S23_1416_40 DO_S23_0379_20 DO_S23_0490_10 DO_S23_1514_30 DO_S23_1416_30 DO_S23_0379_30 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_30 DO_S23_0490_20 DO_S23_1513_30 DO_S23_1415_00 DO_S23_0379_40 DO_S23_0399_10 DO_S23_1513_40 DO_S23_1415_00 DO_S23_0378_20 DO_S23_0399_10 DO_S23_1511_30 DO_S23_1415_10 </td <td>DO_S23_1404_20</td> <td>DO_S23_0388_30</td> <td>DO_S23_1517_40</td> <td>DO_S23_1419_40</td>	DO_S23_1404_20	DO_S23_0388_30	DO_S23_1517_40	DO_S23_1419_40
DO_S23_0473_40 DO_S23_0387_30 DO_S23_1516_40 DO_S23_1418_40 DO_S23_0472_30 DO_S23_0387_40 DO_S23_1516_30 DO_S23_1418_30 DO_S23_0471_40 DO_S23_0493_20 DO_S23_1515_20 DO_S23_1417_20 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_20 DO_S23_1417_10 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_20 DO_S23_0492_20 DO_S23_1514_10 DO_S23_1416_10 DO_S23_0470_30 DO_S23_0491_10 DO_S23_1514_20 DO_S23_1416_20 DO_S23_0379_20 DO_S23_0491_10 DO_S23_1514_40 DO_S23_1416_30 DO_S23_0379_10 DO_S23_0491_40 DO_S23_1514_30 DO_S23_1416_30 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_40 DO_S23_0490_20 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_20 DO_S23_0399_20 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_0 DO_S23_0399_10 DO_S23_1513_40 DO_S23_1415_40 DO_S23_0378_10 DO_S23_0399_10 DO_S23_1511_10 DO_S23_1414_10 <td>DO_S23_1404_10</td> <td>DO_S23_0387_10</td> <td>DO_S23_1516_10</td> <td>DO_S23_1418_20</td>	DO_S23_1404_10	DO_S23_0387_10	DO_S23_1516_10	DO_S23_1418_20
DO_S23_0473_40 DO_S23_0387_30 DO_S23_1516_40 DO_S23_1418_40 DO_S23_0472_30 DO_S23_0387_40 DO_S23_1516_30 DO_S23_1418_30 DO_S23_0471_40 DO_S23_0493_20 DO_S23_1515_20 DO_S23_1417_20 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_20 DO_S23_1417_10 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_20 DO_S23_0492_20 DO_S23_1514_10 DO_S23_1416_10 DO_S23_0470_30 DO_S23_0491_10 DO_S23_1514_20 DO_S23_1416_20 DO_S23_0379_20 DO_S23_0491_10 DO_S23_1514_40 DO_S23_1416_30 DO_S23_0379_10 DO_S23_0491_40 DO_S23_1514_30 DO_S23_1416_30 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_40 DO_S23_0490_20 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_20 DO_S23_0399_20 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_0 DO_S23_0399_10 DO_S23_1513_40 DO_S23_1415_40 DO_S23_0378_10 DO_S23_0399_10 DO_S23_1511_10 DO_S23_1414_10 <td>DO_S23_0473_30</td> <td>DO S23 0387 20</td> <td>DO_S23_1516_20</td> <td>DO_S23_1418_10</td>	DO_S23_0473_30	DO S23 0387 20	DO_S23_1516_20	DO_S23_1418_10
DO_S23_0472_30 DO_S23_0387_40 DO_S23_1516_30 DO_S23_1418_30 DO_S23_0472_40 DO_S23_0493_20 DO_S23_1515_10 DO_S23_1417_20 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_20 DO_S23_1417_10 DO_S23_0470_30 DO_S23_0493_30 DO_S23_1515_30 DO_S23_1417_40 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_40 DO_S23_1416_10 DO_S23_0470_30 DO_S23_0491_20 DO_S23_1514_20 DO_S23_1416_20 DO_S23_0470_40 DO_S23_0491_10 DO_S23_1514_40 DO_S23_1416_40 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_30 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_40 DO_S23_0490_30 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_20 DO_S23_0399_10 DO_S23_1513_40 DO_S23_1415_40 DO_S23_0378_10 DO_S23_0399_10 DO_S23_1513_40 DO_S23_1415_40 DO_S23_0378_40 DO_S23_0398_10 DO_S23_0398_40 DO_S23_0398_40 </td <td>DO S23 0473 40</td> <td>DO S23 0387 30</td> <td></td> <td>DO S23 1418 40</td>	DO S23 0473 40	DO S23 0387 30		DO S23 1418 40
DO_S23_0472_40 DO_S23_0493_20 DO_S23_1515_10 DO_S23_1417_20 DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_20 DO_S23_1417_10 DO_S23_0471_30 DO_S23_0493_30 DO_S23_1515_30 DO_S23_1417_40 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_20 DO_S23_0492_20 DO_S23_1514_20 DO_S23_1416_20 DO_S23_0470_40 DO_S23_0491_20 DO_S23_1514_40 DO_S23_1416_40 DO_S23_0379_20 DO_S23_0491_40 DO_S23_1514_30 DO_S23_1416_30 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_30 DO_S23_0490_20 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0379_30 DO_S23_0490_20 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0379_40 DO_S23_0490_30 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_10 DO_S23_0399_10 DO_S23_1513_40 DO_S23_1415_30 DO_S23_0378_10 DO_S23_0399_10 DO_S23_1511_10 DO_S23_1415_40 DO_S23_0377_20 DO_S23_0398_10 DO_S23_1414_40 DO_S23_1414_40 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0471_40 DO_S23_0493_10 DO_S23_1515_20 DO_S23_1417_10 DO_S23_0471_30 DO_S23_0493_30 DO_S23_1515_30 DO_S23_1417_30 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_20 DO_S23_0491_20 DO_S23_1514_20 DO_S23_1416_20 DO_S23_0470_40 DO_S23_0491_10 DO_S23_1514_40 DO_S23_1416_40 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_30 DO_S23_0490_20 DO_S23_1513_30 DO_S23_1415_10 DO_S23_0379_40 DO_S23_0490_20 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0379_40 DO_S23_0399_20 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_20 DO_S23_0399_20 DO_S23_1513_40 DO_S23_1415_40 DO_S23_0378_00 DO_S23_0399_40 DO_S23_1513_40 DO_S23_1414_40 DO_S23_0378_00 DO_S23_0398_10 DO_S23_1511_30 DO_S23_1414_40 DO_S23_0377_00 DO_S23_0398_20 DO_S23_0494_40 DO_S23_0494_40 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0471_30 DO_S23_0493_30 DO_S23_1515_30 DO_S23_1417_30 DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_20 DO_S23_0492_20 DO_S23_1514_10 DO_S23_1416_10 DO_S23_0470_30 DO_S23_0491_20 DO_S23_1514_20 DO_S23_1416_20 DO_S23_0470_40 DO_S23_0491_10 DO_S23_1514_40 DO_S23_1416_30 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1514_30 DO_S23_1416_30 DO_S23_0379_30 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_10 DO_S23_0379_30 DO_S23_0490_20 DO_S23_1513_30 DO_S23_1415_10 DO_S23_0379_40 DO_S23_0490_30 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_20 DO_S23_0399_20 DO_S23_1513_40 DO_S23_1415_30 DO_S23_0378_10 DO_S23_0399_40 DO_S23_1511_40 DO_S23_1414_20 DO_S23_0378_40 DO_S23_0399_40 DO_S23_1511_40 DO_S23_1414_20 DO_S23_0377_20 DO_S23_0398_10 DO_S23_1511_40 DO_S23_1414_20 DO_S23_0398_40 DO_S23_0498_40 DO_S23_0498_40 DO_S23_1444_40 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0470_10 DO_S23_0492_10 DO_S23_1515_40 DO_S23_1417_40 DO_S23_0470_20 DO_S23_0492_20 DO_S23_1514_10 DO_S23_1416_10 DO_S23_0470_30 DO_S23_0491_20 DO_S23_1514_20 DO_S23_1416_20 DO_S23_0470_40 DO_S23_0491_10 DO_S23_1514_40 DO_S23_1416_30 DO_S23_0379_20 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_30 DO_S23_0490_20 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0379_40 DO_S23_0490_30 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0379_40 DO_S23_0399_20 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_10 DO_S23_0399_10 DO_S23_1513_40 DO_S23_1415_40 DO_S23_0378_10 DO_S23_0399_10 DO_S23_1511_40 DO_S23_1414_10 DO_S23_0378_30 DO_S23_0399_40 DO_S23_1511_40 DO_S23_1414_10 DO_S23_0378_30 DO_S23_0399_40 DO_S23_1511_40 DO_S23_1414_10 DO_S23_0378_40 DO_S23_0399_40 DO_S23_1511_40 DO_S23_1414_40 DO_S23_0377_20 DO_S23_0399_30 DO_S23_0494_40 DO_S23_0494_40 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0470_20 DO_S23_0490_20 DO_S23_1514_10 DO_S23_1416_10 DO_S23_0470_30 DO_S23_0491_20 DO_S23_1514_20 DO_S23_1416_20 DO_S23_0470_40 DO_S23_0491_10 DO_S23_1514_40 DO_S23_1416_40 DO_S23_0379_20 DO_S23_0491_40 DO_S23_1514_30 DO_S23_1416_30 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_30 DO_S23_0490_20 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0379_40 DO_S23_0490_30 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_20 DO_S23_0399_10 DO_S23_1513_40 DO_S23_1415_30 DO_S23_0378_30 DO_S23_0399_10 DO_S23_1513_40 DO_S23_1415_30 DO_S23_0378_30 DO_S23_0399_40 DO_S23_1511_40 DO_S23_1414_10 DO_S23_0378_30 DO_S23_0398_10 DO_S23_1511_40 DO_S23_1414_20 DO_S23_0377_20 DO_S23_0398_20 DO_S23_0498_40 DO_S23_1414_40 DO_S23_0377_10 DO_S23_0398_20 DO_S23_0497_30 DO_S23_0492_40 DO_S23_0493_40 DO_S23_0497_40 DO_S23_0492_30 <				
DO_S23_0470_30 DO_S23_0491_20 DO_S23_1514_20 DO_S23_1416_20 DO_S23_0470_40 DO_S23_0491_10 DO_S23_1514_40 DO_S23_1416_40 DO_S23_0379_20 DO_S23_0491_40 DO_S23_1514_30 DO_S23_1416_30 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_30 DO_S23_0490_20 DO_S23_1513_30 DO_S23_1415_10 DO_S23_0379_40 DO_S23_0399_20 DO_S23_1513_30 DO_S23_1415_30 DO_S23_0378_20 DO_S23_0399_10 DO_S23_1513_40 DO_S23_1415_30 DO_S23_0378_30 DO_S23_0399_40 DO_S23_1511_40 DO_S23_1414_10 DO_S23_0378_40 DO_S23_0399_40 DO_S23_1511_30 DO_S23_1414_20 DO_S23_0378_40 DO_S23_0399_40 DO_S23_1511_40 DO_S23_1414_20 DO_S23_0378_40 DO_S23_0399_40 DO_S23_1511_40 DO_S23_1414_40 DO_S23_0377_20 DO_S23_0399_40 DO_S23_1511_40 DO_S23_1414_40 DO_S23_0377_10 DO_S23_0399_40 DO_S23_0498_40 DO_S23_1414_40 DO_S23_0377_10 DO_S23_0399_10 DO_S23_0497_40 DO_S23_0493_40 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0470_40 DO_S23_0491_10 DO_S23_1514_40 DO_S23_1416_40 DO_S23_0379_20 DO_S23_0491_40 DO_S23_1514_30 DO_S23_1416_30 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_30 DO_S23_0490_20 DO_S23_1513_10 DO_S23_1415_10 DO_S23_0379_40 DO_S23_0490_30 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_20 DO_S23_0399_20 DO_S23_1513_40 DO_S23_1415_30 DO_S23_0378_10 DO_S23_0399_10 DO_S23_1511_10 DO_S23_1414_10 DO_S23_0378_30 DO_S23_0399_40 DO_S23_1511_30 DO_S23_1414_20 DO_S23_0378_40 DO_S23_0398_10 DO_S23_1511_40 DO_S23_1414_40 DO_S23_0377_20 DO_S23_0398_20 DO_S23_0498_40				
DO_S23_0379_20 DO_S23_0491_40 DO_S23_1514_30 DO_S23_1416_30 DO_S23_0379_10 DO_S23_0490_10 DO_S23_1513_20 DO_S23_1415_20 DO_S23_0379_30 DO_S23_0490_20 DO_S23_1513_10 DO_S23_1415_10 DO_S23_0379_40 DO_S23_0490_30 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_20 DO_S23_0399_20 DO_S23_1513_40 DO_S23_1415_30 DO_S23_0378_10 DO_S23_0399_10 DO_S23_1511_10 DO_S23_1414_10 DO_S23_0378_30 DO_S23_0399_40 DO_S23_1511_30 DO_S23_1414_20 DO_S23_0378_40 DO_S23_0398_10 DO_S23_1511_40 DO_S23_1414_40 DO_S23_0377_20 DO_S23_0398_20 DO_S23_0498_40 DO_S23_1414_40 DO_S23_0377_10 DO_S23_0398_30 DO_S23_0497_30 DO_S23_0493_40 DO_S23_0377_40 DO_S23_0397_20 DO_S23_0497_40 DO_S23_0492_40 DO_S23_0483_20 DO_S23_0496_30 DO_S23_0492_40 DO_S23_0483_20 DO_S23_1403_20 DO_S23_1409_40 DO_S23_0491_30 DO_S23_0483_10 DO_S23_1400_20 DO_S23_1409_40 DO_S23_0490_40 <				
DO S23 0379 10 DO S23 0490 10 DO S23 1513 20 DO S23 1415 20 DO S23 0379 30 DO S23 0490 20 DO S23 1513 10 DO S23 1415 10 DO S23 0379 40 DO S23 0490 30 DO S23 1513 30 DO S23 1415 40 DO S23 0378 20 DO S23 0399 20 DO S23 1513 40 DO S23 1415 30 DO S23 0378 10 DO S23 0399 10 DO S23 1511 10 DO S23 1414 10 DO S23 0378 30 DO S23 0399 40 DO S23 1511 30 DO S23 1414 20 DO S23 0378 40 DO S23 0398 10 DO S23 1511 40 DO S23 1414 40 DO S23 0377 20 DO S23 0398 20 DO S23 0498 40 DO S23 1414 30 DO S23 0377 10 DO S23 0398 20 DO S23 0497 30 DO S23 0493 40 DO S23 0377 40 DO S23 0397 20 DO S23 0497 40 DO S23 0492 30 DO S23 0483 20 DO S23 1403 20 DO S23 0496 30 DO S23 0492 40 DO S23 0483 10 DO S23 1400 20 DO S23 1409 40 DO S23 0491 30 DO S23 0483 40 DO S23 1400 20 DO S23 1408 10 DO S23 0399 30 DO S23 0482 20 DO S23 1308 20 DO S23 1408 10 DO S23 0397 30 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0379_30 DO_S23_0490_20 DO_S23_1513_10 DO_S23_1415_10 DO_S23_0379_40 DO_S23_0490_30 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_20 DO_S23_0399_20 DO_S23_1513_40 DO_S23_1415_30 DO_S23_0378_10 DO_S23_0399_10 DO_S23_1511_10 DO_S23_1414_10 DO_S23_0378_30 DO_S23_0399_40 DO_S23_1511_30 DO_S23_1414_20 DO_S23_0378_40 DO_S23_0398_10 DO_S23_1511_40 DO_S23_1414_40 DO_S23_0377_20 DO_S23_0398_20 DO_S23_0498_40 DO_S23_0498_40 DO_S23_0377_10 DO_S23_0398_30 DO_S23_0497_30 DO_S23_0493_40 DO_S23_0377_30 DO_S23_0397_20 DO_S23_0497_40 DO_S23_0492_30 DO_S23_0483_20 DO_S23_1403_20 DO_S23_0496_30 DO_S23_0492_40 DO_S23_0483_10 DO_S23_1400_20 DO_S23_1409_40 DO_S23_0491_30 DO_S23_0483_40 DO_S23_1400_20 DO_S23_1409_40 DO_S23_0399_30 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_10 DO_S23_0399_30 DO_S23_0482_10 DO_S23_0376_10 DO_S23_1408_40 DO_S23_0397_30 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0379_40 DO_S23_0490_30 DO_S23_1513_30 DO_S23_1415_40 DO_S23_0378_20 DO_S23_0399_20 DO_S23_1513_40 DO_S23_1415_30 DO_S23_0378_10 DO_S23_0399_10 DO_S23_1511_10 DO_S23_1414_10 DO_S23_0378_30 DO_S23_0399_40 DO_S23_1511_30 DO_S23_1414_20 DO_S23_0378_40 DO_S23_0398_10 DO_S23_1511_40 DO_S23_1414_40 DO_S23_0377_20 DO_S23_0398_20 DO_S23_0498_40 DO_S23_0447_30 DO_S23_0493_40 DO_S23_0377_10 DO_S23_0398_30 DO_S23_0497_30 DO_S23_0492_30 DO_S23_0377_30 DO_S23_0397_20 DO_S23_0497_40 DO_S23_0492_40 DO_S23_0483_20 DO_S23_1403_20 DO_S23_0496_30 DO_S23_0492_40 DO_S23_0483_10 DO_S23_1400_20 DO_S23_1409_40 DO_S23_0491_30 DO_S23_0483_30 DO_S23_1400_20 DO_S23_1409_40 DO_S23_0399_30 DO_S23_0483_40 DO_S23_1400_20 DO_S23_1408_10 DO_S23_0399_30 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0399_30 DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0378_20 DO_S23_0399_20 DO_S23_1513_40 DO_S23_1415_30 DO_S23_0378_10 DO_S23_0399_10 DO_S23_1511_10 DO_S23_1414_10 DO_S23_0378_30 DO_S23_0399_40 DO_S23_1511_30 DO_S23_1414_20 DO_S23_0378_40 DO_S23_0398_10 DO_S23_1511_40 DO_S23_1414_40 DO_S23_0377_20 DO_S23_0398_20 DO_S23_0498_40 DO_S23_1414_30 DO_S23_0377_10 DO_S23_0398_30 DO_S23_0497_30 DO_S23_0492_40 DO_S23_0377_30 DO_S23_0397_20 DO_S23_0497_40 DO_S23_0492_30 DO_S23_0483_20 DO_S23_0496_30 DO_S23_0492_40 DO_S23_0483_20 DO_S23_1403_20 DO_S23_1500_40 DO_S23_0491_30 DO_S23_0483_10 DO_S23_1401_10 DO_S23_1409_40 DO_S23_0491_30 DO_S23_0483_30 DO_S23_1400_20 DO_S23_1409_40 DO_S23_0399_30 DO_S23_0483_40 DO_S23_1309_10 DO_S23_1408_10 DO_S23_0399_30 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0399_30 DO_S23_0482_40 DO_S23_0376_10 DO_S23_1408_40 DO_S23_1403_10 <				
DO_S23_0378_10 DO_S23_0399_10 DO_S23_1511_10 DO_S23_1414_10 DO_S23_0378_30 DO_S23_0399_40 DO_S23_1511_30 DO_S23_1414_20 DO_S23_0378_40 DO_S23_0398_10 DO_S23_1511_40 DO_S23_1414_40 DO_S23_0377_20 DO_S23_0398_20 DO_S23_0498_40 DO_S23_1414_30 DO_S23_0377_10 DO_S23_0398_30 DO_S23_0497_30 DO_S23_0493_40 DO_S23_0377_40 DO_S23_0397_20 DO_S23_0497_40 DO_S23_0492_30 DO_S23_0377_30 DO_S23_0397_10 DO_S23_0496_30 DO_S23_0492_40 DO_S23_0483_20 DO_S23_1403_20 DO_S23_1500_40 DO_S23_0491_30 DO_S23_0483_10 DO_S23_1401_10 DO_S23_1409_40 DO_S23_0490_40 DO_S23_0483_30 DO_S23_1400_20 DO_S23_1409_30 DO_S23_0399_30 DO_S23_0483_40 DO_S23_1309_10 DO_S23_1408_10 DO_S23_0398_40 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_10 DO_S23_1408_40 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 DO_S23_1403_30 </td <td></td> <td></td> <td></td> <td></td>				
DO_S23_0378_30 DO_S23_0399_40 DO_S23_1511_30 DO_S23_1414_20 DO_S23_0378_40 DO_S23_0398_10 DO_S23_1511_40 DO_S23_1414_40 DO_S23_0377_20 DO_S23_0398_20 DO_S23_0498_40 DO_S23_1414_30 DO_S23_0377_10 DO_S23_0398_30 DO_S23_0497_30 DO_S23_0493_40 DO_S23_0377_40 DO_S23_0397_20 DO_S23_0497_40 DO_S23_0492_30 DO_S23_0377_30 DO_S23_0397_10 DO_S23_0496_30 DO_S23_0492_40 DO_S23_0483_20 DO_S23_1403_20 DO_S23_1500_40 DO_S23_0491_30 DO_S23_0483_10 DO_S23_1401_10 DO_S23_1409_40 DO_S23_0490_40 DO_S23_0483_30 DO_S23_1400_20 DO_S23_1409_30 DO_S23_0399_30 DO_S23_0483_40 DO_S23_1309_10 DO_S23_1408_10 DO_S23_0398_40 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_10 DO_S23_1408_40 DO_S23_1403_10 DO_S23_0482_30 DO_S23_0376_40 DO_S23_1407_20 DO_S23_1403_30				
DO S23 0378 40 DO S23 0398 10 DO S23 1511 40 DO S23 1414 40 DO S23 0377 20 DO S23 0398 20 DO S23 0498 40 DO S23 1414 30 DO S23 0377 10 DO S23 0398 30 DO S23 0497 30 DO S23 0493 40 DO S23 0377 40 DO S23 0397 20 DO S23 0497 40 DO S23 0492 30 DO S23 0377 30 DO S23 0397 10 DO S23 0496 30 DO S23 0492 40 DO S23 0483 20 DO S23 1403 20 DO S23 1500 40 DO S23 0491 30 DO S23 0483 10 DO S23 1401 10 DO S23 1409 40 DO S23 0490 40 DO S23 0483 30 DO S23 1400 20 DO S23 1409 30 DO S23 0399 30 DO S23 0482 40 DO S23 1308 20 DO S23 1408 10 DO S23 0397 40 DO S23 0482 10 DO S23 0376 10 DO S23 1408 40 DO S23 0397 30 DO S23 0482 40 DO S23 0376 20 DO S23 1407 20 DO S23 1403 30				
DO_S23_0377_20 DO_S23_0398_20 DO_S23_0498_40 DO_S23_1414_30 DO_S23_0377_10 DO_S23_0398_30 DO_S23_0497_30 DO_S23_0493_40 DO_S23_0377_40 DO_S23_0397_20 DO_S23_0497_40 DO_S23_0492_30 DO_S23_0377_30 DO_S23_0397_10 DO_S23_0496_30 DO_S23_0492_40 DO_S23_0483_20 DO_S23_1403_20 DO_S23_1500_40 DO_S23_0491_30 DO_S23_0483_10 DO_S23_1401_10 DO_S23_1409_40 DO_S23_0490_40 DO_S23_0483_30 DO_S23_1400_20 DO_S23_1409_30 DO_S23_0399_30 DO_S23_0483_40 DO_S23_1309_10 DO_S23_1408_10 DO_S23_0398_40 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0397_40 DO_S23_0482_10 DO_S23_0376_10 DO_S23_1408_40 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 DO_S23_1403_10 DO_S23_0482_30 DO_S23_0376_40 DO_S23_1407_10 DO_S23_1403_30				
DO_S23_0377_10 DO_S23_0398_30 DO_S23_0497_30 DO_S23_0493_40 DO_S23_0377_40 DO_S23_0397_20 DO_S23_0497_40 DO_S23_0492_30 DO_S23_0377_30 DO_S23_0397_10 DO_S23_0496_30 DO_S23_0492_40 DO_S23_0483_20 DO_S23_1403_20 DO_S23_1500_40 DO_S23_0491_30 DO_S23_0483_10 DO_S23_1401_10 DO_S23_1409_40 DO_S23_0490_40 DO_S23_0483_30 DO_S23_1400_20 DO_S23_1409_30 DO_S23_0399_30 DO_S23_0483_40 DO_S23_1309_10 DO_S23_1408_10 DO_S23_0398_40 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0397_40 DO_S23_0482_10 DO_S23_0376_10 DO_S23_1408_40 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 DO_S23_1403_10 DO_S23_0482_30 DO_S23_0376_40 DO_S23_1407_10 DO_S23_1403_30				
DO_S23_0377_40 DO_S23_0397_20 DO_S23_0497_40 DO_S23_0492_30 DO_S23_0377_30 DO_S23_0397_10 DO_S23_0496_30 DO_S23_0492_40 DO_S23_0483_20 DO_S23_1403_20 DO_S23_1500_40 DO_S23_0491_30 DO_S23_0483_10 DO_S23_1401_10 DO_S23_1409_40 DO_S23_0490_40 DO_S23_0483_30 DO_S23_1400_20 DO_S23_1409_30 DO_S23_0399_30 DO_S23_0483_40 DO_S23_1309_10 DO_S23_1408_10 DO_S23_0398_40 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0397_40 DO_S23_0482_10 DO_S23_0376_10 DO_S23_1408_40 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 DO_S23_1403_10 DO_S23_0482_30 DO_S23_0376_40 DO_S23_1407_10 DO_S23_1403_30				
DO_S23_0377_30 DO_S23_0397_10 DO_S23_0496_30 DO_S23_0492_40 DO_S23_0483_20 DO_S23_1403_20 DO_S23_1500_40 DO_S23_0491_30 DO_S23_0483_10 DO_S23_1401_10 DO_S23_1409_40 DO_S23_0490_40 DO_S23_0483_30 DO_S23_1400_20 DO_S23_1409_30 DO_S23_0399_30 DO_S23_0483_40 DO_S23_1309_10 DO_S23_1408_10 DO_S23_0398_40 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0397_40 DO_S23_0482_10 DO_S23_0376_10 DO_S23_1408_40 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 DO_S23_1403_10 DO_S23_0482_30 DO_S23_0376_40 DO_S23_1407_10 DO_S23_1403_30				
DO_S23_0483_20 DO_S23_1403_20 DO_S23_1500_40 DO_S23_0491_30 DO_S23_0483_10 DO_S23_1401_10 DO_S23_1409_40 DO_S23_0490_40 DO_S23_0483_30 DO_S23_1400_20 DO_S23_1409_30 DO_S23_0399_30 DO_S23_0483_40 DO_S23_1309_10 DO_S23_1408_10 DO_S23_0398_40 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0397_40 DO_S23_0482_10 DO_S23_0376_10 DO_S23_1408_40 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 DO_S23_1403_10 DO_S23_0482_30 DO_S23_0376_40 DO_S23_1407_10 DO_S23_1403_30				
DO_S23_0483_10 DO_S23_1401_10 DO_S23_1409_40 DO_S23_0490_40 DO_S23_0483_30 DO_S23_1400_20 DO_S23_1409_30 DO_S23_0399_30 DO_S23_0483_40 DO_S23_1309_10 DO_S23_1408_10 DO_S23_0398_40 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0397_40 DO_S23_0482_10 DO_S23_0376_10 DO_S23_1408_40 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 DO_S23_1403_10 DO_S23_0482_30 DO_S23_0376_40 DO_S23_1407_10 DO_S23_1403_30				
DO_S23_0483_30 DO_S23_1400_20 DO_S23_1409_30 DO_S23_0399_30 DO_S23_0483_40 DO_S23_1309_10 DO_S23_1408_10 DO_S23_0398_40 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0397_40 DO_S23_0482_10 DO_S23_0376_10 DO_S23_1408_40 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 DO_S23_1403_10 DO_S23_0482_30 DO_S23_0376_40 DO_S23_1407_10 DO_S23_1403_30				
DO_S23_0483_40 DO_S23_1309_10 DO_S23_1408_10 DO_S23_0398_40 DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0397_40 DO_S23_0482_10 DO_S23_0376_10 DO_S23_1408_40 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 DO_S23_1403_10 DO_S23_0482_30 DO_S23_0376_40 DO_S23_1407_10 DO_S23_1403_30				
DO_S23_0482_20 DO_S23_1308_20 DO_S23_1408_30 DO_S23_0397_40 DO_S23_0482_10 DO_S23_0376_10 DO_S23_1408_40 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 DO_S23_1403_10 DO_S23_0482_30 DO_S23_0376_40 DO_S23_1407_10 DO_S23_1403_30				
DO_S23_0482_10 DO_S23_0376_10 DO_S23_1408_40 DO_S23_0397_30 DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 DO_S23_1403_10 DO_S23_0482_30 DO_S23_0376_40 DO_S23_1407_10 DO_S23_1403_30				
DO_S23_0482_40 DO_S23_0376_20 DO_S23_1407_20 DO_S23_1403_10 DO_S23_0482_30 DO_S23_0376_40 DO_S23_1407_10 DO_S23_1403_30				
DO_S23_0482_30				
DO_523_0481_10 DO_523_0376_30 DO_523_1407_30 DO_523_1403_40				
	DO_523_0481_10	DO_523_0376_30	טט_523_1407_30	JU_523_1403_40

56 622 4402 20	DO 600 4047 40	DO 500 4506 00	DO 600 4407 40
DO_S23_1402_20	DO_S23_1317_40	DO_S23_1526_30	DO_S23_1427_10
DO_S23_1402_10	DO_S23_0396_30	DO_S23_1526_40	DO_S23_1427_40
DO_S23_1402_40	DO_S23_1306_20	DO_S23_1525_20	DO_S23_1427_30
DO_S23_1402_30	DO_S23_1306_30	DO_S23_1525_10	DO_S23_1426_10
DO_S23_1401_20	DO_S23_1306_40	DO_S23_1525_40	DO_S23_1426_20
DO_S23_1401_30	DO_S23_1316_20	DO_S23_1525_30	DO_S23_1426_40
DO_S23_1401_40	DO_S23_1316_30	DO_S23_1524_10	DO_S23_1426_30
DO_S23_1400_10	DO_S23_2411_20	DO_S23_1524_20	DO_S23_1425_10
DO_S23_1400_40	DO_S23_2411_10	DO_S23_1524_40	DO_S23_1425_20
DO_S23_1400_30	DO_S23_2411_40	DO_S23_1524_30	DO_S23_1425_30
DO_S23_1309_20	DO_S23_2411_30	DO_S23_1523_20	DO_S23_1425_40
DO_S23_1309_30	DO_S23_2410_10	DO_S23_1523_10	DO_S23_1424_10
DO_S23_1309_40	DO_S23_2410_20	DO_S23_1523_40	DO_S23_1424_20
DO_S23_1308_10	DO_S23_2410_30	DO_S23_1523_30	DO_S23_1424_40
DO_S23_1308_40	DO_S23_2410_40	DO_S23_1522_10	DO_S23_1424_30
DO_S23_1308_30	DO_S23_2319_10	DO_S23_1522_20	DO_S23_1530_10
DO_S23_1307_10	DO_S23_2319_20	DO_S23_1522_40	DO_S23_1530_20
DO_S23_1307_20	DO S23 2319 40	DO_S23_1521_20	DO_S23_1530_40
DO_S23_1307_40	DO_S23_2319_30	DO_S23_1521_10	DO_S23_1530_30
DO_S23_1307_30	DO_S23_2318_10	DO_S23_1521_40	DO_S23_1439_20
DO_S23_1413_20	DO_S23_2318_20	DO_S23_1521_30	DO_S23_1439_10
DO_S23_1413_10	DO_S23_2318_30	DO_S23_1537_10	DO_S23_1439_30
DO_S23_1413_30	DO_S23_2318_40	DO_S23_1536_20	DO_S23_1439_40
DO_S23_1413_40	DO_S23_2317_20	DO_S23_1536_10	DO_S23_1438_10
DO_S23_1412_10	DO_S23_2317_10	DO_S23_1535_10	DO_S23_1438_20
DO_S23_1412_20	DO_S23_2317_30	DO_S23_1535_20	DO_S23_1438_30
DO_S23_1412_40	DO_S23_2317_40	DO_S23_1534_20	DO_S23_1438_40
DO_S23_1412_30	DO_S23_2423_10	DO_S23_1531_10	DO_S23_1437_10
DO_S23_1411_20	DO_S23_2423_20	DO_S23_1531_20	DO_S23_1437_20
DO_S23_1411_10	DO_S23_2423_30	DO_S23_1531_30	DO_S23_1437_40
DO_S23_1411_30	DO_S23_2423_40	DO_S23_1531_40	DO_S23_1437_30
DO_S23_1411_40	DO_S23_2422_20	DO_S23_1541_20	DO_S23_1436_10
DO_S23_1410_10	DO_S23_2422_10	DO_S23_1541_10	DO_S23_1436_20
DO_S23_1410_20	DO_S23_2422_40	DO_S23_1541_40	DO_S23_1436_40
DO_S23_1410_40	DO_S23_2422_30	DO_S23_1520_10	DO_S23_1436_30
DO_S23_1410_30	DO_S23_2421_10	DO_S23_1520_20	DO_S23_1435_20
DO_S23_1319_20	DO_S23_2421_20	DO_S23_1520_40	DO_S23_1435_10
DO_S23_1319_10	DO_S23_2421_30	DO_S23_1520_30	DO_S23_1435_30
DO_S23_1319_30	DO_S23_2421_40	DO_S23_1429_20	DO_S23_1435_40
DO_S23_1319_40	DO_S23_2420_20	DO_S23_1429_10	DO_S23_1434_10
DO_S23_1318_10	DO_S23_2420_10	DO_S23_1429_30	DO_S23_1434_20
DO_S23_1318_20	DO_S23_1527_20	DO_S23_1429_40	DO_S23_1434_30
DO_S23_1318_30	DO_S23_1527_10	DO_S23_1428_10	DO_523_1434_40
DO_S23_1318_40	DO_S23_1527_40	DO_S23_1428_10 DO_S23_1428_20	DO_523_1434_40 DO_S23_1540_10
DO_S23_1318_40 DO_S23_1317_10	DO_S23_1527_40 DO_S23_1527_30	DO_S23_1428_40	DO_523_1540_10 DO_S23_1540_20
DO_S23_1317_10 DO_S23_1317_20	DO_S23_1526_10	DO_523_1428_40 DO_S23_1428_30	DO_S23_1540_40
DO_S23_1317_20 DO_S23_1317_30	DO_S23_1526_20	DO_S23_1428_30 DO_S23_1427_20	DO_S23_1540_40 DO_S23_1540_30
55_525_1517_50	50_525_1520_20	1 50_323_1727_20	1 50_323_1340_30

DO 522 1440 20	DO 533 14FF 30	DO 622 4477 40	DO 633 1409 10
DO_S23_1449_20	DO_S23_1455_30	DO_S23_1477_40	DO_S23_1498_10
DO_S23_1449_10	DO_S23_1454_10	DO_S23_1476_20	DO_S23_1498_40
DO_S23_1449_30	DO_S23_1454_20	DO_S23_1476_10	DO_S23_1498_30
DO_S23_1449_40	DO_S23_1454_30	DO_S23_1476_40	DO_S23_1497_10
DO_S23_1448_20	DO_S23_1454_40	DO_S23_1476_30	DO_S23_1497_20
DO_S23_1448_10	DO_S23_1560_10	DO_S23_1475_10	DO_S23_1497_30
DO_S23_1448_30	DO_S23_1560_20	DO_S23_1475_20	DO_S23_1497_40
DO_S23_1448_40	DO_S23_1560_30	DO_S23_1475_30	DO_S23_1496_20
DO_S23_1447_10	DO_S23_1560_40	DO_S23_1475_40	DO_S23_1496_10
DO_S23_1447_20	DO_S23_1469_20	DO_S23_1474_10	DO_S23_1496_30
DO_S23_1447_30	DO_S23_1469_10	DO_S23_1474_20	DO_S23_1496_40
DO_S23_1447_40	DO_S23_1469_40	DO_S23_1474_40	DO_S23_1495_20
DO_S23_1446_10	DO_S23_1469_30	DO_S23_1474_30	DO_S23_1495_10
DO_S23_1446_20	DO_S23_1468_10	DO_S23_1580_10	DO_S23_1495_40
DO_S23_1446_40	DO_S23_1468_20	DO_S23_1580_40	DO_S23_1495_30
DO_S23_1446_30	DO_S23_1468_30	DO_S23_1489_20	DO_S23_1494_20
DO_S23_1445_20	DO_S23_1468_40	DO_S23_1489_10	DO_S23_1494_10
DO_S23_1445_10	DO_S23_1467_20	DO_S23_1489_30	DO S23 1494 30
DO_S23_1445_30	DO_S23_1467_10	DO_S23_1489_40	DO_S23_1494_40
DO_S23_1445_40	DO_S23_1467_40	DO_S23_1488_10	DO_S23_2500_20
DO_S23_1444_20	DO_S23_1467_30	DO_S23_1488_20	DO_S23_2500_10
DO_S23_1444_10	DO_S23_1466_10	DO_S23_1488_30	DO_S23_2500_30
DO_S23_1444_40	DO_S23_1466_20	DO_S23_1488_40	DO_S23_2500_40
DO_S23_1444_30	DO_S23_1466_30	DO_S23_1487_20	DO_S23_2409_10
DO_S23_1550_10	DO_S23_1466_40	DO_S23_1487_10	DO_S23_2409_20
DO_S23_1550_20	DO_S23_1465_10	DO_S23_1487_40	DO_S23_2409_40
DO_S23_1550_40	DO_S23_1465_20	DO_523_1487_30	DO_523_2409_30
DO_S23_1550_40 DO_S23_1550_30	DO_S23_1465_40	DO_S23_1486_10	DO_523_2408_10
DO_S23_1459_20	DO_S23_1465_30	DO_S23_1486_20	DO_323_2408_10 DO_S23_2408_20
	DO_S23_1463_30 DO_S23_1464_20		DO_323_2408_20 DO_\$23_2408_30
DO_S23_1459_10		DO_S23_1486_30	
DO_S23_1459_30	DO_S23_1464_10	DO_S23_1486_40	DO_S23_2408_40
DO_S23_1459_40	DO_S23_1464_40	DO_S23_1485_20	DO_S23_2407_20
DO_S23_1458_20	DO_S23_1464_30	DO_S23_1485_10	DO_S23_2407_10
DO_S23_1458_10	DO_S23_1570_20	DO_S23_1485_30	DO_S23_2407_40
DO_S23_1458_40	DO_S23_1570_10	DO_S23_1485_40	DO_S23_2407_30
DO_S23_1458_30	DO_S23_1570_40	DO_S23_1484_10	DO_S23_2406_20
DO_S23_1457_20	DO_S23_1479_10	DO_S23_1484_20	DO_S23_2406_10
DO_S23_1457_10	DO_S23_1479_20	DO_S23_1484_30	DO_S23_2406_40
DO_S23_1457_30	DO_S23_1479_30	DO_S23_1484_40	DO_S23_2406_30
DO_S23_1457_40	DO_S23_1479_40	DO_S23_1590_10	DO_S23_2405_10
DO_S23_1456_10	DO_S23_1478_20	DO_S23_1590_30	DO_S23_2405_20
DO_S23_1456_20	DO_S23_1478_10	DO_S23_1590_40	DO_S23_2405_30
DO_S23_1456_40	DO_S23_1478_40	DO_S23_1499_20	DO_S23_2405_40
DO_S23_1456_30	DO_S23_1478_30	DO_S23_1499_10	DO_S23_2404_20
DO_S23_1455_20	DO_S23_1477_10	DO_S23_1499_40	DO_S23_2404_10
DO_S23_1455_10	DO_S23_1477_20	DO_S23_1499_30	DO_S23_2404_30
DO_S23_1455_40	DO_S23_1477_30	DO_S23_1498_20	DO_S23_2404_40

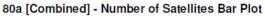
í	1	İ	İ
DO_S23_2510_20	DO_S23_1423_20	DO_S23_1339_30	DO_S23_1451_30
DO_S23_2510_10	DO_S23_1423_10	DO_S23_1338_10	DO_S23_1451_40
DO_S23_2510_30	DO_S23_1423_40	DO_S23_1338_20	DO_S23_1450_20
DO_S23_2510_40	DO_S23_1423_30	DO_S23_1338_30	DO_S23_1450_10
DO_S23_2419_10	DO_S23_1422_10	DO_S23_1338_40	DO_S23_1450_40
DO_S23_2419_20	DO_S23_1422_20	DO_S23_1337_20	DO_S23_1450_30
DO_S23_2419_30	DO_S23_1422_40	DO_S23_1337_10	DO_S23_1359_10
DO_S23_2419_40	DO_S23_1422_30	DO_S23_1337_40	DO_S23_1359_20
DO_S23_2418_20	DO_S23_1421_20	DO_S23_1337_30	DO_S23_1359_30
DO_S23_2418_10	DO_S23_1421_10	DO_S23_1443_10	DO_S23_1359_40
DO_S23_2418_30	DO S23 1421 40	DO_S23_1443_20	DO_S23_1358_20
DO_S23_2418_40	DO_S23_1421_30	DO_S23_1443_40	DO_S23_1358_10
DO_S23_2417_10	DO_S23_1420_10	DO_S23_1443_30	DO_S23_1358_40
DO_S23_2417_20	DO_S23_1420_20	DO_S23_1442_20	DO_S23_1358_30
DO_S23_2417_40	DO_S23_1420_40	DO_S23_1442_10	DO_S23_1357_20
DO_S23_2417_30	DO_S23_1420_30	DO_S23_1442_40	DO_S23_1357_10
DO_S23_2416_10	DO_S23_1329_20	DO_S23_1442_30	DO_S23_1357_40
DO_S23_2416_20	DO_S23_1329_10	DO_S23_1441_10	DO_S23_1357_30
DO_S23_2416_30	DO_S23_1329_30	DO_S23_1441_20	DO_S23_1463_10
DO_S23_2416_40	DO_S23_1329_40	DO_S23_1441_30	DO_S23_1463_20
DO_S23_2415_20	DO_S23_1328_20	DO_S23_1441_40	DO_S23_1463_30
DO_S23_2415_10	DO_S23_1328_10	DO_S23_1440_20	DO_S23_1463_40
DO_S23_2415_40	DO_S23_1328_40	DO_S23_1440_10	DO_S23_1462_10
DO_S23_2415_30	DO_S23_1328_30	DO_S23_1440_30	DO_S23_1462_20
DO_S23_2414_20	DO_S23_1327_20	DO_S23_1440_40	DO_S23_1462_40
DO_S23_2414_10	DO_S23_1327_10	DO_S23_1349_10	DO_S23_1462_30
DO_S23_2414_30	DO_S23_1327_30	DO_S23_1349_20	DO_S23_1461_20
DO_S23_2414_40	DO_S23_1327_40	DO_S23_1349_40	DO_S23_1461_10
DO_S23_2428_20	DO_S23_1433_10	DO_S23_1349_30	DO_S23_1461_30
DO_S23_2428_10	DO_S23_1433_20	DO_S23_1348_20	DO_S23_1461_40
DO_S23_2427_10	DO_S23_1433_40	DO_S23_1348_10	DO_S23_1460_10
DO_S23_2427_20	DO_S23_1433_30	DO_S23_1348_30	DO_S23_1460_20
DO S23 2426 20	DO_S23_1432_10	DO_S23_1348_40	DO_S23_1460_40
DO_S23_2426_10	DO_S23_1432_20	DO_S23_1347_10	DO_S23_1460_30
DO_S23_2426_30	DO_S23_1432_30	DO_S23_1347_20	DO_S23_1369_20
DO_S23_2426_40	DO_S23_1432_40	DO_S23_1347_30	DO_S23_1369_10
DO_S23_2425_10	DO_S23_1431_10	DO_523_1347_40	DO_S23_1369_30
DO_S23_2425_10 DO_S23_2425_20	DO_523_1431_20	DO_523_1453_10	DO_S23_1369_40
DO_S23_2425_40	DO_523_1431_40	DO_523_1453_10 DO_S23_1453_20	DO_523_1368_10
DO_S23_2425_40 DO_S23_2425_30	DO_S23_1431_40 DO_S23_1431_30	DO_S23_1453_40	DO_523_1368_10 DO_\$23_1368_20
DO_323_2423_30 DO_\$23_2424_20	DO_S23_1431_30 DO_S23_1430_10	DO_323_1453_40 DO_\$23_1453_30	DO_523_1368_40
			DO_523_1368_30
DO_S23_2424_10	DO_S23_1430_20	DO_S23_1452_10	
DO_S23_2424_30	DO_S23_1430_30	DO_S23_1452_20	DO_S23_1367_10
DO_S23_2424_40	DO_S23_1430_40	DO_S23_1452_40	DO_S23_1367_20
DO_S23_2435_10	DO_S23_1339_20	DO_S23_1452_30	DO_S23_1367_30
DO_S23_2434_20	DO_S23_1339_10	DO_S23_1451_20	DO_S23_1367_40
DO_S23_2434_10	DO_S23_1339_40	DO_S23_1451_10	DO_S23_1473_20

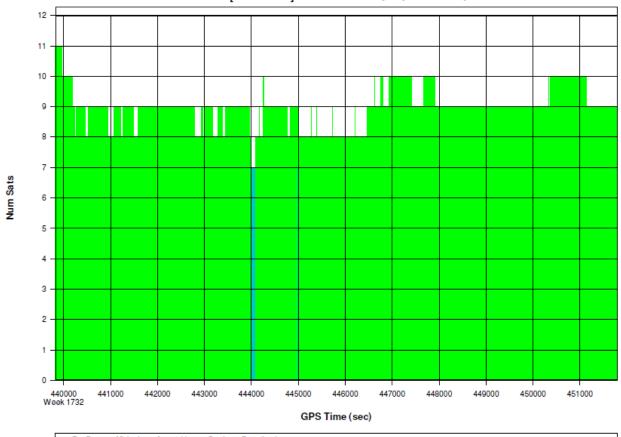
DO 522 1472 10	DO 533 1388 10	DO 533 3401 40	DO 533 3431 30
DO_S23_1473_10	DO_S23_1388_10	DO_S23_2401_40	DO_S23_2431_30
DO_S23_1473_30	DO_S23_1388_20	DO_S23_2400_20	DO_S23_2431_40
DO_S23_1473_40	DO_S23_1388_30	DO_S23_2400_10	DO_S23_2430_10
DO_S23_1472_10	DO_S23_1388_40	DO_S23_2400_40	DO_S23_2430_20
DO_S23_1472_20	DO_S23_1387_20	DO_S23_2400_30	DO_S23_2430_30
DO_S23_1472_40	DO_S23_1387_10	DO_S23_2309_10	DO_S23_2339_20
DO_S23_1472_30	DO_S23_1387_40	DO_S23_2309_20	DO_S23_2339_10
DO_S23_1471_20	DO_S23_1387_30	DO_S23_2309_40	DO_S23_2338_20
DO_S23_1471_10	DO_S23_1493_10	DO_S23_2309_30	DO_S23_2338_10
DO_S23_1471_30	DO_S23_1493_20	DO_S23_2308_20	DO_S23_2338_40
DO_S23_1471_40	DO_S23_1493_40	DO_S23_2308_10	DO_S23_2337_10
DO_S23_1470_10	DO_S23_1493_30	DO_S23_2308_40	DO_S23_2337_20
DO_S23_1470_20	DO_S23_1492_20	DO_S23_2308_30	DO_S23_2337_30
DO_S23_1470_40	DO_S23_1492_10	DO_S23_2307_10	DO_S23_2337_40
DO_S23_1470_30	DO_S23_1492_30	DO_S23_2307_20	DO_S23_1326_20
DO_S23_1379_20	DO_S23_1492_40	DO_S23_2307_30	DO_S23_1326_30
DO_S23_1379_10	DO_S23_1491_10	DO_S23_2307_40	DO_S23_1336_10
DO_S23_1379_30	DO_S23_1491_20	DO_S23_2413_20	DO_S23_1336_20
DO_S23_1379_40	DO_S23_1491_40	DO_S23_2413_10	DO_S23_1336_30
DO_S23_1378_10	DO_S23_1491_30	DO_S23_2413_40	DO_S23_1336_40
DO_S23_1378_20	DO_S23_1490_20	DO_S23_2413_30	DO_S23_1346_20
DO_S23_1378_40	DO_S23_1490_10	DO_S23_2412_10	DO_S23_1346_10
DO_S23_1378_30	DO_S23_1490_30	DO_S23_2412_20	DO_S23_1346_30
DO_S23_1377_20	DO_S23_1490_40	DO_S23_2412_30	DO_S23_1356_20
DO_S23_1377_10	DO_S23_1399_10	DO_523_2412_40	DO_S23_1356_30
DO_S23_1377_10 DO_S23_1377_30	DO_523_1399_20	DO_523_2420_40	DO_523_1366_20
DO_S23_1377_40	DO_523_1399_40	DO_S23_2420_40 DO_S23_2420_30	DO_523_1366_30
	DO_S23_1399_30		
DO_S23_1483_20		DO_S23_2329_10	DO_S23_1376_20
DO_S23_1483_10	DO_S23_1398_20	DO_S23_2329_20	DO_S23_1376_30
DO_S23_1483_40	DO_S23_1398_10	DO_S23_2329_30	DO_S23_1386_20
DO_S23_1483_30	DO_S23_1398_30	DO_S23_2329_40	DO_S23_1386_30
DO_S23_1482_10	DO_S23_1398_40	DO_S23_2328_20	DO_S23_1396_20
DO_S23_1482_20	DO_S23_1397_10	DO_S23_2328_10	DO_S23_1396_30
DO_S23_1482_30	DO_S23_1397_20	DO_S23_2328_30	DO_S23_2306_20
DO_S23_1482_40	DO_S23_1397_40	DO_S23_2328_40	DO_S23_2306_30
DO_S23_1481_20	DO_S23_1397_30	DO_S23_2327_20	DO_S23_2316_20
DO_S23_1481_10	DO_S23_2403_10	DO_S23_2327_10	DO_S23_2316_30
DO_S23_1481_40	DO_S23_2403_20	DO_S23_2327_40	DO_S23_2326_20
DO_S23_1481_30	DO_S23_2403_30	DO_S23_2327_30	DO_S23_2326_30
DO_S23_1480_10	DO_S23_2403_40	DO_S23_2433_20	DO_S23_2336_20
DO_S23_1480_20	DO_S23_2402_20	DO_S23_2433_10	DO_S23_2336_30
DO_S23_1480_30	DO_S23_2402_10	DO_S23_2433_30	DO_S23_2442_10
DO_S23_1480_40	DO_S23_2402_40	DO_S23_2432_10	DO_S23_2441_20
DO_S23_1389_20	DO_S23_2402_30	DO_S23_2432_20	DO_S23_2441_10
DO_S23_1389_10	DO_S23_2401_10	DO_S23_2432_40	DO_S23_2440_20
DO_S23_1389_40	DO_S23_2401_20	DO_S23_2431_20	DO_S23_2349_20
DO_S23_1389_30	DO_S23_2401_30	DO_S23_2431_10	DO_S23_2348_10
'		. – – –	. – – –

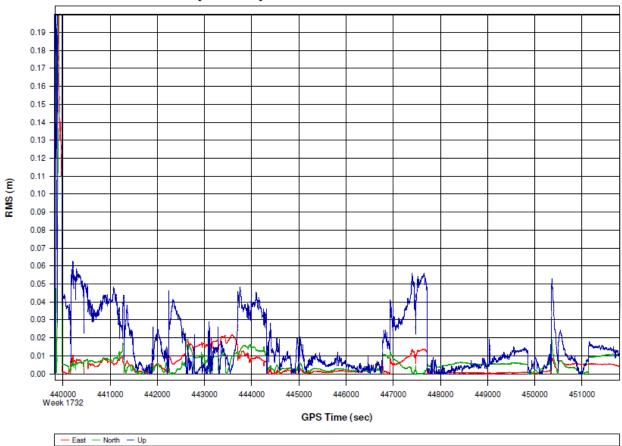
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 90 of 233

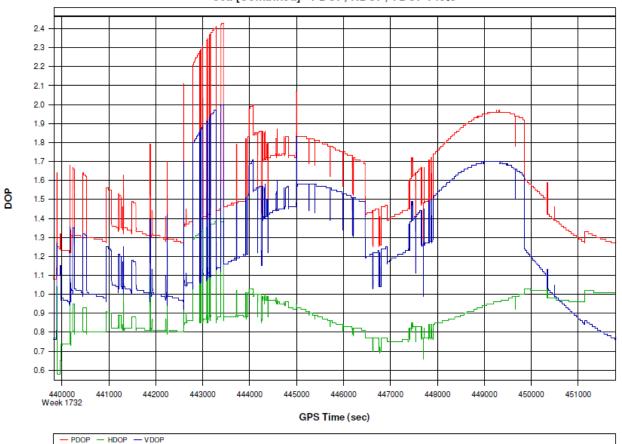
DO_S23_2347_20	DO_S23_2349_30	DO_S23_2346_30	DO_S23_2429_10
DO_S23_2347_10	DO_S23_2348_20	DO_S23_2356_20	DO_S23_2501_10
DO_S23_2346_20	DO_S23_2348_30	DO_S23_2356_30	DO_S23_2501_40
DO_S23_2433_40	DO_S23_2348_40	DO_S23_1316_10	DO_S23_1551_10
DO_S23_2432_30	DO_S23_2347_40	DO_S23_1316_40	DO_S23_1551_40
DO_S23_2430_40	DO_S23_2347_30	DO_S23_1326_10	DO_S23_1561_10
DO_S23_2339_30	DO_S23_2359_10	DO_S23_1326_40	DO_S23_1532_10
DO_S23_2339_40	DO_S23_2359_20	DO_S23_1325_30	DO_S23_1522_30
DO_S23_2338_30	DO_S23_2358_20	DO_S23_1335_20	DO_S23_1519_40
DO_S23_2441_40	DO_S23_2358_10	DO_S23_1335_30	DO_S23_1509_30
DO_S23_2440_10	DO_S23_2358_40	DO_S23_1345_20	DO_S23_1509_20
DO_S23_2440_40	DO_S23_2357_10	DO_S23_1345_30	DO_S23_1600_10
DO_S23_2440_30	DO_S23_2357_20	DO_S23_1346_40	DO_S23_1512_30
DO_S23_2349_10	DO_S23_2357_40	DO_S23_1356_10	DO_S23_1512_40
DO_S23_2349_40	DO_S23_2357_30	DO_S23_2427_40	DO_S23_1511_20

Appendix C: GPS Processing Reports for Each Mission


LASER MAPPING SPECIALISTS (LMSI)







80a [Combined] - PDOP, HDOP, VDOP Plots

Processing Summary Information

Program: POSGPS Version: 4.30.3108

Project: D:\Projects\Dewberry\Va\Norfolk_2013\13080a\pos\GPS\80a.gnv

Solution Type: Combined Fwd/Rev

Number of Epochs: Total in GPB file: 135984 No processed position: 123996

Missing Fwd or Rev: 4
With bad C/A code: 0
With bad L1 Phase: 0
Measurement RMS Values:
L1 Phase: 0.0300 (m)
C/A Code: 1.04 (m)
L1 Doppler: 0.020 (m/s)

Fwd/Rev Separation RMS Values:

East: 0.042 (m) North: 0.033 (m) Height: 0.158 (m)

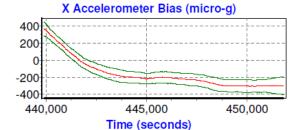
Fwd/Rev Sep. RMS for 25%-75% weighting (11827 occurances):

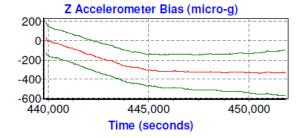
East: 0.010 (m)

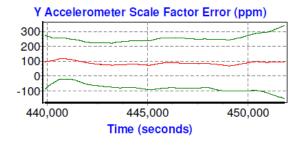
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 95 of 233

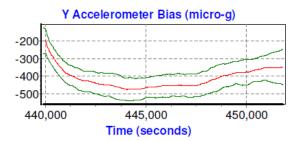
North: 0.009 (m) Height: 0.031 (m)

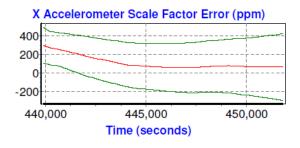
Quality Number Percentages:

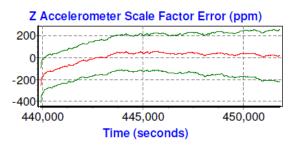

Q 1: 99.0 % Q 2: 1.0 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 %

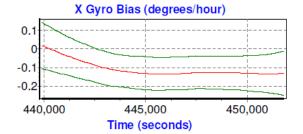

Position Standard Deviation Percentages:

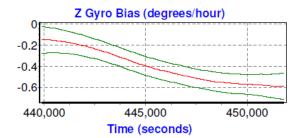

0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 %

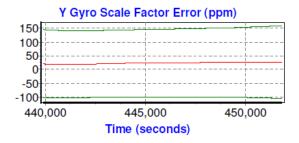

Percentages of epochs with DD_DOP over 10.00:

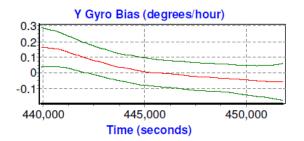

DOP over Tol: 0.0 % Baseline Distances: Maximum: 35.259 (km) Minimum: 0.925 (km) Average: 17.735 (km) First Epoch: 9.509 (km) Last Epoch: 3.478 (km)

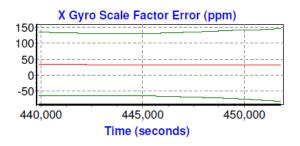


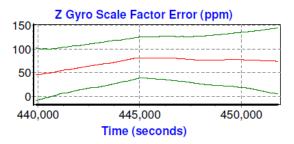


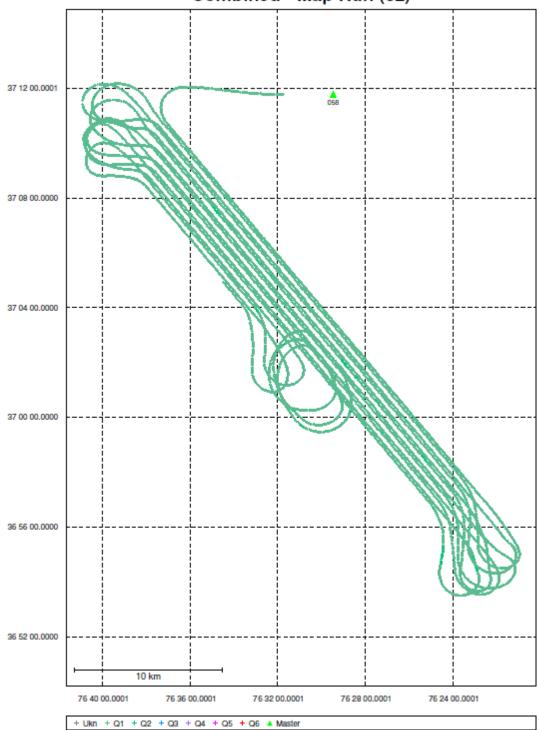


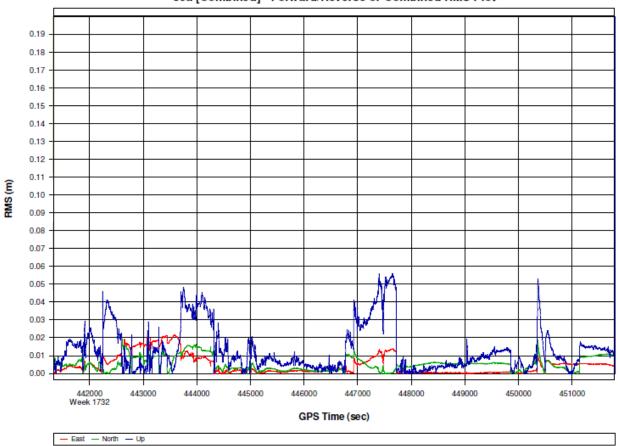


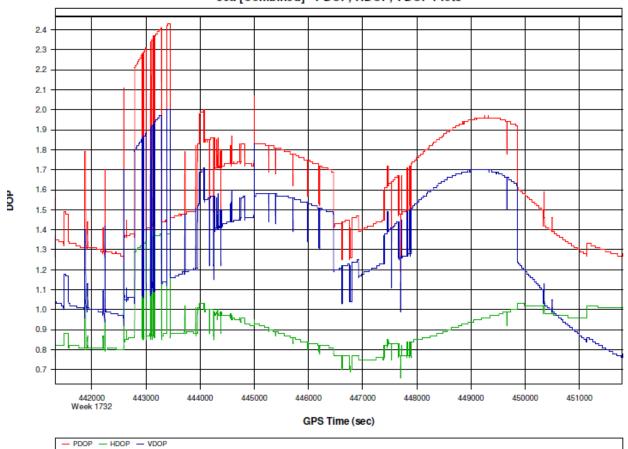


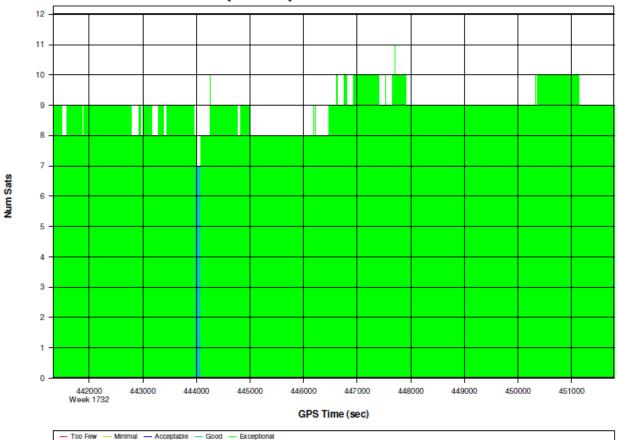











80a [Combined] - PDOP, HDOP, VDOP Plots

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 100 of 233

Processing Summary Information

Program: POSGPS Version: 4.30.3108

Project: D:\Projects\Dewberry\Va\Norfolk_2013\13080a\pos\GPS\80a.gnv

Solution Type: Combined Fwd/Rev

Number of Epochs: Total in GPB file: 135984 No processed position: 125507

Missing Fwd or Rev: 4
With bad C/A code: 0
With bad L1 Phase: 0
Measurement RMS Values:
L1 Phase: 0.0298 (m)
C/A Code: 1.02 (m)

C/A Code: 1.02 (m) L1 Doppler: 0.019 (m/s)

Fwd/Rev Separation RMS Values:

East: 0.013 (m) North: 0.011 (m) Height: 0.026 (m)

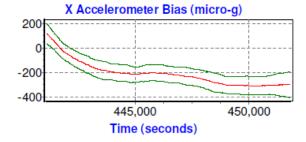
Fwd/Rev Sep. RMS for 25%-75% weighting (10471 occurances):

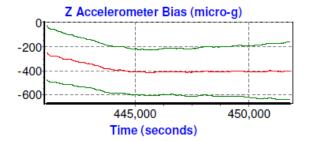
East: 0.010 (m) North: 0.009 (m)

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 101 of 233

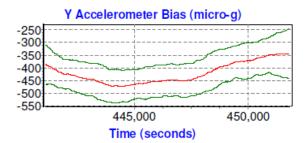
Height: 0.026 (m)

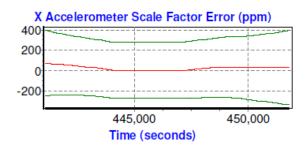
Quality Number Percentages:

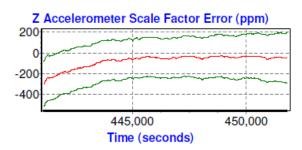

Q 1: 99.1 % Q 2: 0.9 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 %

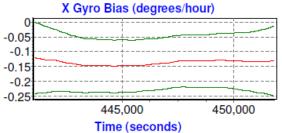

Position Standard Deviation Percentages:

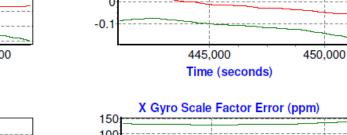

0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 %

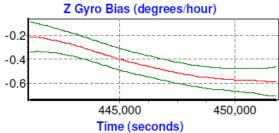

Percentages of epochs with DD_DOP over 10.00:

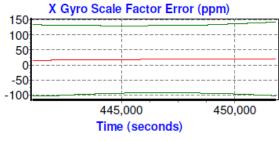

DOP over Tol: 0.0 % Baseline Distances: Maximum: 35.259 (km) Minimum: 3.478 (km) Average: 18.685 (km) First Epoch: 14.725 (km) Last Epoch: 3.478 (km)

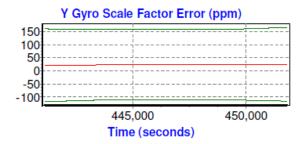


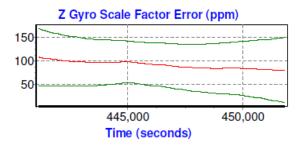


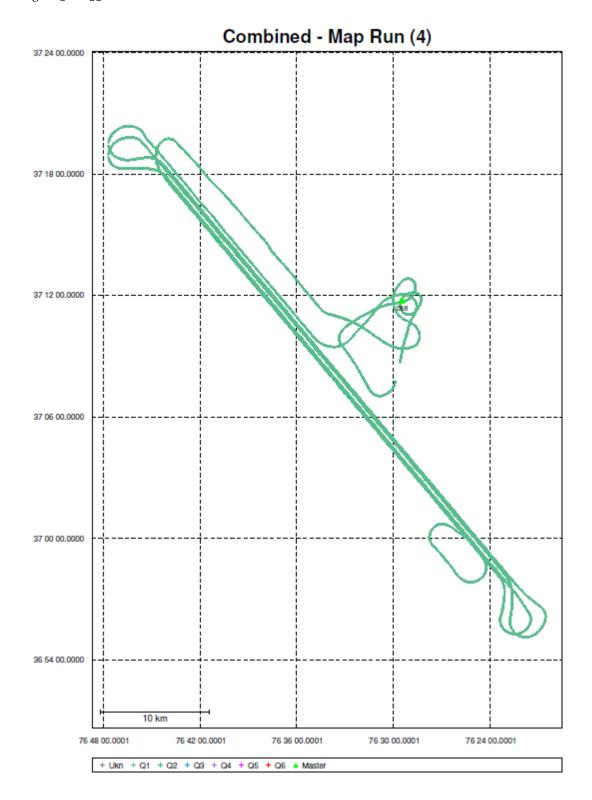




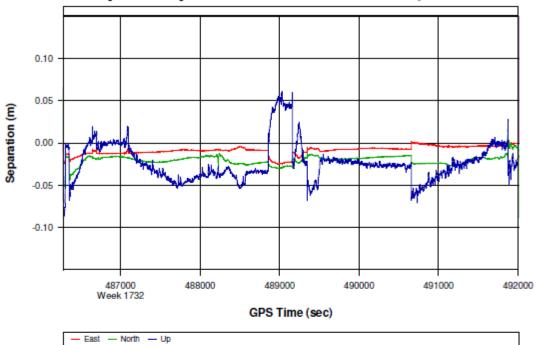

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 102 of 233

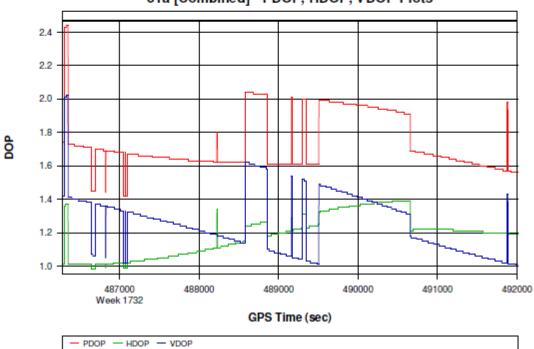


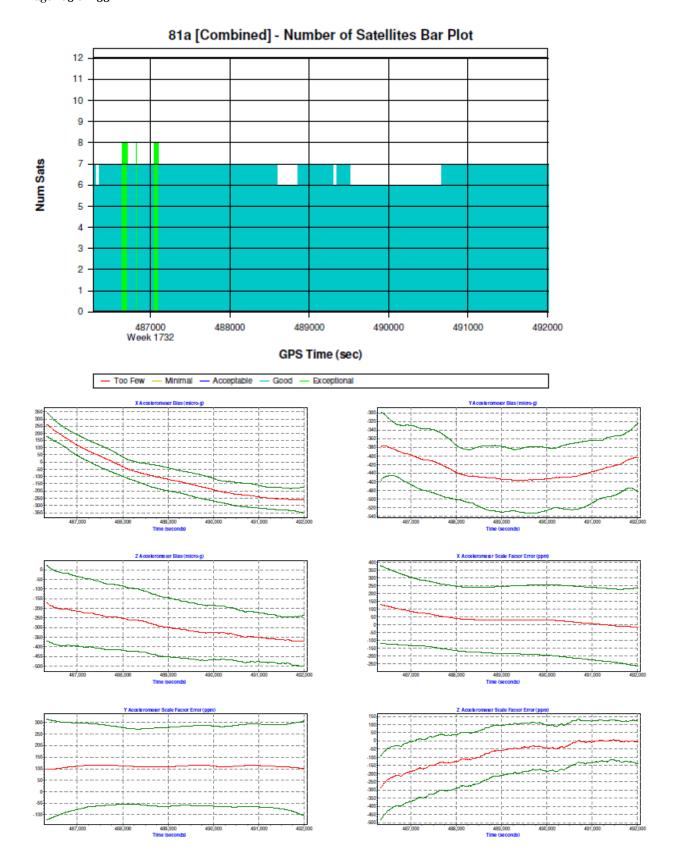

0.1



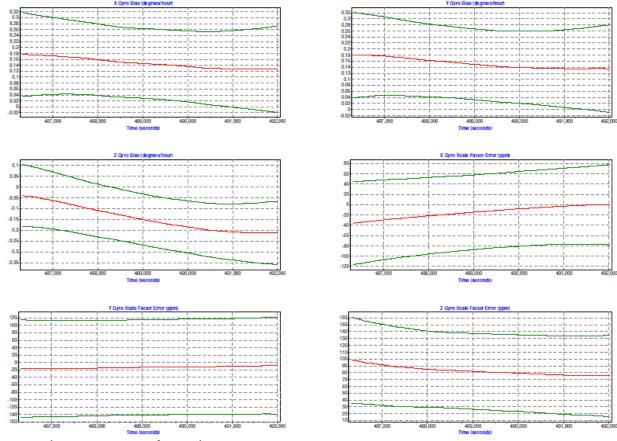
Y Gyro Bias (degrees/hour)







81a [Combined] - PDOP, HDOP, VDOP Plots



Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 106 of 233

Processing Summary Information

Program: POSGPS Version: 4.30.3108

Project: D:\Projects\Dewberry\Va\Norfolk_2013\13081a\pos\GPS\81a.gnv

Solution Type: Combined Fwd/Rev

Number of Epochs: Total in GPB file: 70958 No processed position: 65227

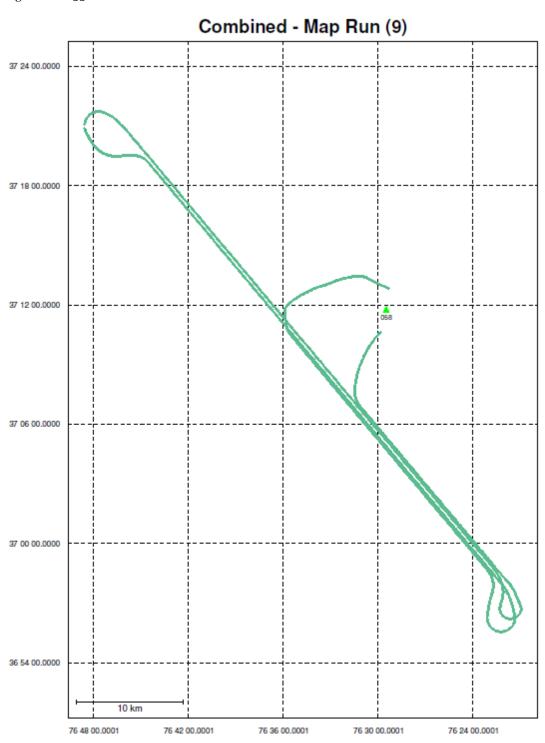
Missing Fwd or Rev: 4 With bad C/A code: 0 With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0228 (m) C/A Code: 1.12 (m)

L1 Doppler: 0.031 (m/s) Fwd/Rev Separation RMS Values:

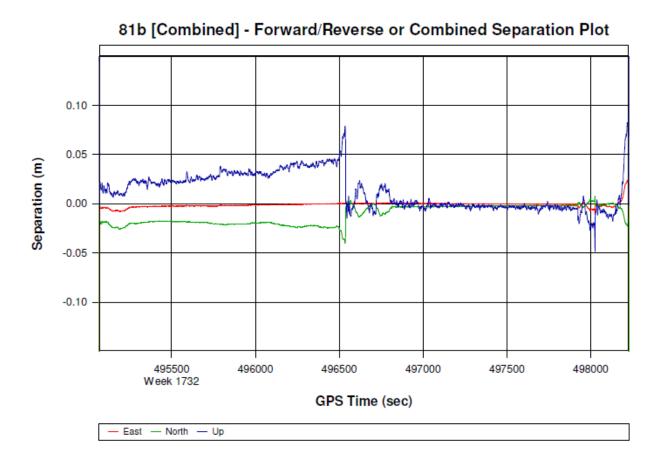
East: 0.010 (m) North: 0.021 (m) Height: 0.040 (m)

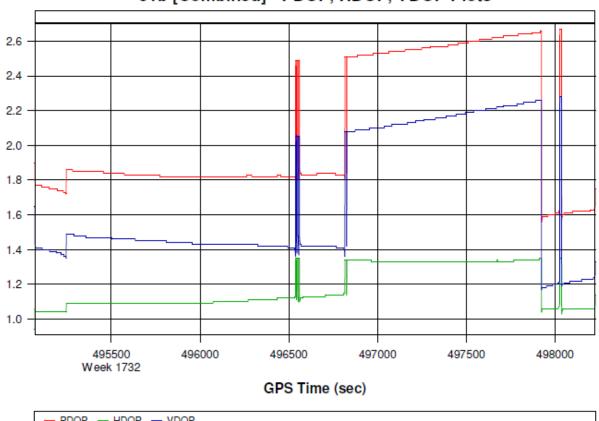
Fwd/Rev Sep. RMS for 25%-75% weighting (5725 occurances):

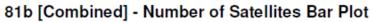
East: 0.010 (m) North: 0.021 (m) Height: 0.033 (m)

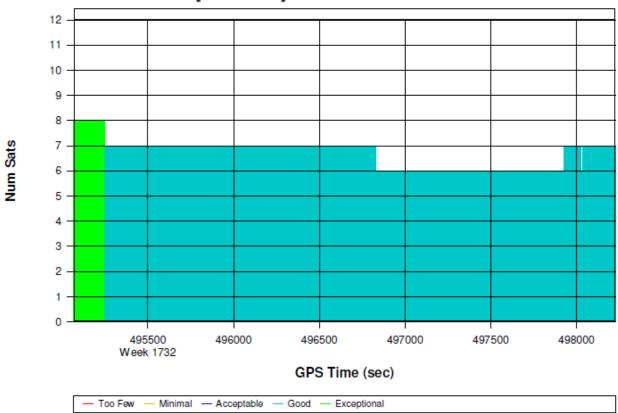

Quality Number Percentages:

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 107 of 233 Q 1: 99.4 % Q 2: 0.6 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 % Position Standard Deviation Percentages: 0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD_DOP over 10.00: DOP over Tol: 0.0 % **Baseline Distances:** Maximum: 32.953 (km) Minimum: 0.656 (km) Average: 16.175 (km) First Epoch: 7.473 (km)

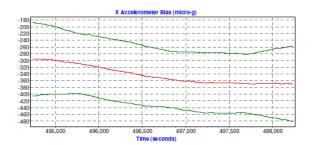

Last Epoch: 5.691 (km)

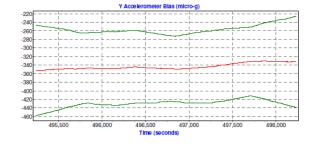

+ Ukn + Q1 + Q2 + Q3 + Q4 + Q5 + Q6 A Master

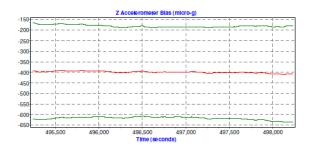


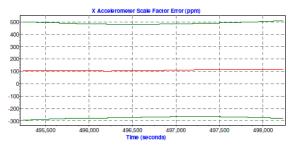

81b [Combined] - PDOP, HDOP, VDOP Plots

PDOP - HDOP - VDOP

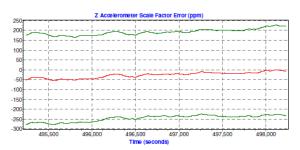


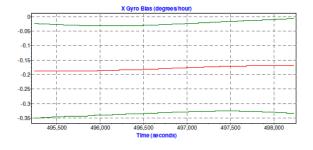


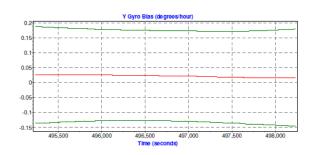


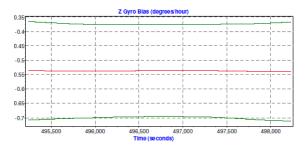


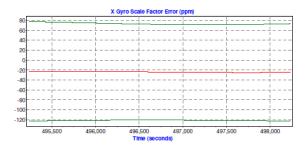
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 112 of 233

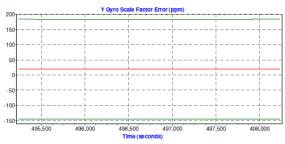


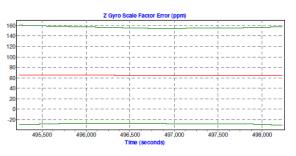









Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 113 of 233



Processing Summary Information

Program: POSGPS Version: 4.30.3108

Project: D:\Projects\Dewberry\Va\Norfolk_2013\13081b\pos\GPS\81b.gnv

Solution Type: Combined Fwd/Rev

Number of Epochs: Total in GPB file: 48966 No processed position: 45922

Missing Fwd or Rev: 4 With bad C/A code: 0 With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0227 (m) C/A Code: 1.15 (m)

L1 Doppler: 0.029 (m/s)

Fwd/Rev Separation RMS Values:

East: 0.015 (m) North: 0.028 (m) Height: 0.044 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (3038 occurances):

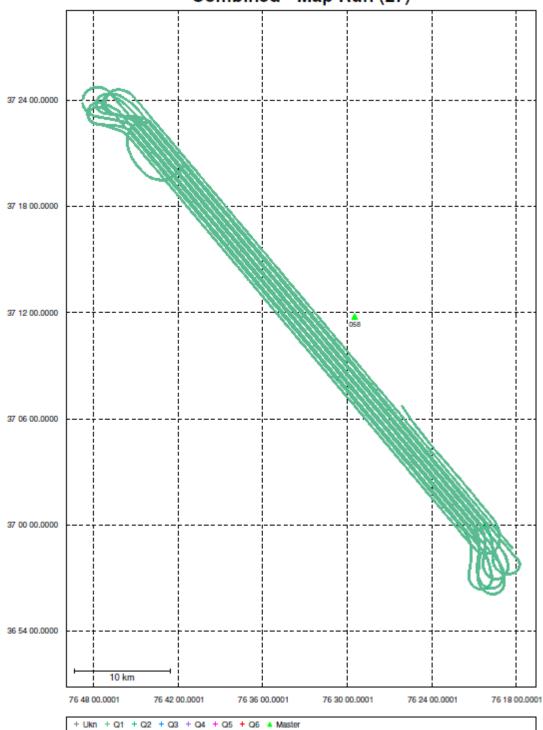
East: 0.003 (m) North: 0.014 (m) Height: 0.023 (m)

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 114 of 233

Quality Number Percentages:

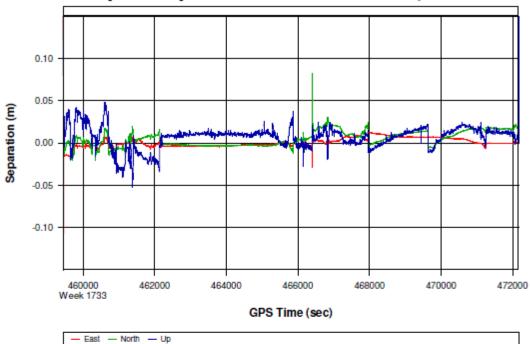
Q 1: 99.9 % Q 2: 0.1 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 %

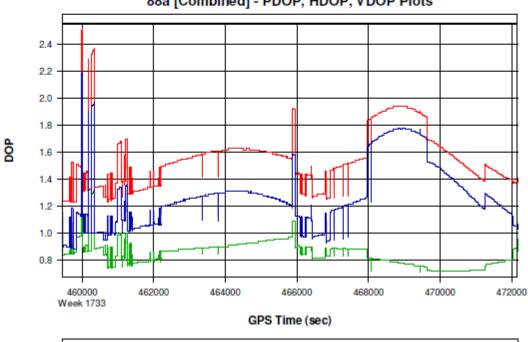
Position Standard Deviation Percentages:

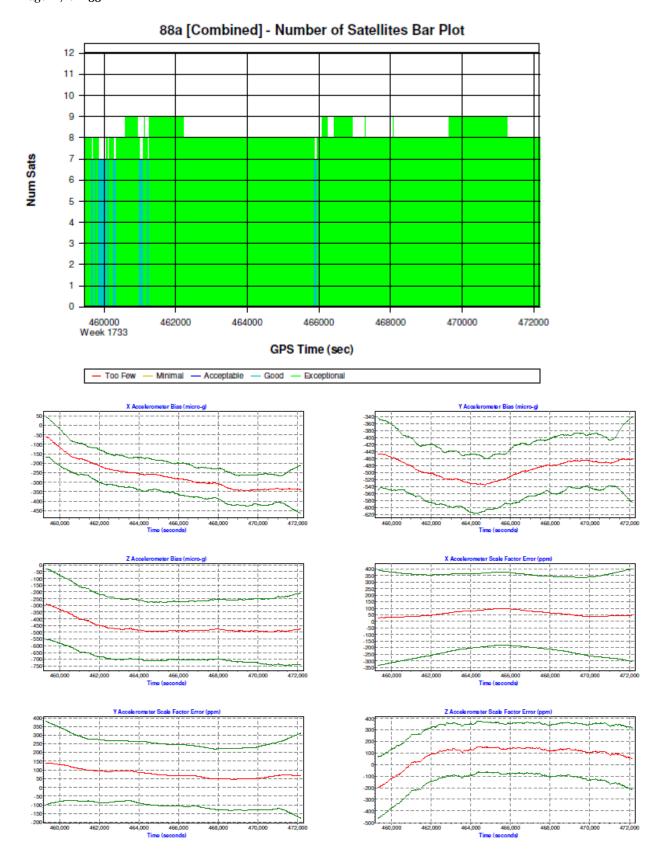

0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 %

Percentages of epochs with DD_DOP over 10.00:

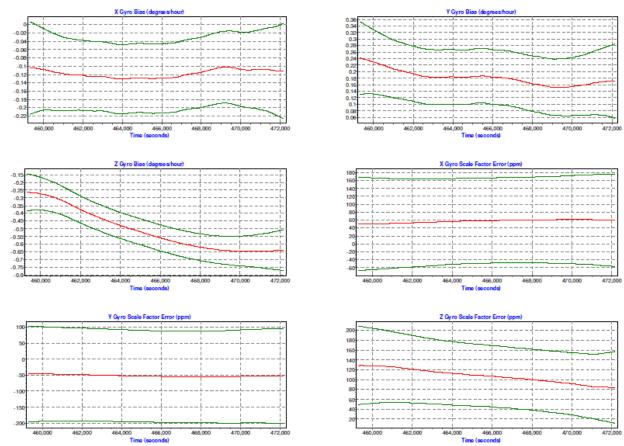
DOP over Tol: 0.0 % Baseline Distances: Maximum: 33.176 (km) Minimum: 2.361 (km) Average: 17.860 (km) First Epoch: 6.556 (km) Last Epoch: 2.361 (km)







88a [Combined] - PDOP, HDOP, VDOP Plots


— PDOP — HDOP — VDOP

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 118 of 233

Processing Summary Information

Program: POSGPS Version: 4.30.3108

Project: D:\Projects\Dewberry\Va\Norfolk_2013\13088a\pos\GPS\88a.gnv

Solution Type: Combined Fwd/Rev

Number of Epochs: Total in GPB file: 155168 No processed position: 142444

Missing Fwd or Rev: 4 With bad C/A code: 0 With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0260 (m) C/A Code: 1.10 (m)

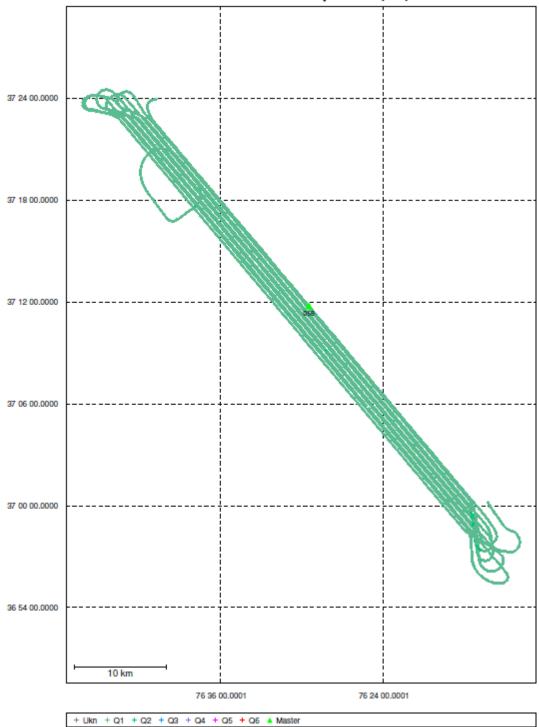
L1 Doppler: 0.018 (m/s) Fwd/Rev Separation RMS Values:

East: 0.006 (m) North: 0.013 (m) Height: 0.021 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (12708 occurances):

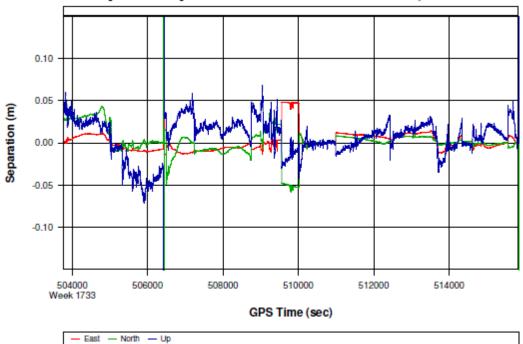
East: 0.005 (m) North: 0.010 (m) Height: 0.014 (m)

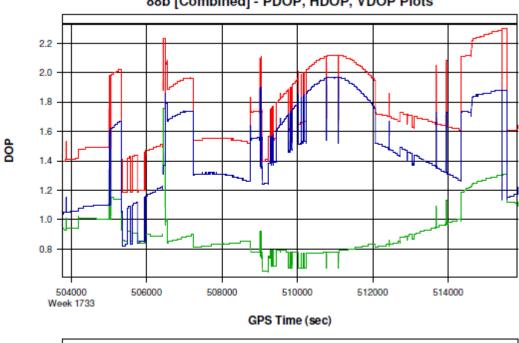
Quality Number Percentages:

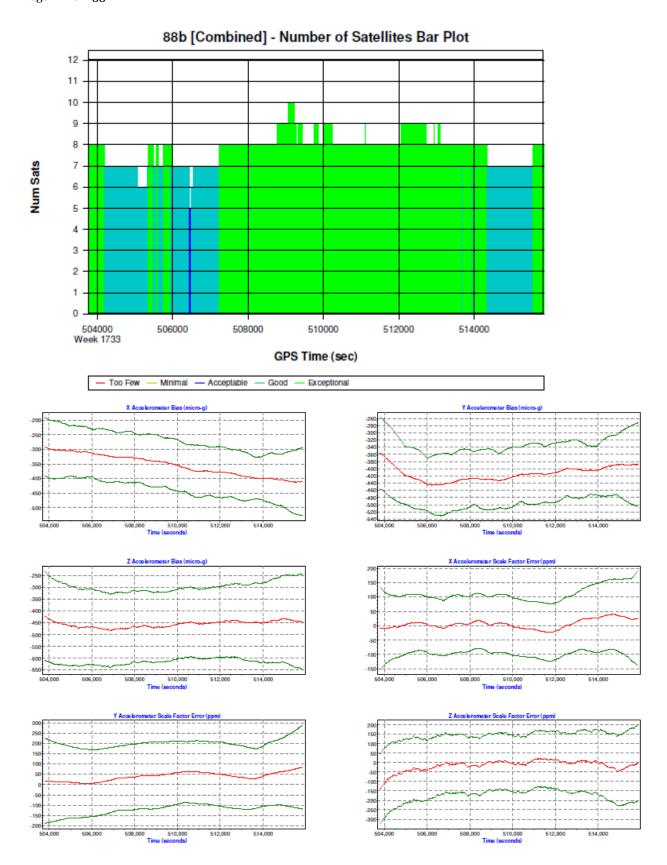


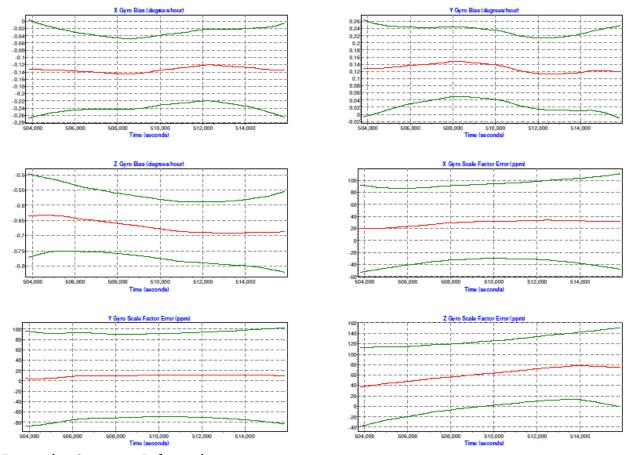
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 119 of 233 Q 1: 99.5 % Q 2: 0.5 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 % Position Standard Deviation Percentages: 0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD_DOP over 10.00: DOP over Tol: 0.0 % **Baseline Distances:** Maximum: 36.679 (km) Minimum: 3.087 (km) Average: 18.294 (km) First Epoch: 28.454 (km)

Last Epoch: 29.355 (km)









Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 123 of 233

Processing Summary Information

Program: POSGPS Version: 4.30.3108

Project: D:\Projects\Dewberry\Va\Norfolk_2013\13088b\pos\GPS\88b.gnv

Solution Type: Combined Fwd/Rev

Number of Epochs: Total in GPB file: 155934 No processed position: 143849

Missing Fwd or Rev: 8
With bad C/A code: 0
With bad L1 Phase: 0
Measurement RMS Values:
L1 Phase: 0.0265 (m)
C/A Code: 1.12 (m)
L1 Doppler: 0.027 (m/s)

Fwd/Rev Separation RMS Values:

East: 0.011 (m) North: 0.021 (m) Height: 0.030 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (12073 occurances):

East: 0.010 (m) North: 0.020 (m) Height: 0.029 (m)

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 124 of 233

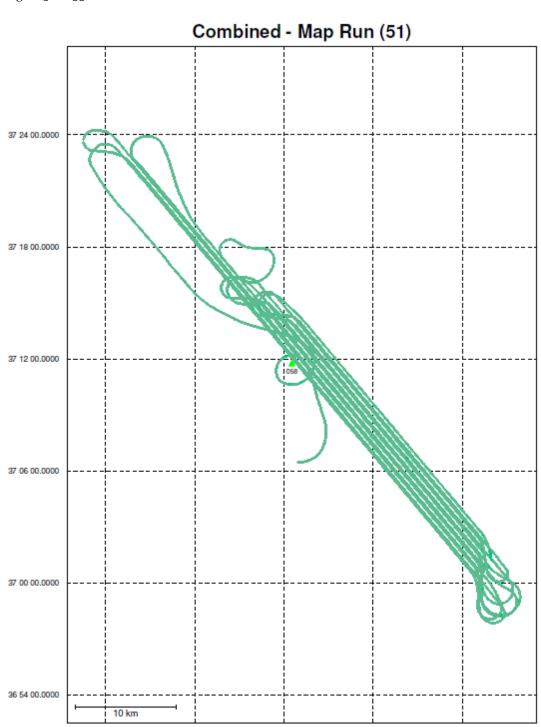
Quality Number Percentages:

Q 1: 99.0 % Q 2: 1.0 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 %

Position Standard Deviation Percentages:

0.00 - 0.10 m: 88.9 % 0.10 - 0.30 m: 11.1 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 %

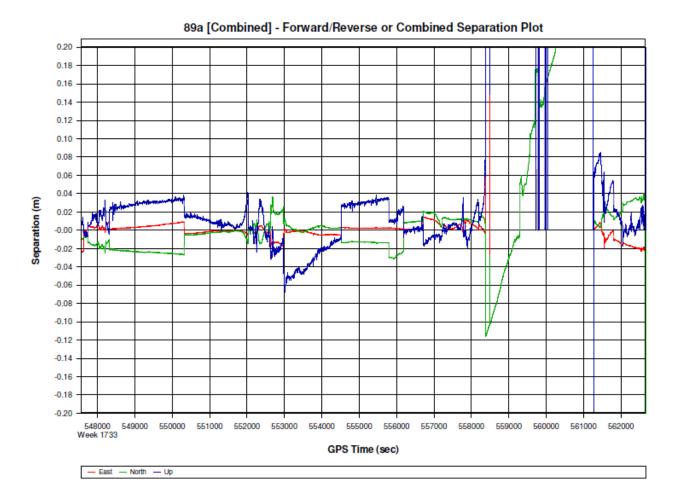
Percentages of epochs with DD_DOP over 10.00:


DOP over Tol: 0.0 % Baseline Distances: Maximum: 37.012 (km) Minimum: 0.926 (km) Average: 17.514 (km) First Epoch: 29.014 (km) Last Epoch: 28.011 (km)

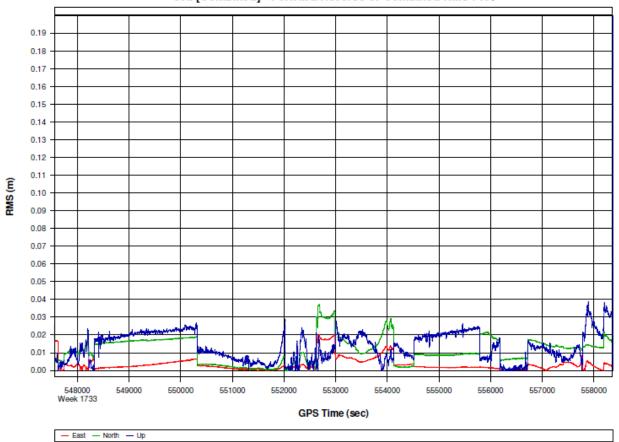
76 42 00.0001

76 36 00.0001

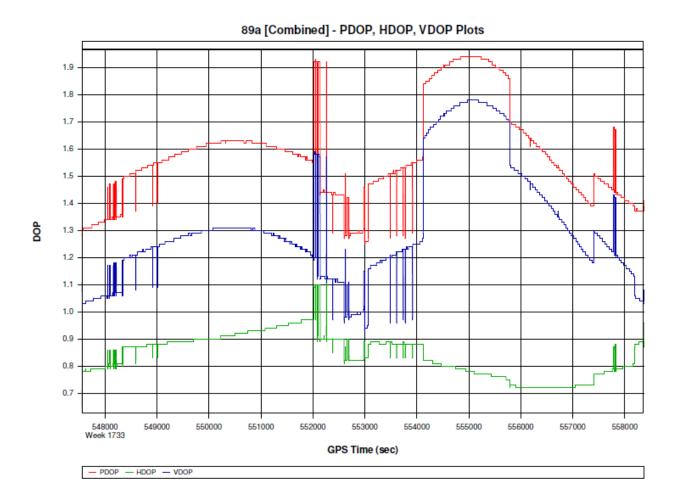
+ Ukn + Q1 + Q2 + Q3 + Q4 + Q5 + Q6 A Master

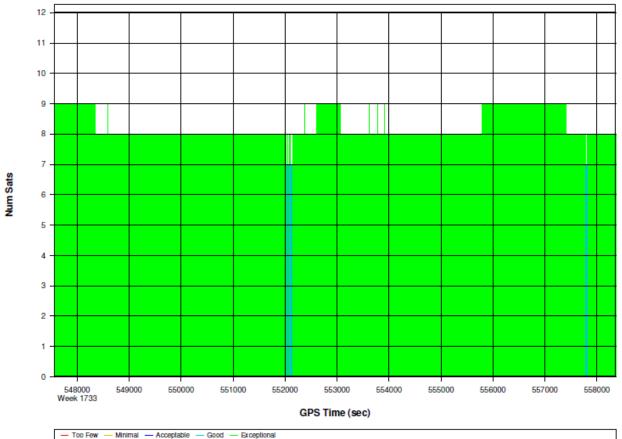


76 30 00.0001


76 18 00.0001

76 24 00.0001





Processing Summary Information

Program: POSGPS Version: 4.30.3108

Project: D:\Projects\Dewberry\Va\Norfolk_2013\13089a\pos\GPS\89a.gnv

Solution Type: Combined Fwd/Rev

Number of Epochs: Total in GPB file: 162207 No processed position: 151395

Missing Fwd or Rev: 4 With bad C/A code: 0 With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0208 (m)

L1 Phase: 0.0298 (m) C/A Code: 1.10 (m) L1 Doppler: 0.018 (m/s)

Fwd/Rev Separation RMS Values:

East: 0.008 (m) North: 0.019 (m) Height: 0.026 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (10806 occurances):

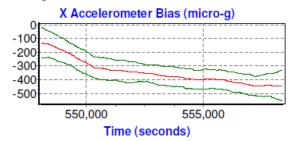
East: 0.007 (m) North: 0.019 (m)

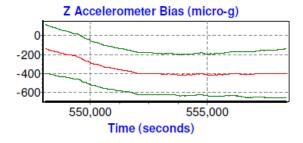
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 130 of 233

Height: 0.022 (m)

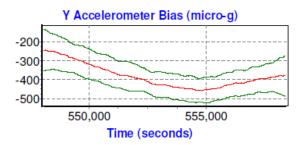
Quality Number Percentages:

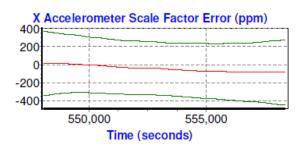
Q 1: 99.1 % Q 2: 0.9 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 %

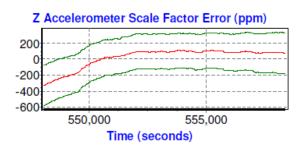

Q 6: 0.0 %

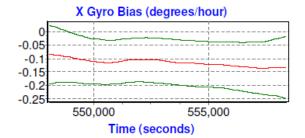

Position Standard Deviation Percentages:

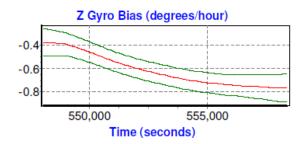

0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 %

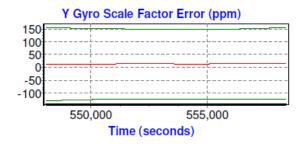

Percentages of epochs with DD_DOP over 10.00:

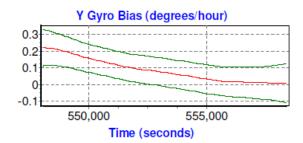

DOP over Tol: 0.0 %
Baseline Distances:
Maximum: 33.051 (km)
Minimum: 0.954 (km)
Average: 14.602 (km)
First Epoch: 9.799 (km)
Last Epoch: 27.866 (km)

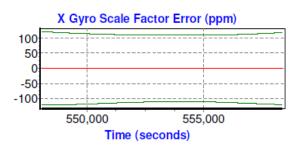


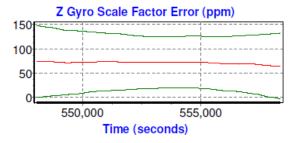


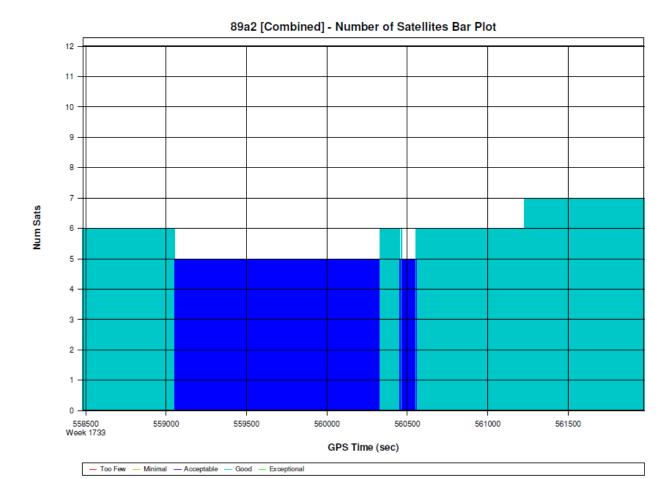


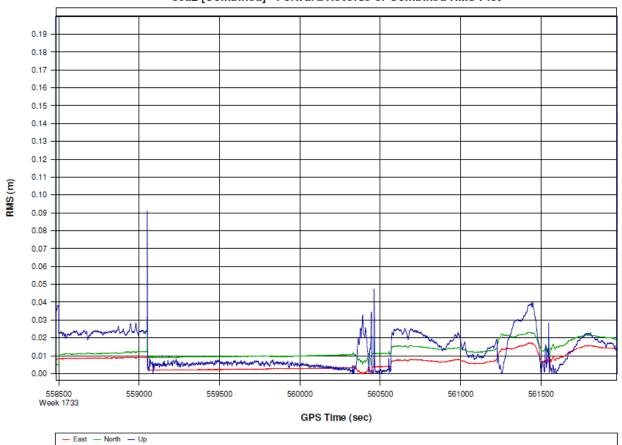


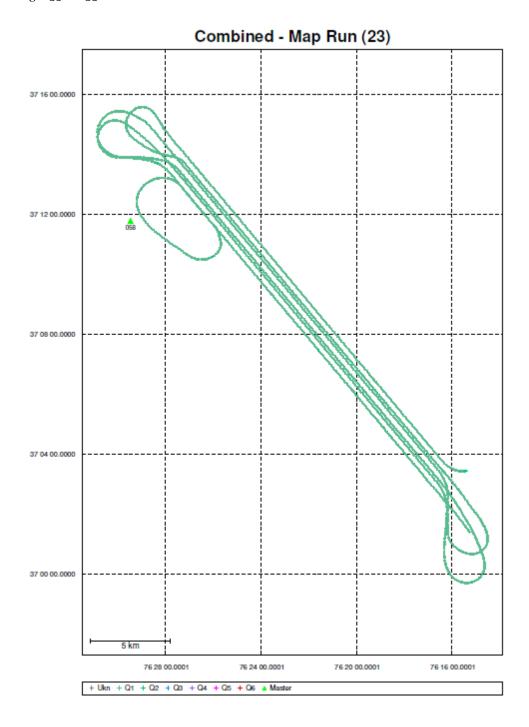




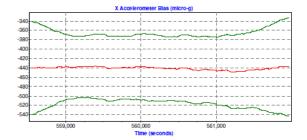


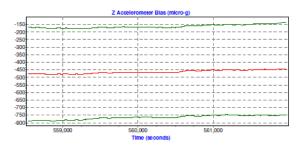


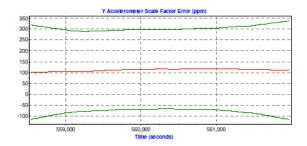

— PDOP — HDOP — VDOP

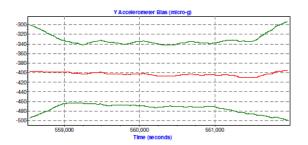

GPS Time (sec)

89a2 [Combined] - Forward/Reverse or Combined RMS Plot

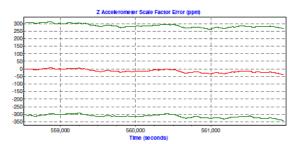


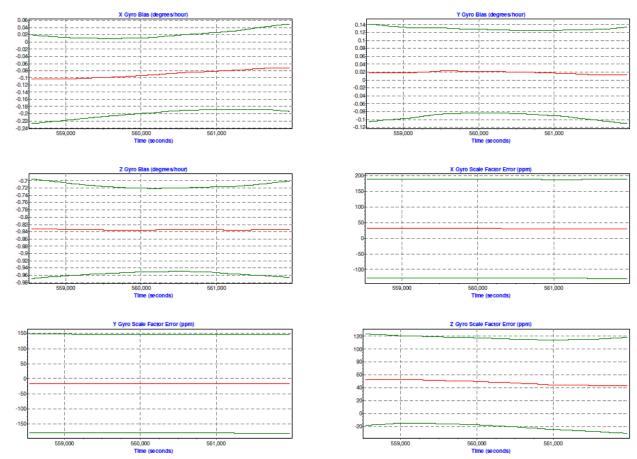






Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 136 of 233





Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 137 of 233

Processing Summary Information

Program: POSGPS Version: 4.30.3108

 $Project: D: \Projects \Dewberry \Va\Norfolk_2013 \13089a \pos2 \GPS \89a2.gnv$

Solution Type: Combined Fwd/Rev

Number of Epochs: Total in GPB file: 162207 No processed position: 158711

Missing Fwd or Rev: 4 With bad C/A code: 0 With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0247 (m) C/A Code: 1.35 (m) L1 Doppler: 0.019 (m/s)

Fwd/Rev Separation RMS Values:

East: 0.016 (m) North: 0.024 (m) Height: 0.055 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (3489 occurances):

East: 0.011 (m) North: 0.019 (m) Height: 0.023 (m)

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 138 of 233

Quality Number Percentages:

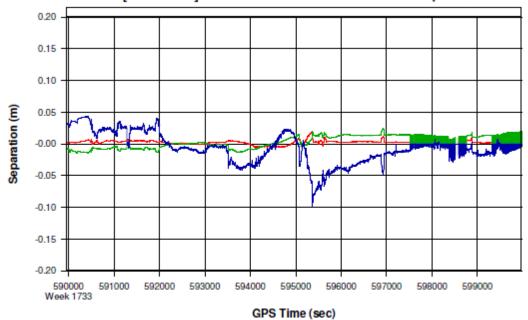
Q 1: 99.5 % Q 2: 0.5 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % Q 6: 0.0 %

Position Standard Deviation Percentages:

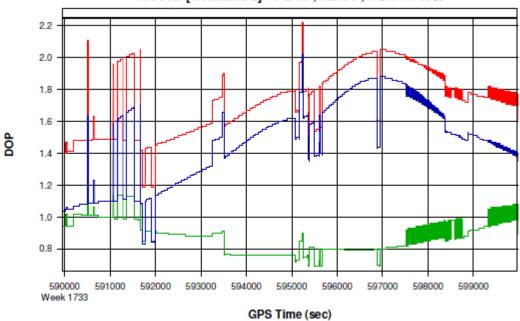
0.00 - 0.10 m: 60.5 % 0.10 - 0.30 m: 39.5 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 %

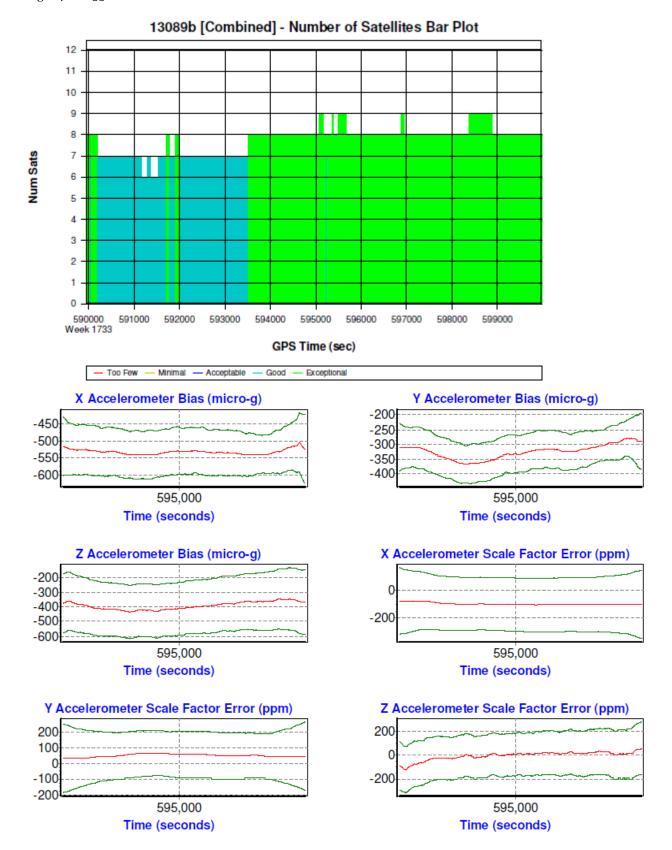
Percentages of epochs with DD_DOP over 10.00:

DOP over Tol: 39.4 %
Baseline Distances:
Maximum: 30.893 (km)
Minimum: 1.152 (km)
Average: 13.398 (km)
First Epoch: 28.490 (km)
Last Epoch: 25.968 (km)

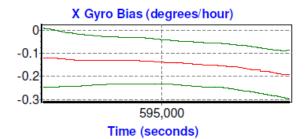


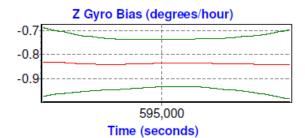
+ Ukn + Q1 + Q2 + Q3 + Q4 + Q5 + Q6

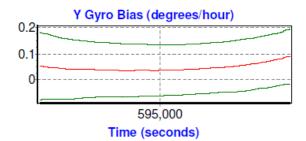


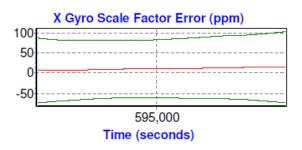


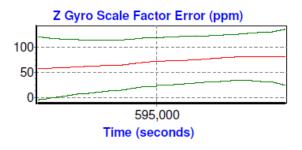
13089b [Combined] - PDOP, HDOP, VDOP Plots



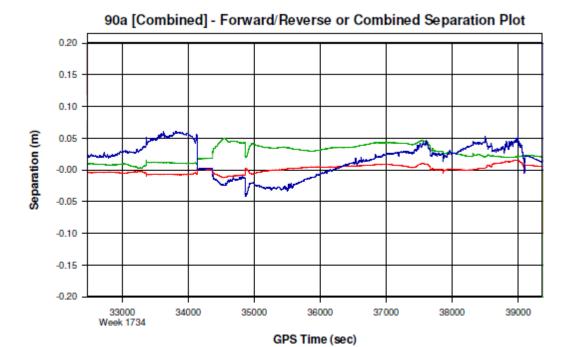

- PDOP - HDOP - VDOP

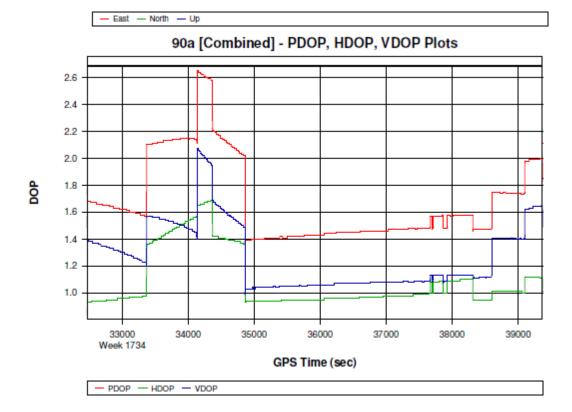


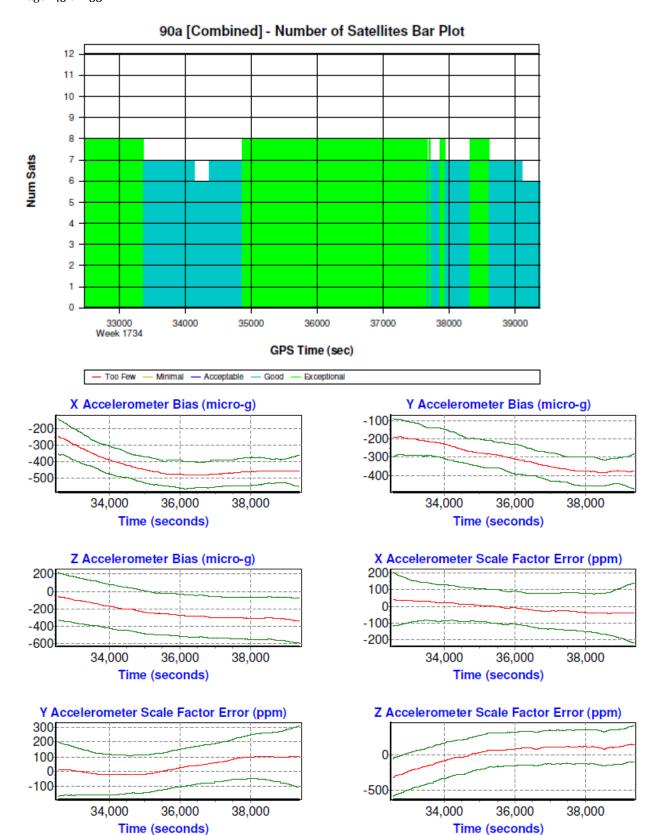

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 142 of 233

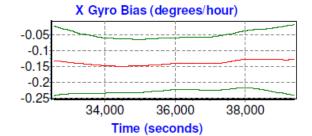


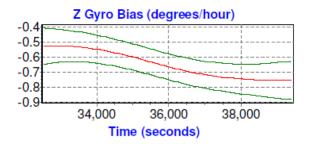


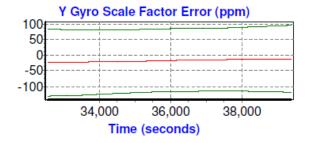


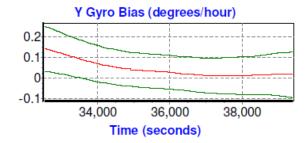


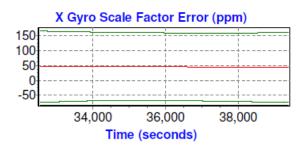

+ Ukn + Q1 + Q2 + Q3 + Q4 + Q5 + Q6 A Master

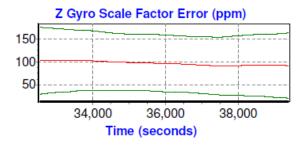


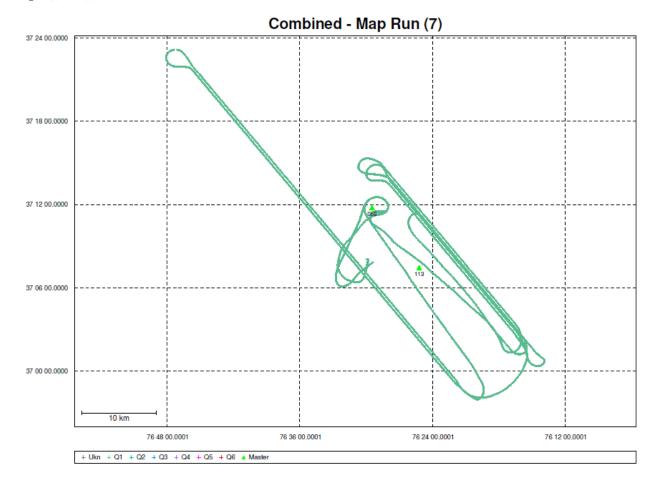


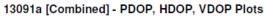


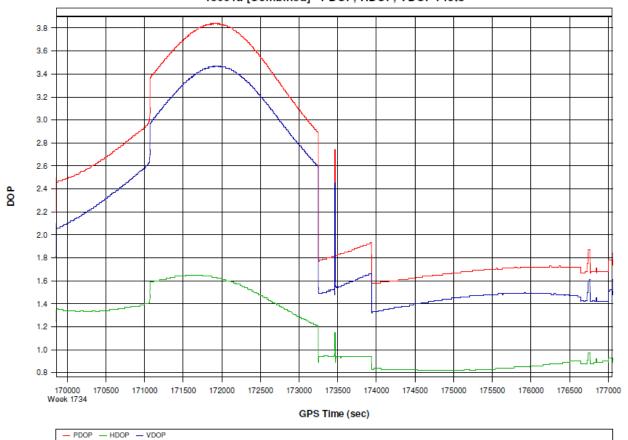


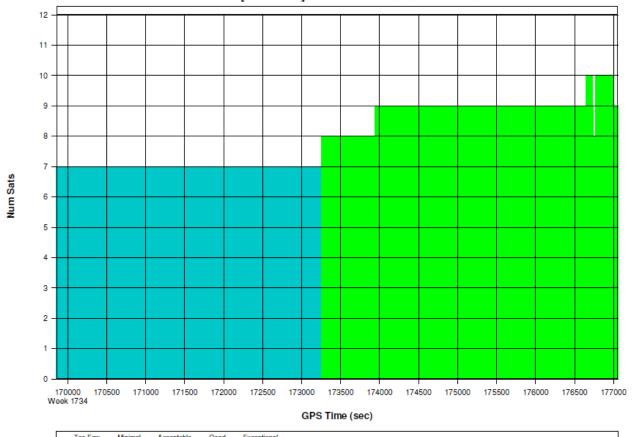

Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 146 of 233

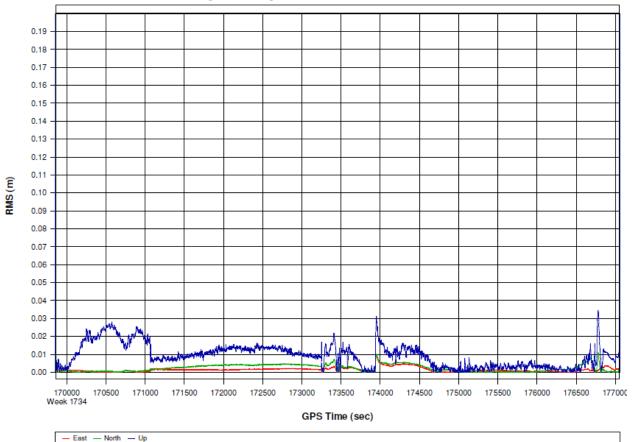












Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 150 of 233

Processing Summary Information

Program: POSGPS Version: 4.30.3108

Project: C:\Projects\VA\Norfolk\13091a\pos\GPS\13091a.gnv

Solution Type: Combined Fwd/Rev

Number of Epochs: Total in GPB file: 78684 No processed position: 71478

Missing Fwd or Rev: 4
With bad C/A code: 0
With bad L1 Phase: 0
Measurement RMS Values:
L1 Phase: 0.0192 (m)

L1 Phase: 0.0192 (m) C/A Code: 0.97 (m) L1 Doppler: 0.020 (m/s)

Fwd/Rev Separation RMS Values:

East: 0.004 (m) North: 0.009 (m) Height: 0.017 (m)

Fwd/Rev Sep. RMS for 25%-75% weighting (7200 occurances):

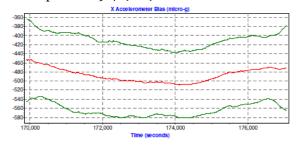
East: 0.003 (m) North: 0.004 (m)

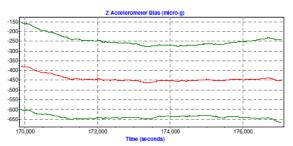
Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 151 of 233

Height: 0.016 (m)

Quality Number Percentages:

Q 1: 100.0 % Q 2: 0.0 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 %

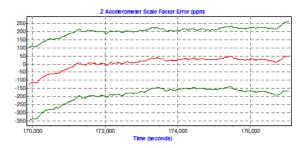

Q 6: 0.0 %

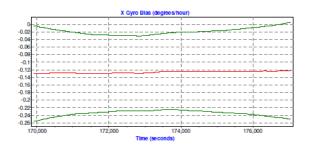

Position Standard Deviation Percentages:

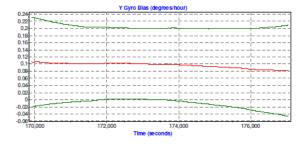
0.00 - 0.10 m: 77.8 % 0.10 - 0.30 m: 22.2 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 %

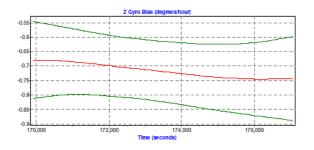

Percentages of epochs with DD_DOP over 10.00:

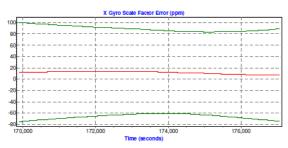

DOP over Tol: 10.0 % Baseline Distances: Maximum: 34.181 (km) Minimum: 1.104 (km) Average: 14.521 (km) First Epoch: 7.294 (km) Last Epoch: 6.917 (km)

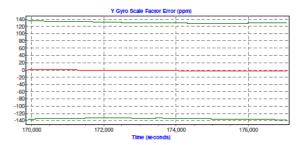


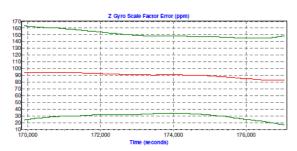


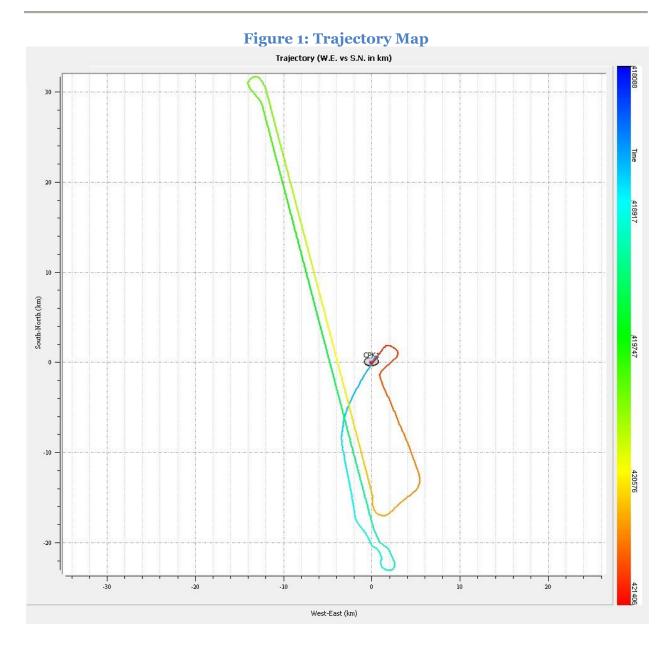







Norfolk, VA LiDAR TO# G13PD00279 January 29, 2014 Page 152 of 233





THE ATLANTIC GROUP

Output Results for JD13087 $_$ 1

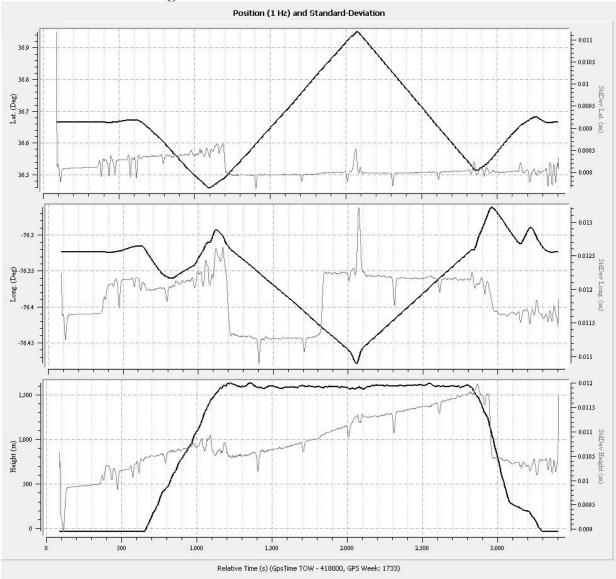


Figure 2: Position and Standard Deviation

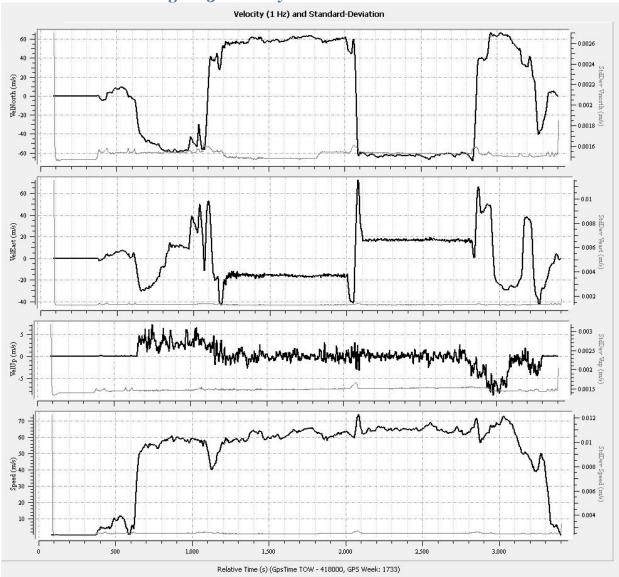


Figure 3: Velocity and Standard Deviation

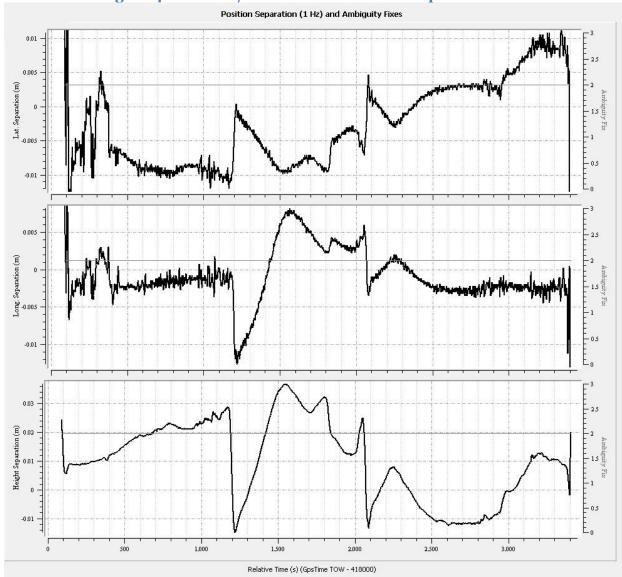


Figure 4: Forward/Reverse or Combined Separation Plot

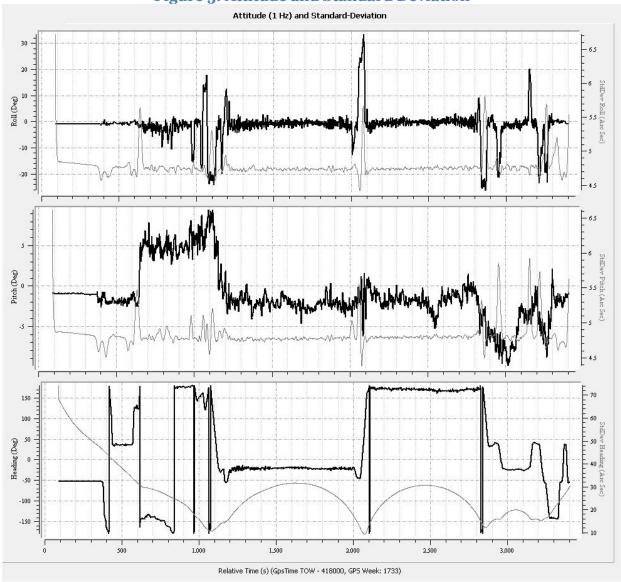
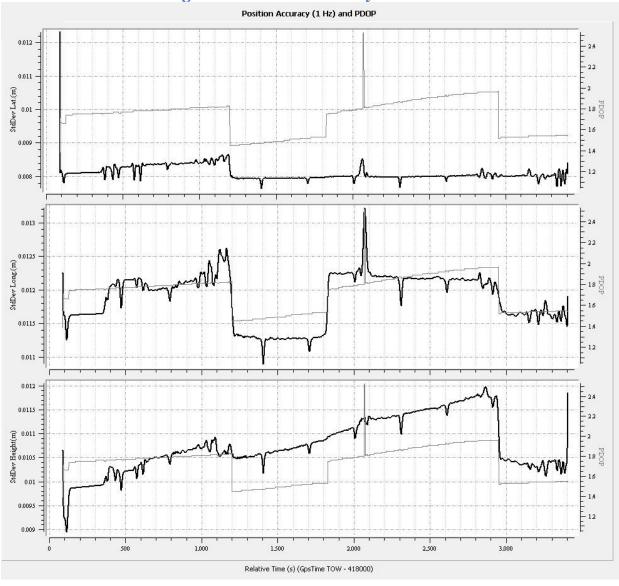



Figure 5: Attitude and Standard Deviation

Figure 6: Position Accuracy and PDOP

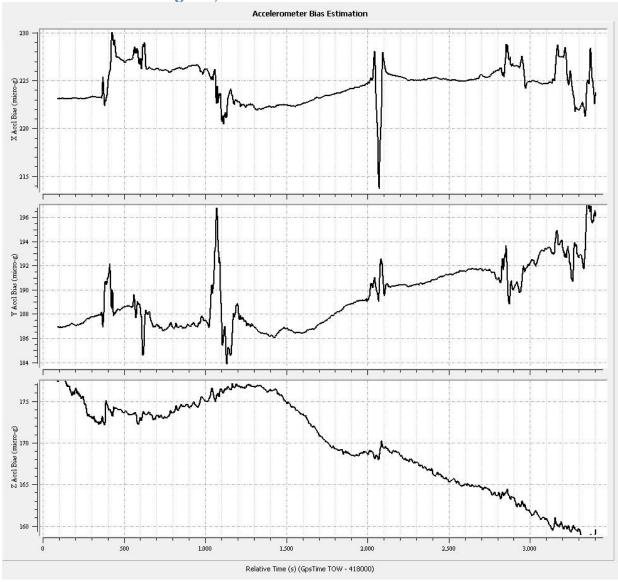


Figure 7: Accelerometer Bias Estimation

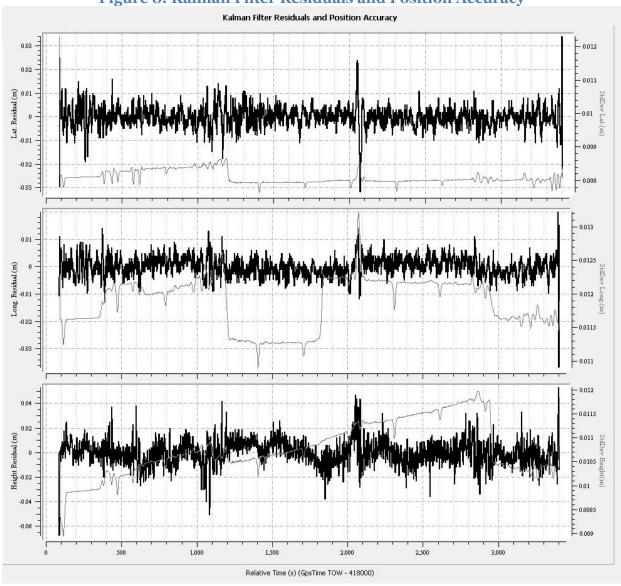
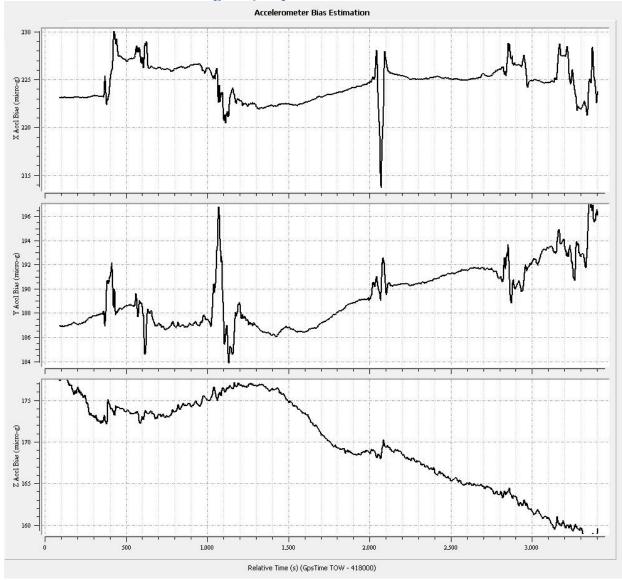



Figure 8: Kalman Filter Residuals and Position Accuracy

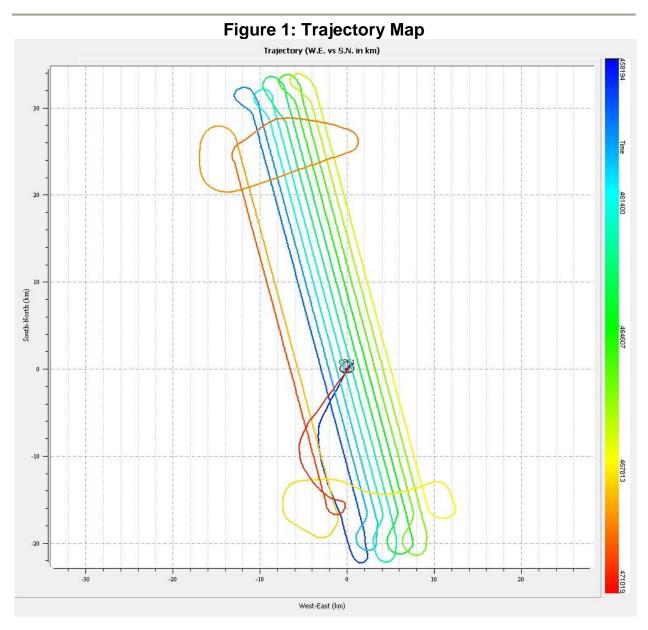


Figure 9: Gyro Bias Estimation

Output Result for JD13088 $_1$

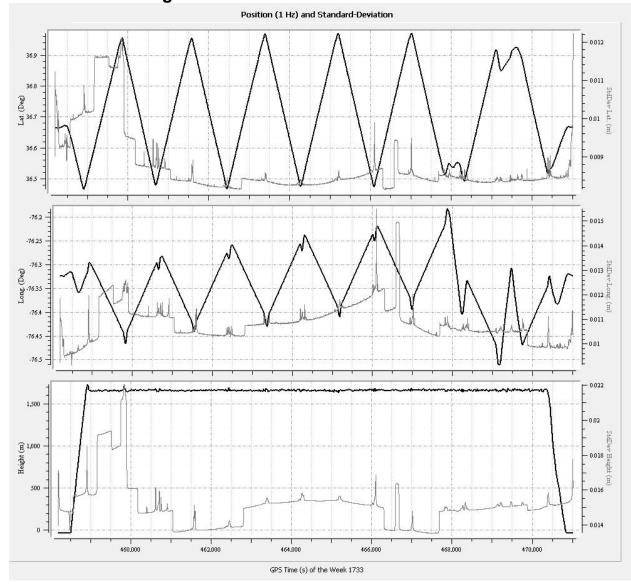


Figure 2: Position and Standard Deviation

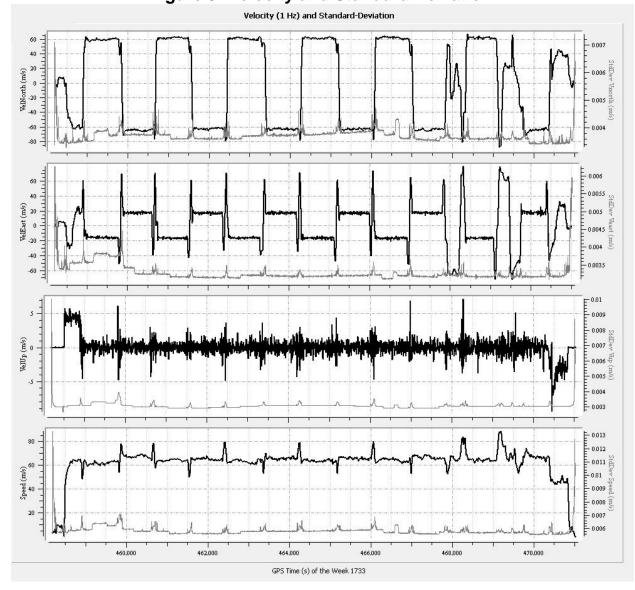


Figure 3: Velocity and Standard Deviation

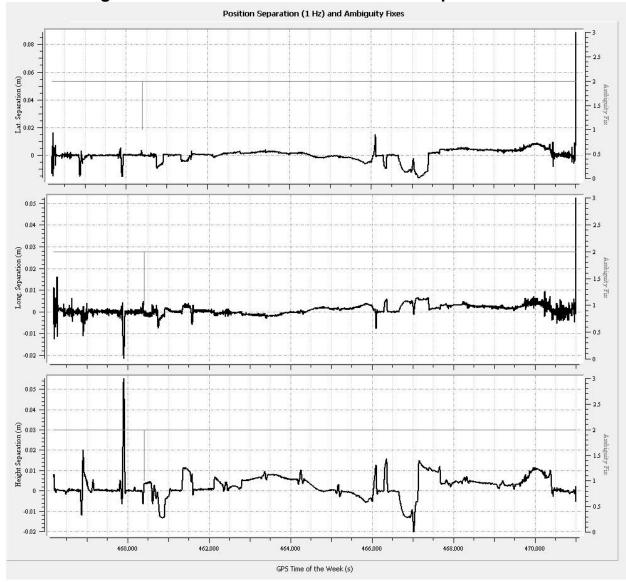


Figure 4: Forward/Reverse or Combined Separation Plot

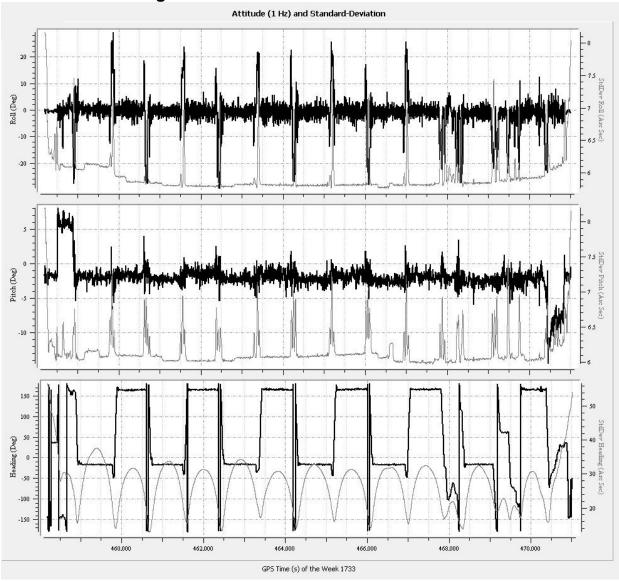


Figure 5: Attitude and Standard Deviation

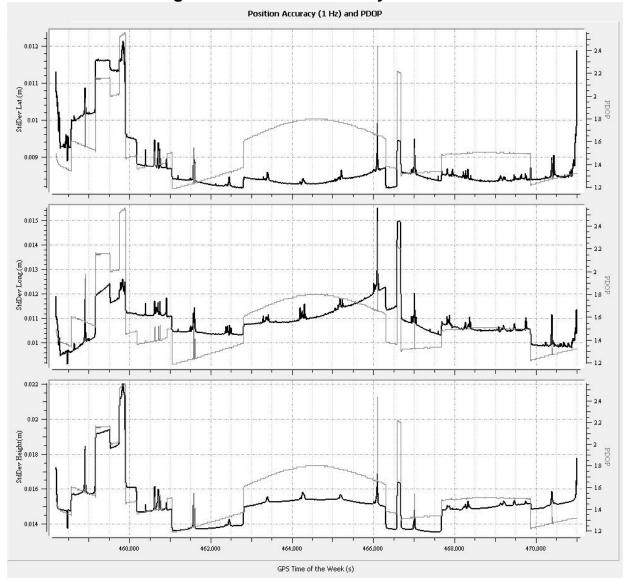


Figure 6: Position Accuracy and PDOP

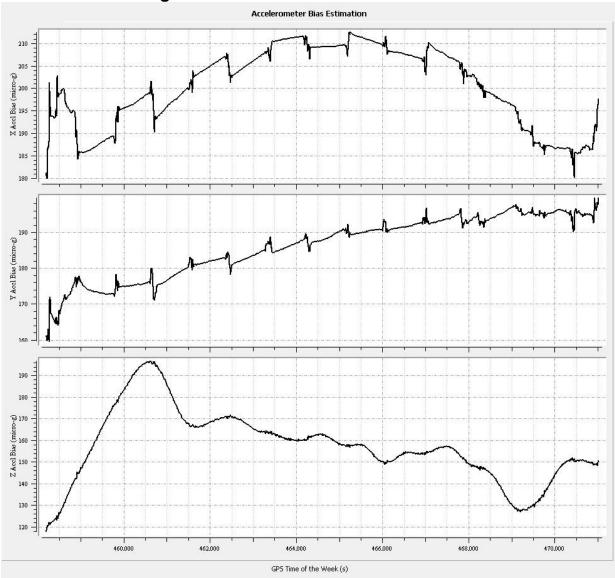


Figure 7: Accelerometer Bias Estimation

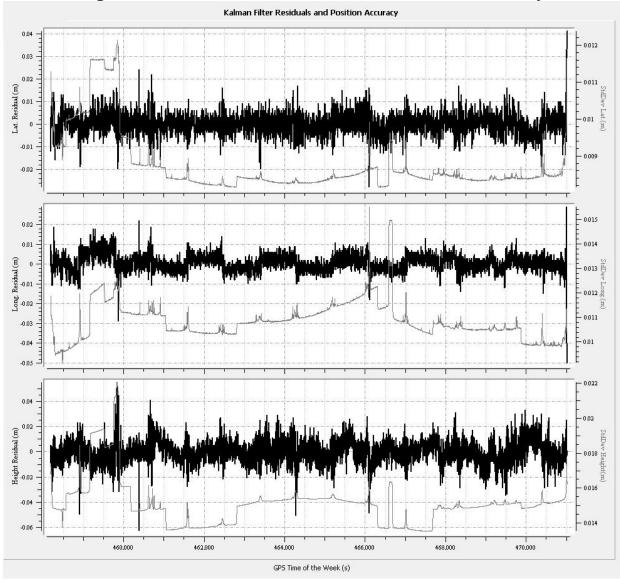


Figure 8: Kalman Filter Residuals and Position Accuracy

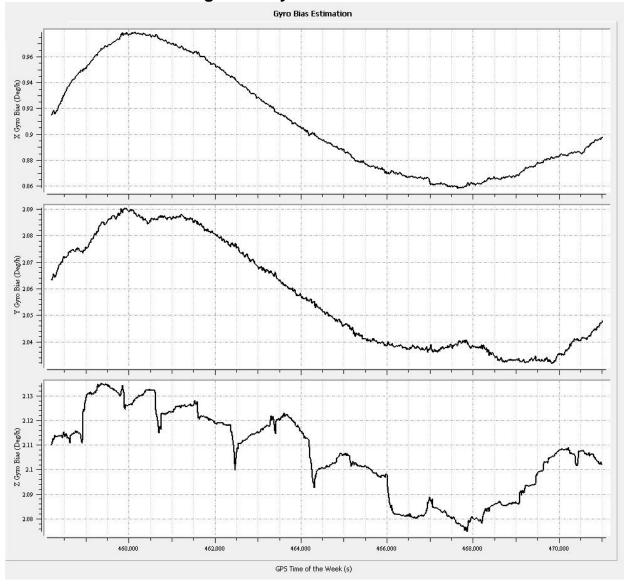
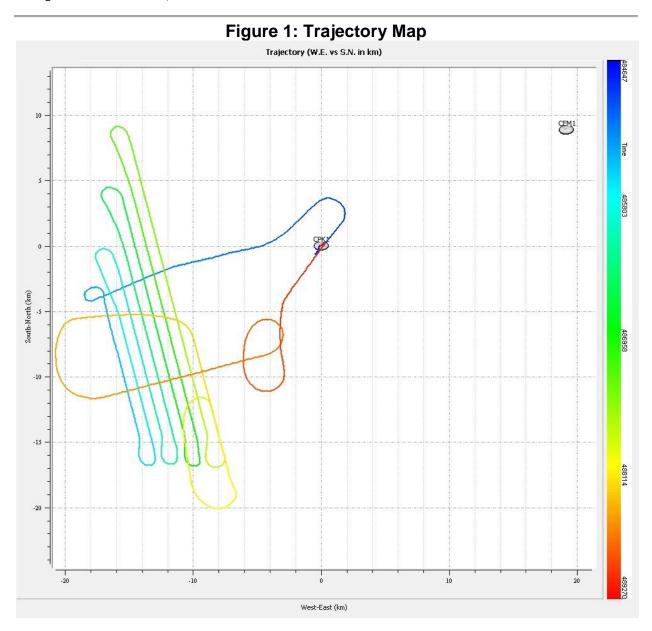



Figure 9: Gyro Bias Estimation

Output Result for JD13088 $_2$

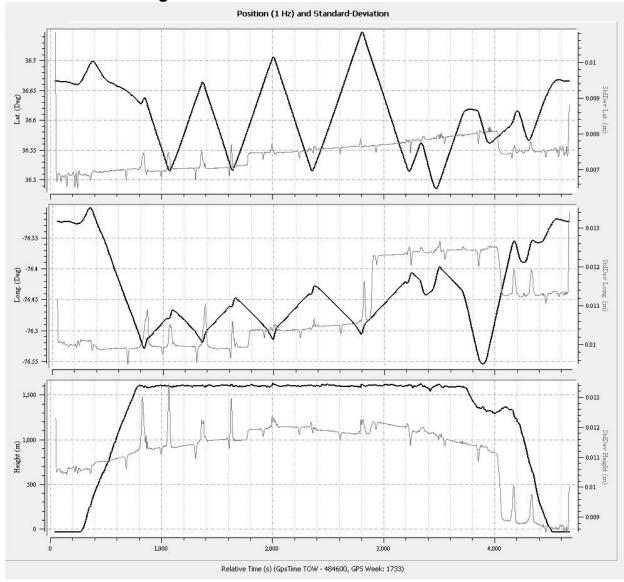


Figure 2: Position and Standard Deviation



Figure 3: Velocity and Standard Deviation

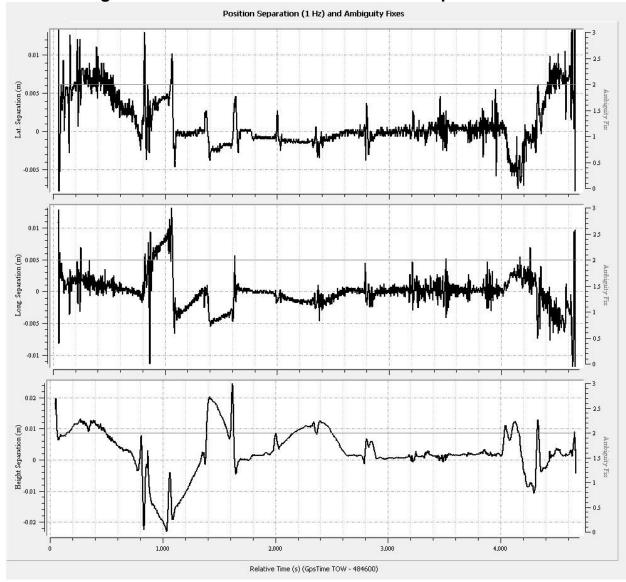


Figure 4: Forward/Reverse or Combined Separation Plot

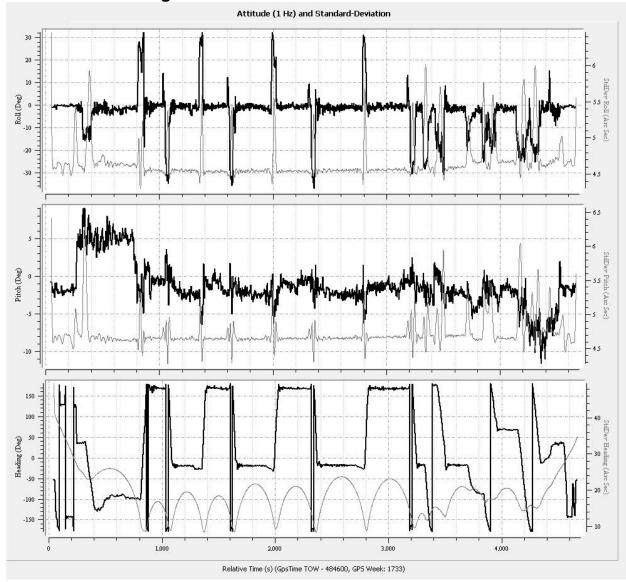


Figure 5: Attitude and Standard Deviation

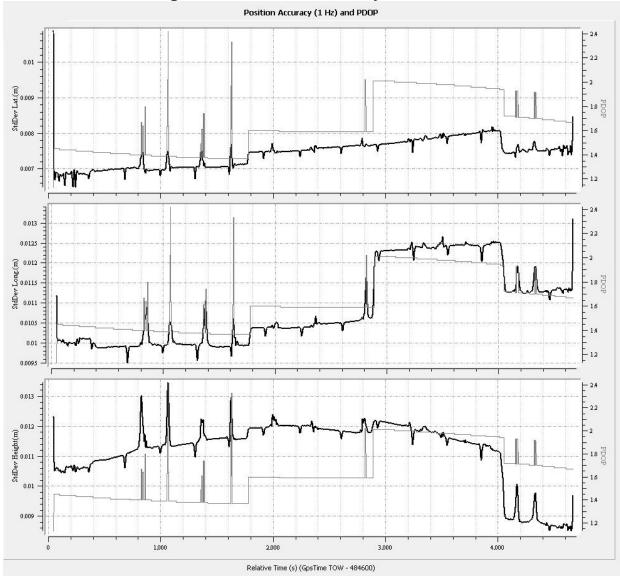


Figure 6: Position Accuracy and PDOP

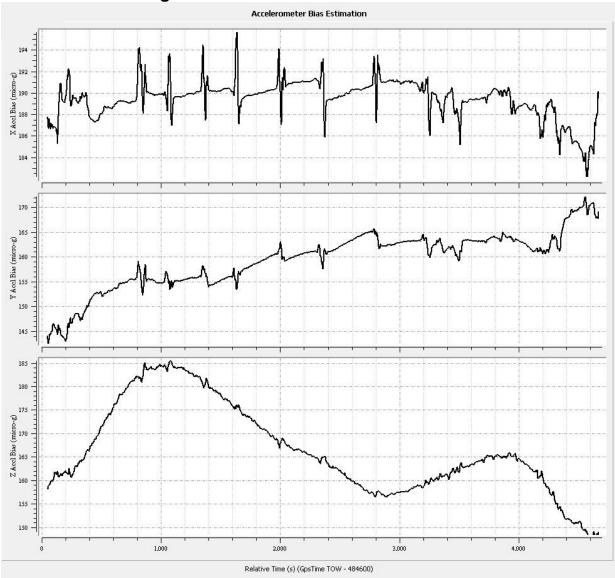


Figure 7: Accelerometer Bias Estimation

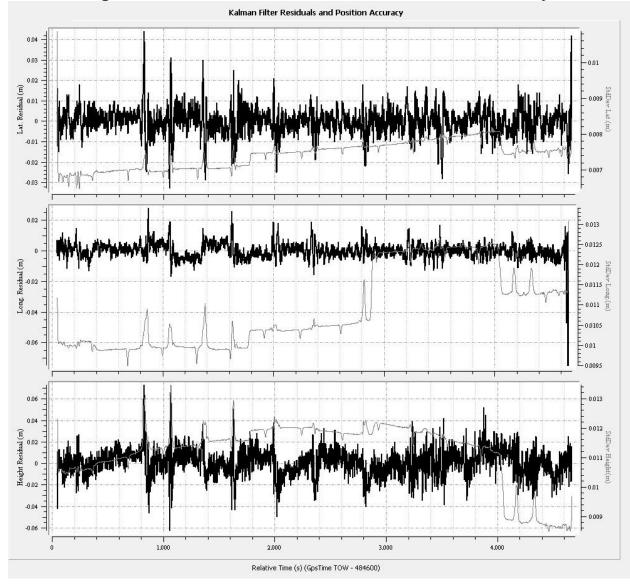


Figure 8: Kalman Filter Residuals and Position Accuracy

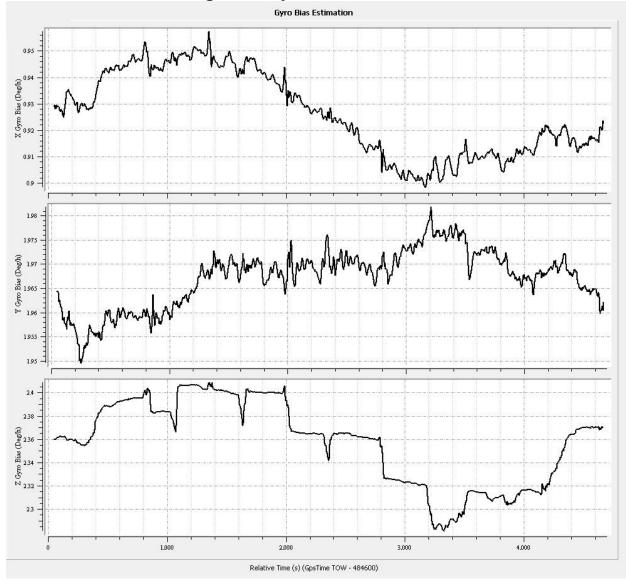
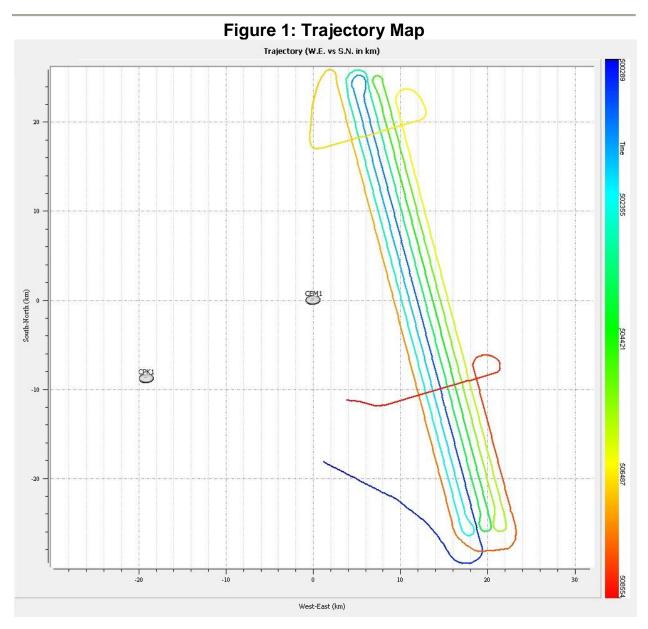



Figure 9: Gyro Bias Estimation

Output Results for JD13088 $_3$

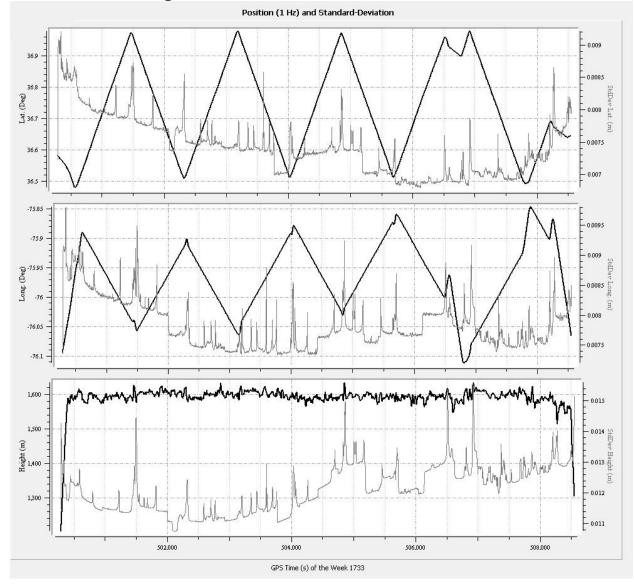


Figure 2: Position and Standard Deviation

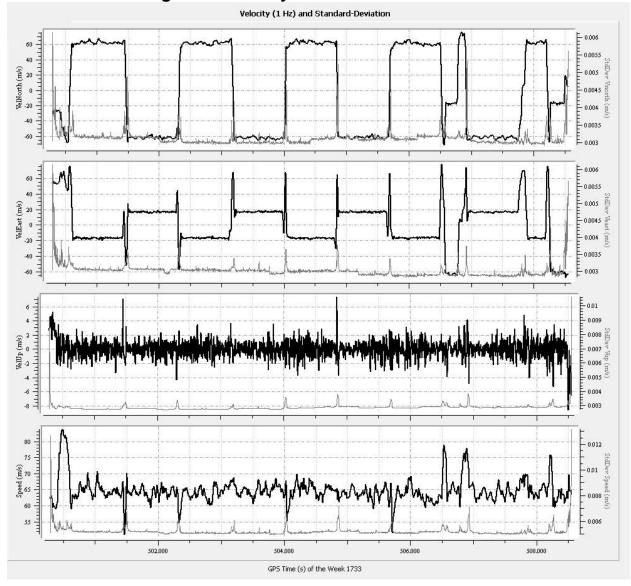


Figure 3: Velocity and Standard Deviation

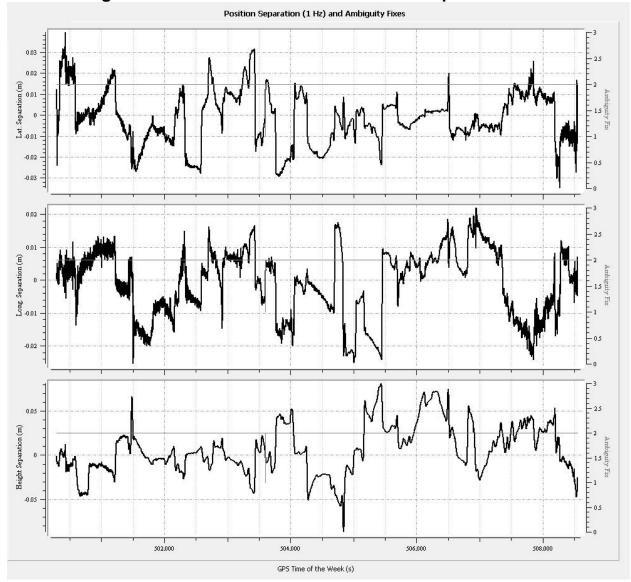


Figure 4: Forward/Reverse or Combined Separation Plot

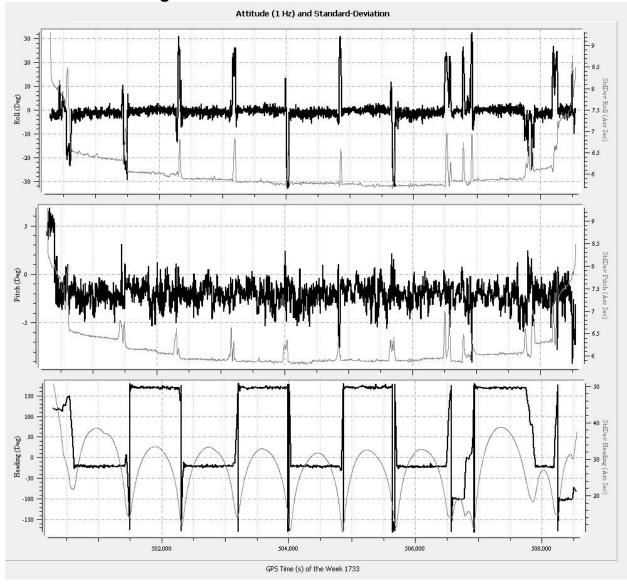


Figure 5: Attitude and Standard Deviation

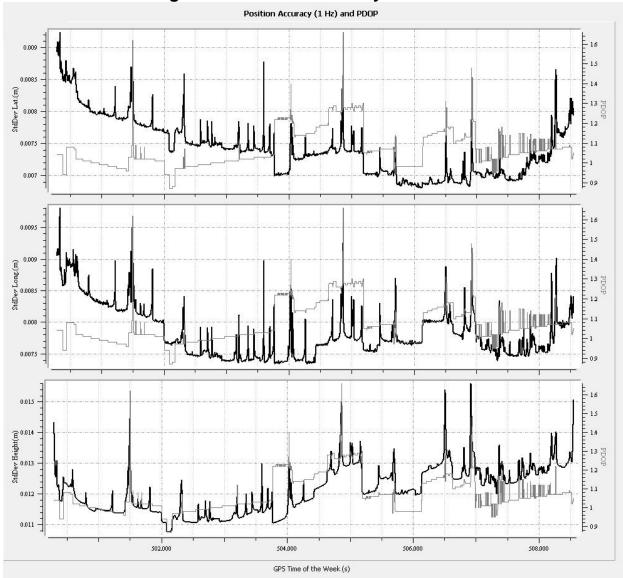


Figure 6: Position Accuracy and PDOP

Figure 7: Accelerometer Bias Estimation

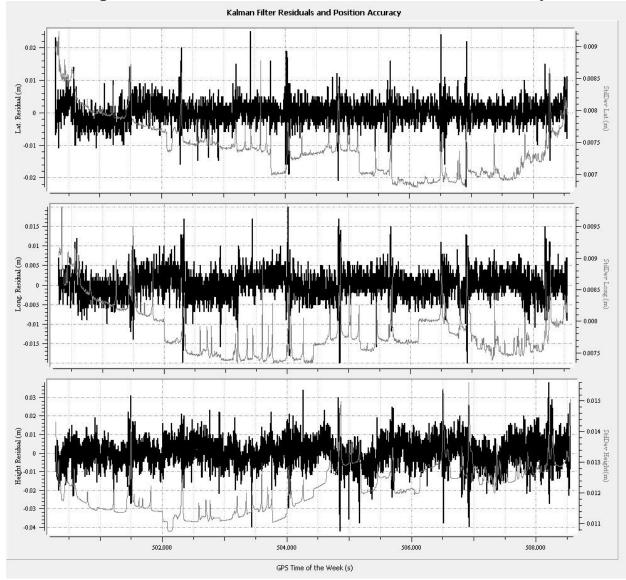


Figure 8: Kalman Filter Residuals and Position Accuracy

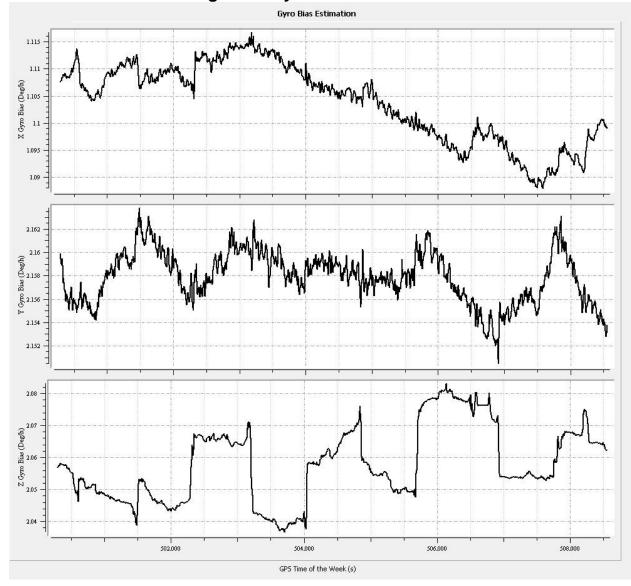
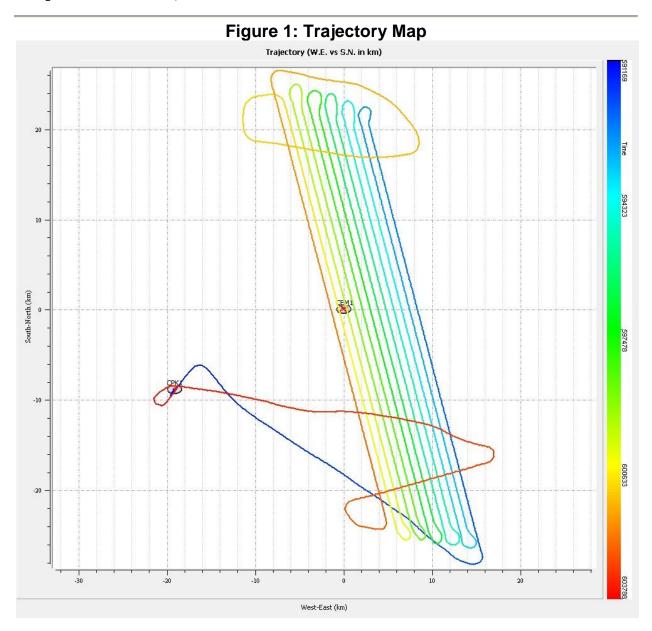



Figure 9: Gyro Bias Estimation

Output Results for JD13089_1

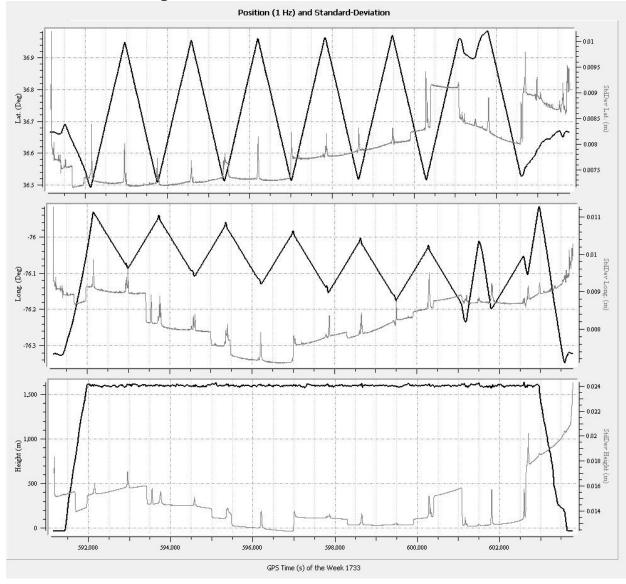


Figure 2: Position and Standard Deviation

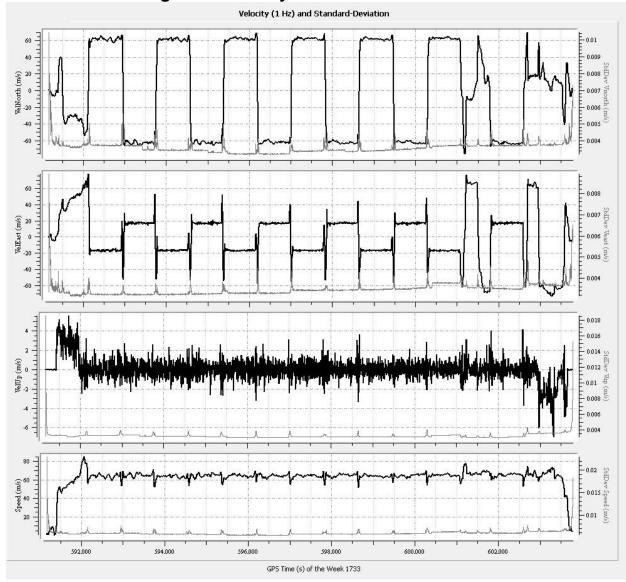


Figure 3: Velocity and Standard Deviation

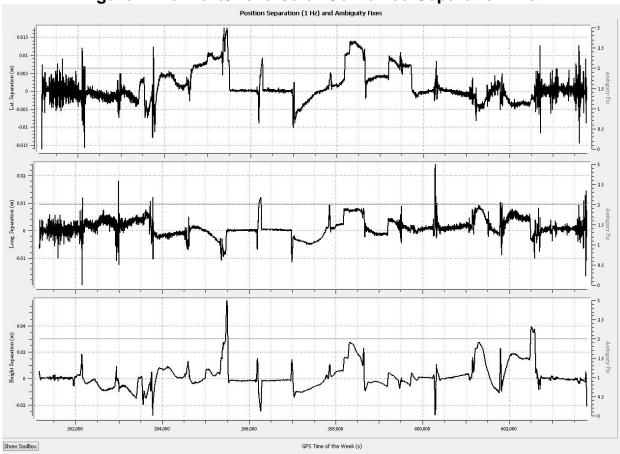


Figure 4: Forward/Reverse or Combined Separation Plot

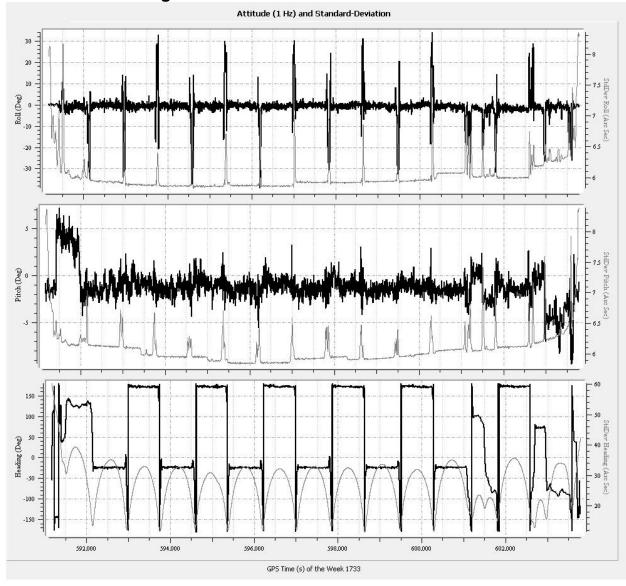


Figure 5: Attitude and Standard Deviation

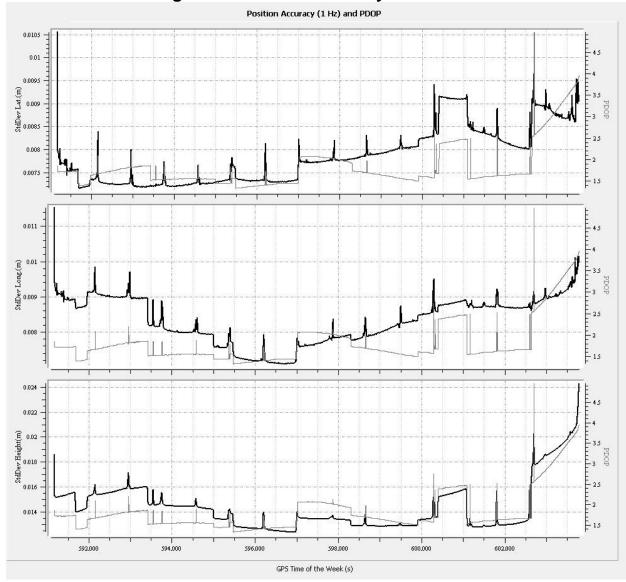


Figure 6: Position Accuracy and PDOP

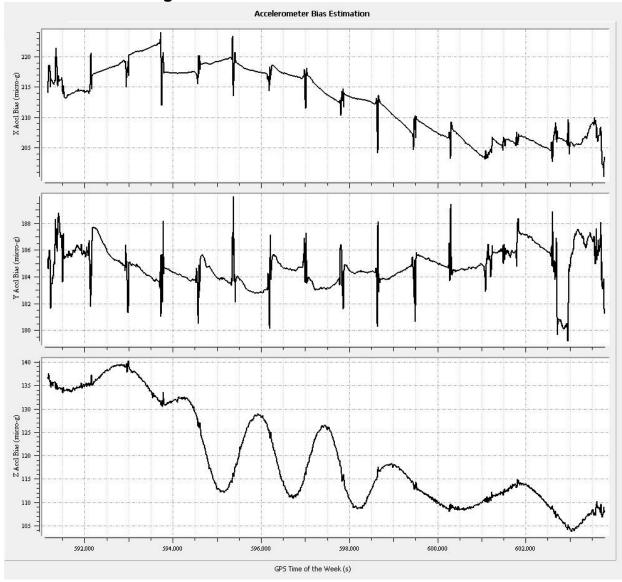


Figure 7: Accelerometer Bias Estimation

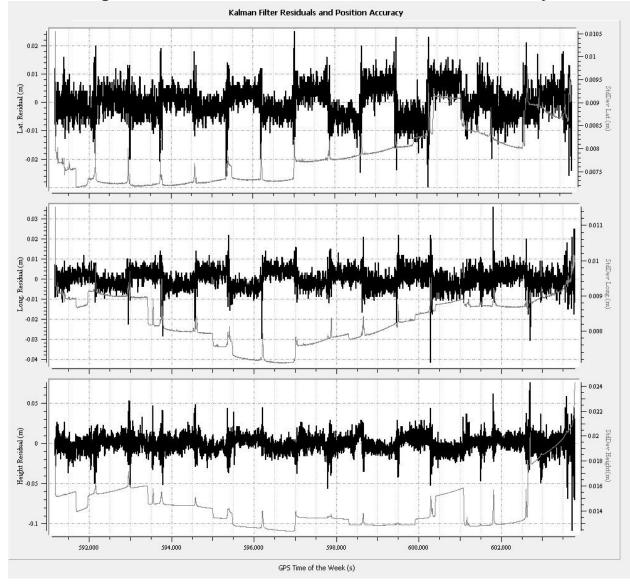


Figure 8: Kalman Filter Residuals and Position Accuracy

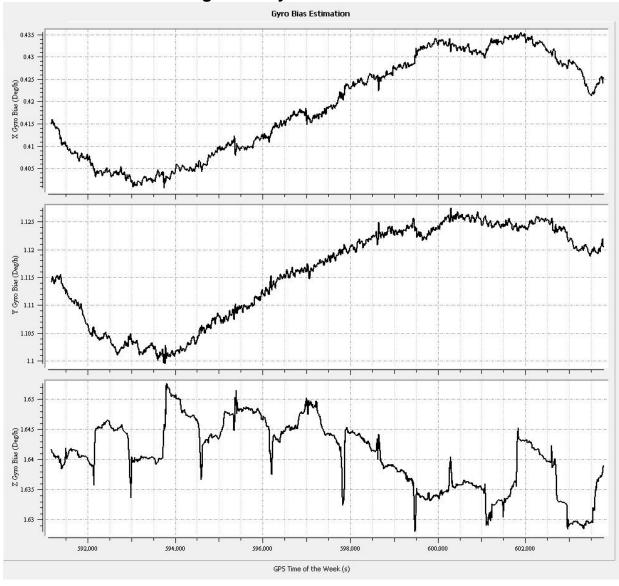
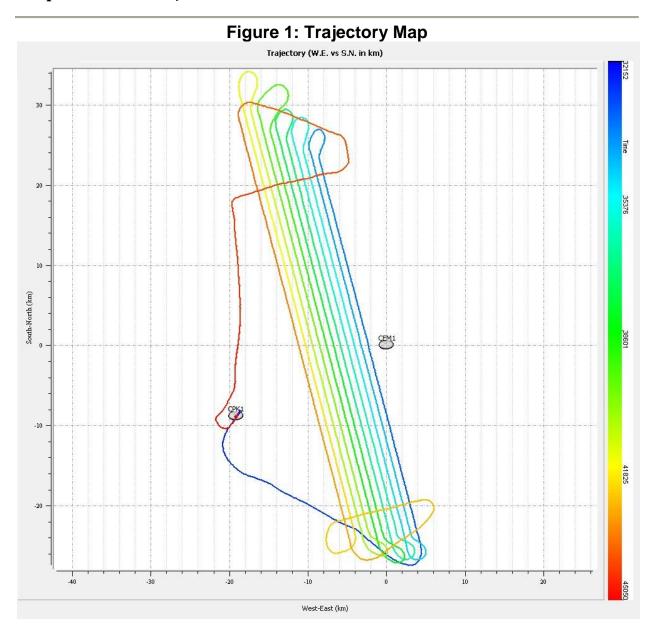



Figure 9: Gyro Bias Estimation

Output Results for JD13090_1

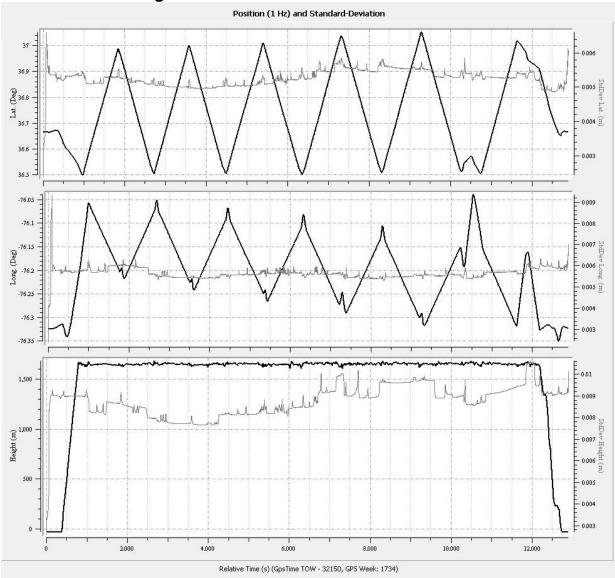


Figure 2: Position and Standard Deviation

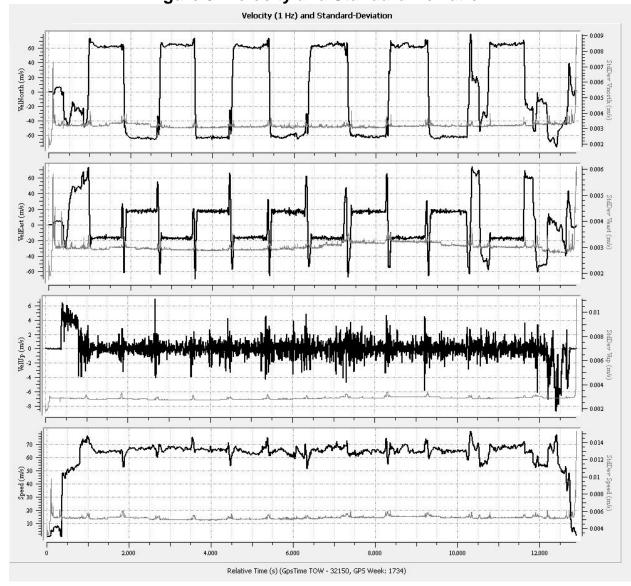


Figure 3: Velocity and Standard Deviation

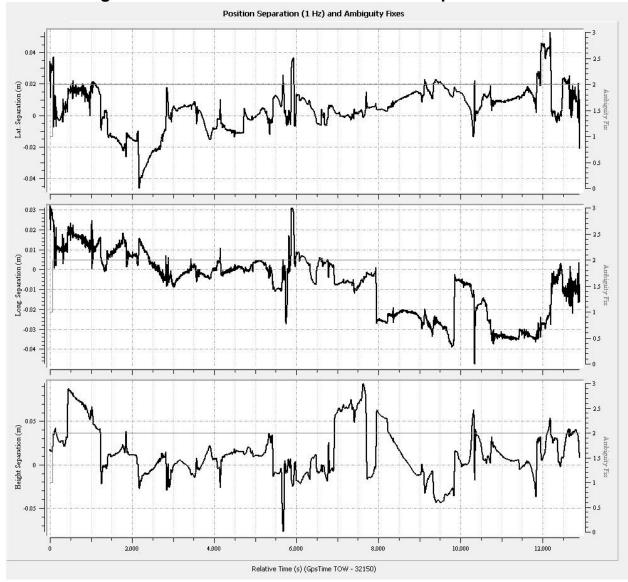


Figure 4: Forward/Reverse or Combined Separation Plot

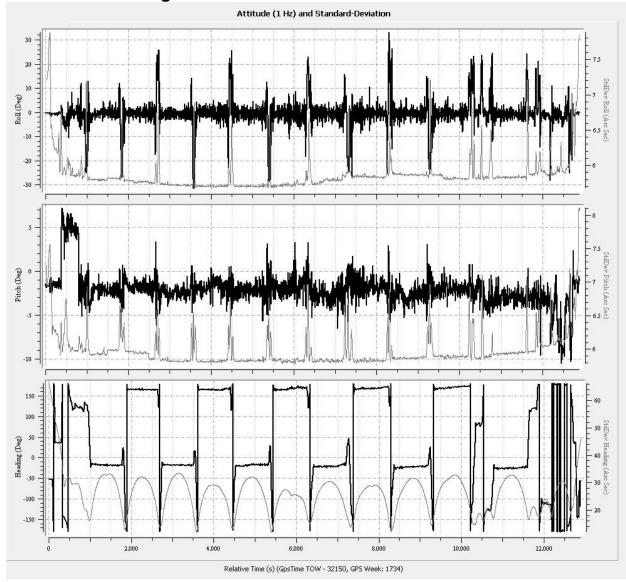


Figure 5: Attitude and Standard Deviation

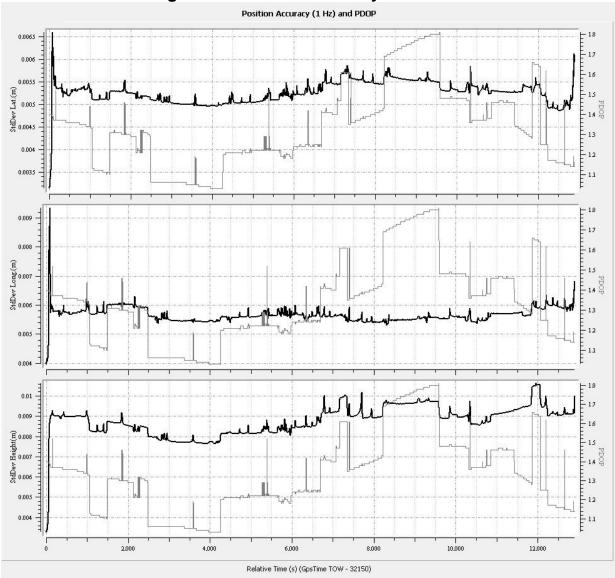


Figure 6: Position Accuracy and PDOP

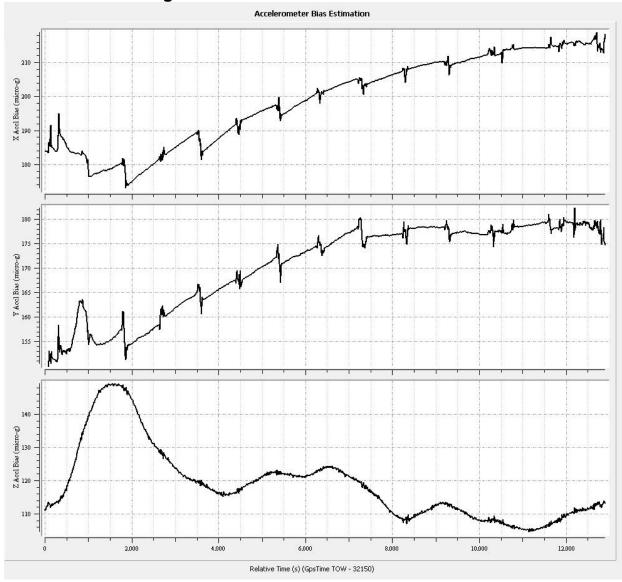


Figure 7: Accelerometer Bias Estimation

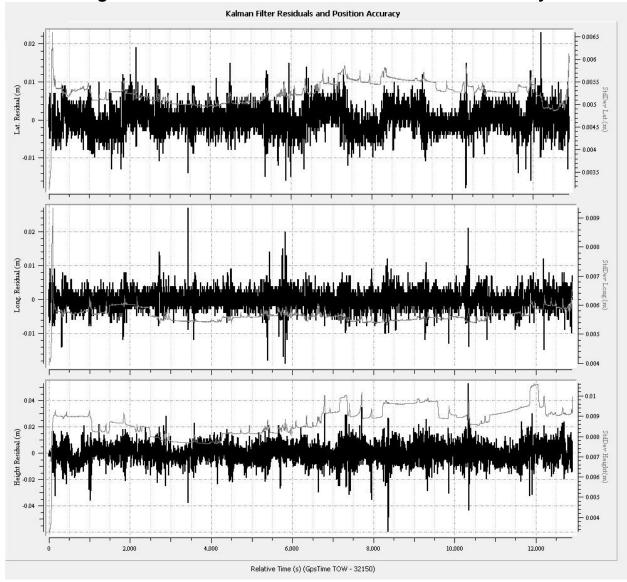


Figure 8: Kalman Filter Residuals and Position Accuracy

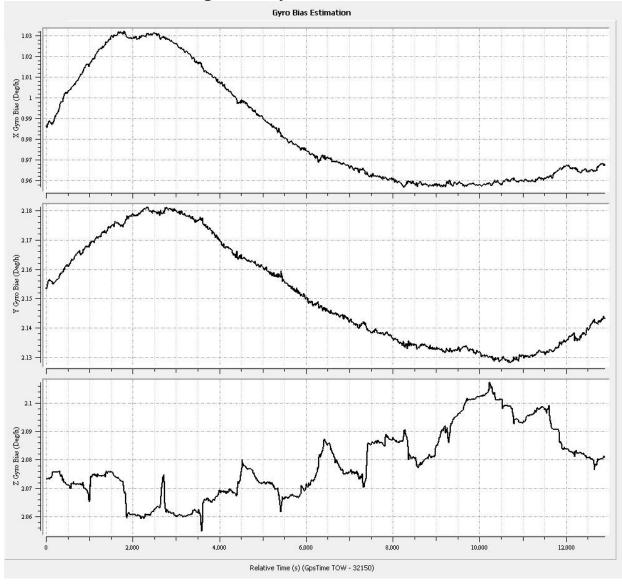
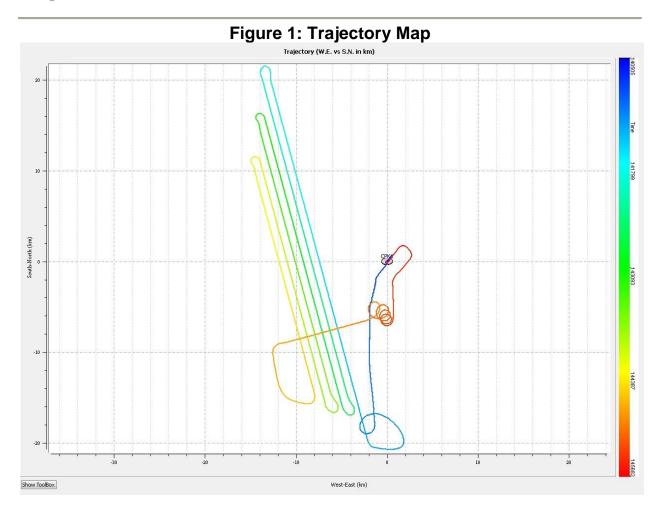



Figure 9: Gyro Bias Estimation

Output Results for JD13091_1

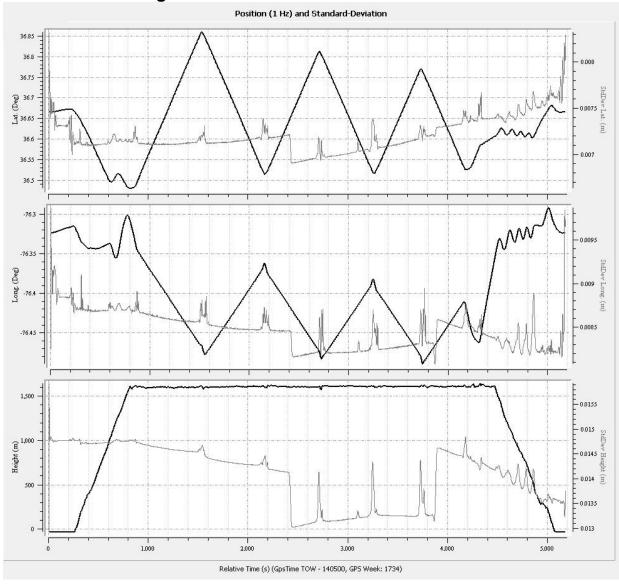


Figure 2: Position and Standard Deviation

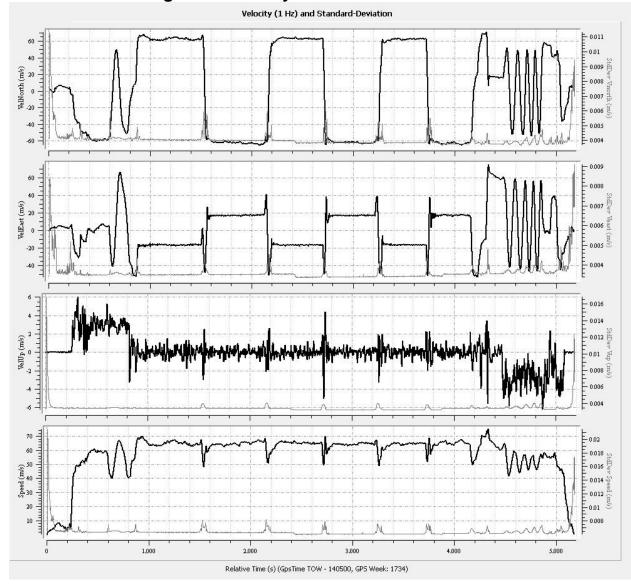


Figure 3: Velocity and Standard Deviation

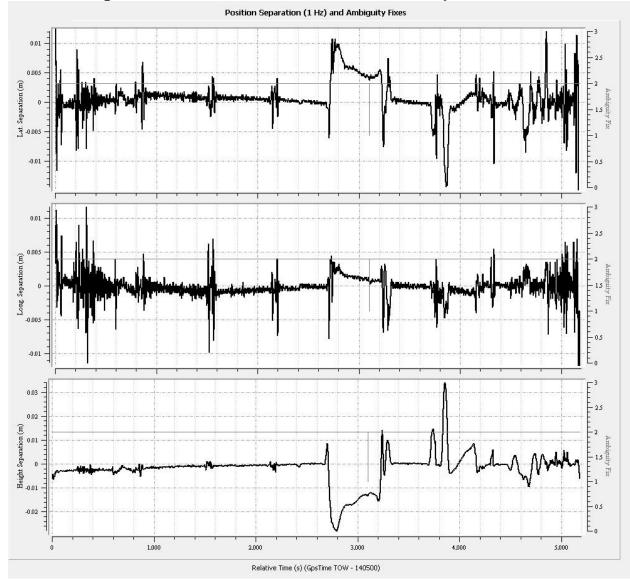


Figure 4: Forward/Reverse or Combined Separation Plot

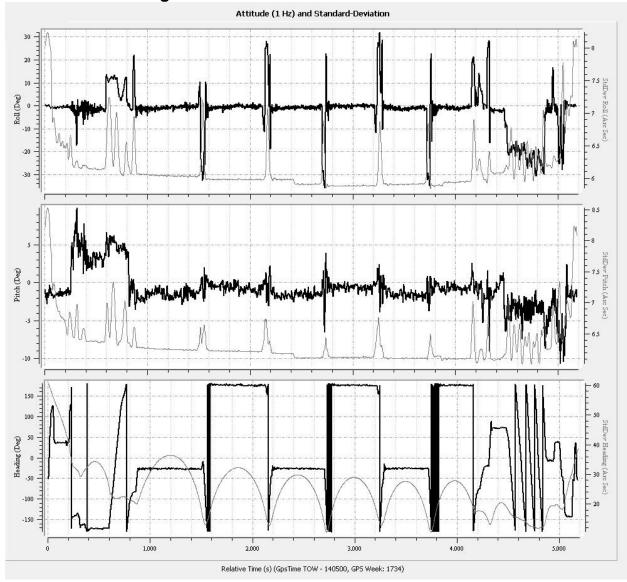


Figure 5: Attitude and Standard Deviation

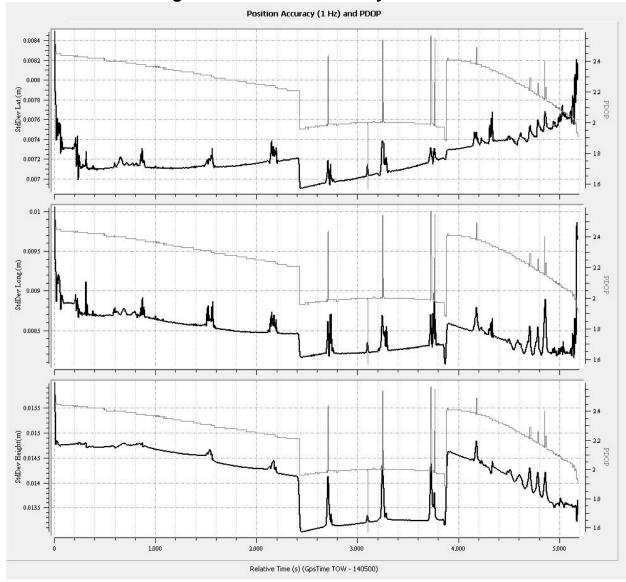


Figure 6: Position Accuracy and PDOP

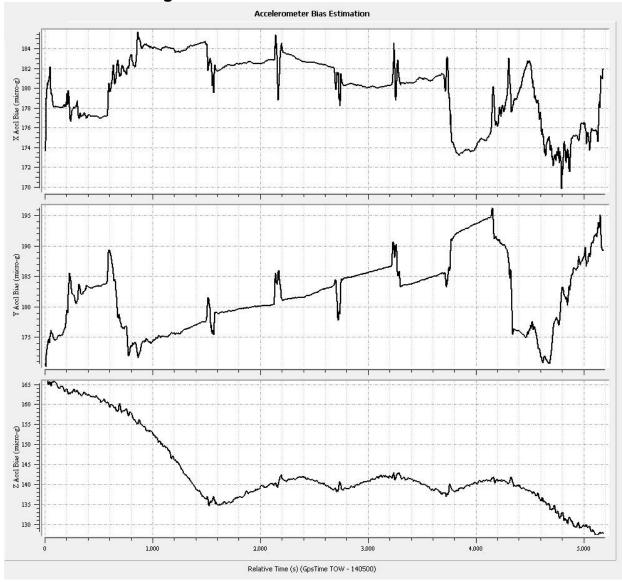


Figure 7: Accelerometer Bias Estimation

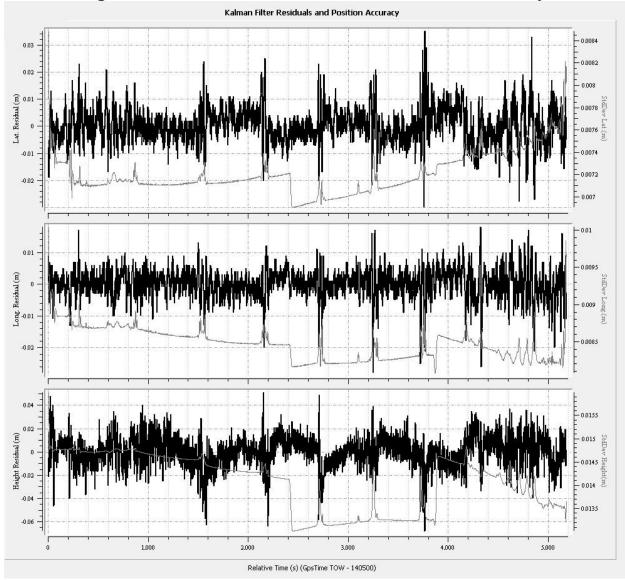


Figure 8: Kalman Filter Residuals and Position Accuracy

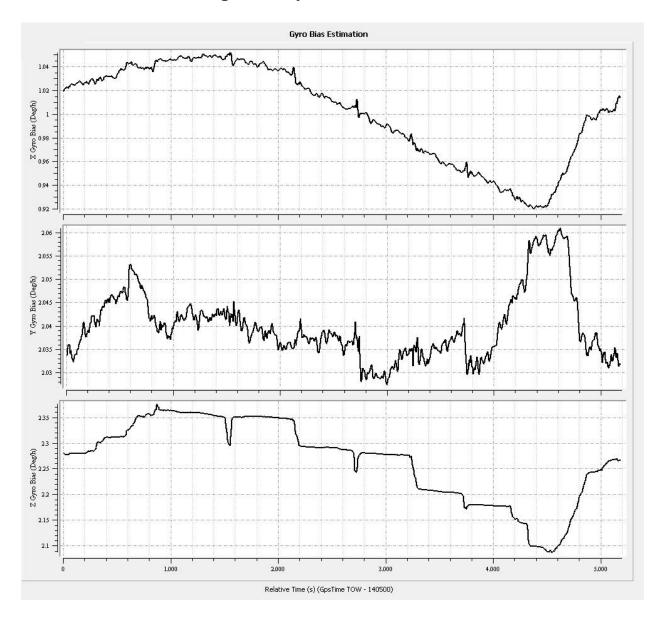
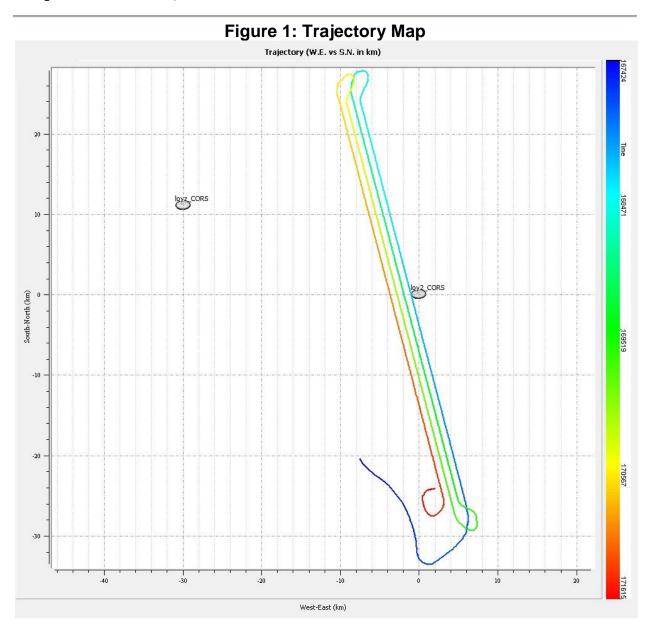



Figure 9: Gyro Bias Estimation

Output Results for JD13091_2

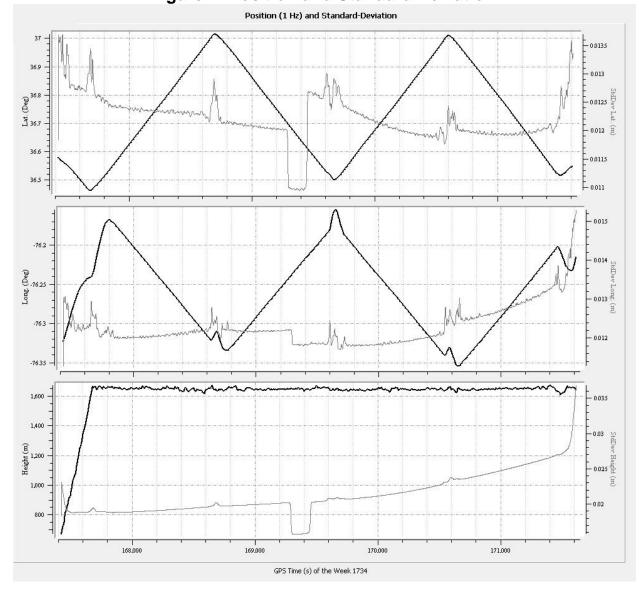


Figure 2: Position and Standard Deviation

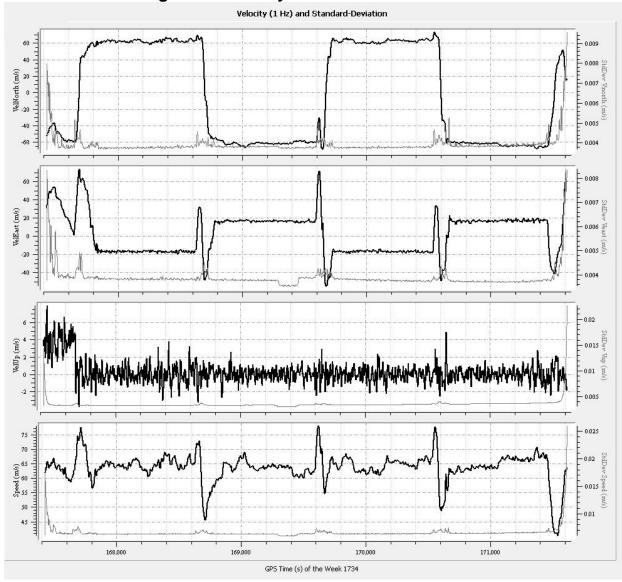


Figure 3: Velocity and Standard Deviation

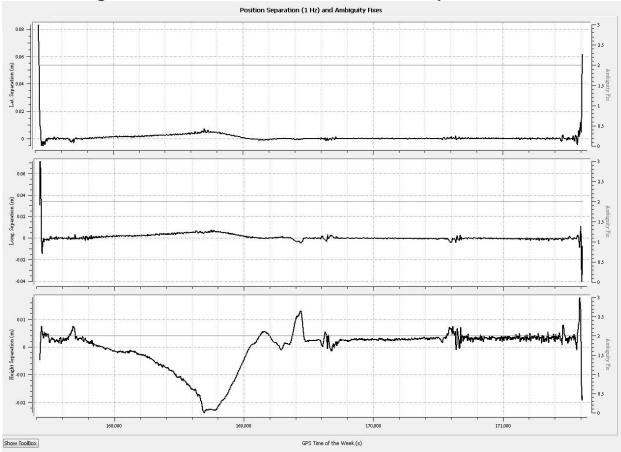


Figure 4: Forward/Reverse or Combined Separation Plot

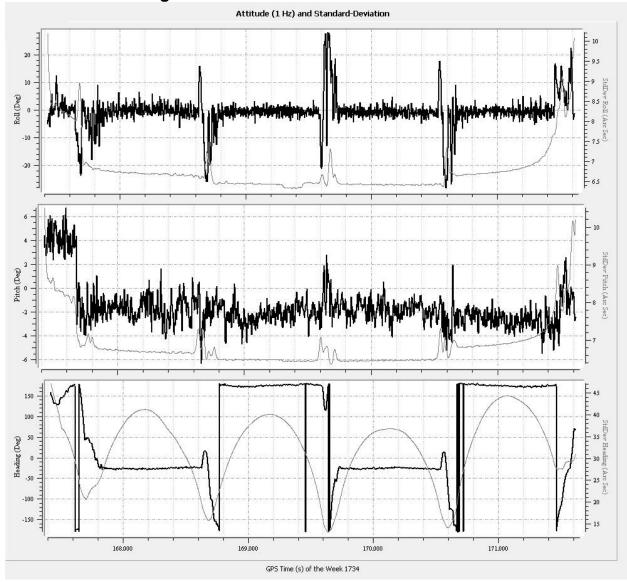


Figure 5: Attitude and Standard Deviation

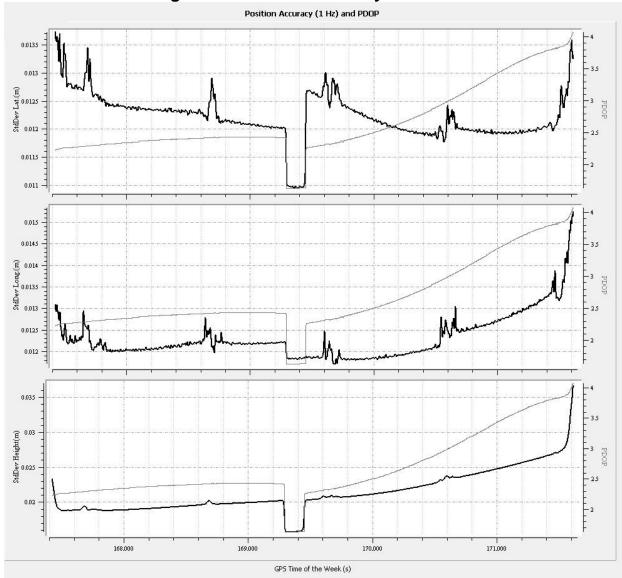


Figure 6: Position Accuracy and PDOP

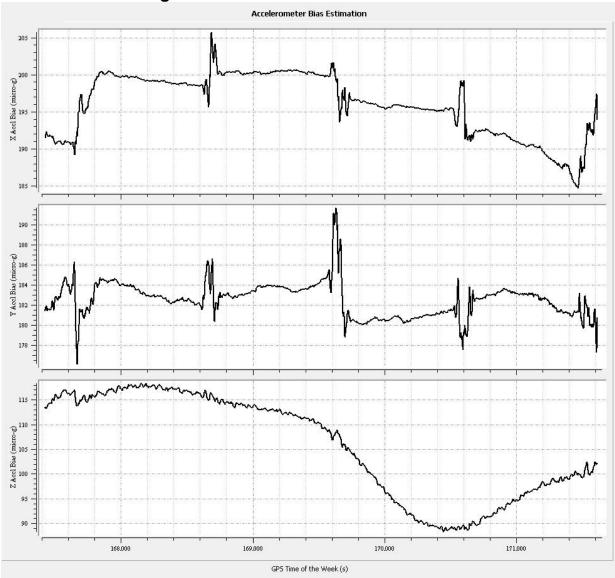


Figure 7: Accelerometer Bias Estimation

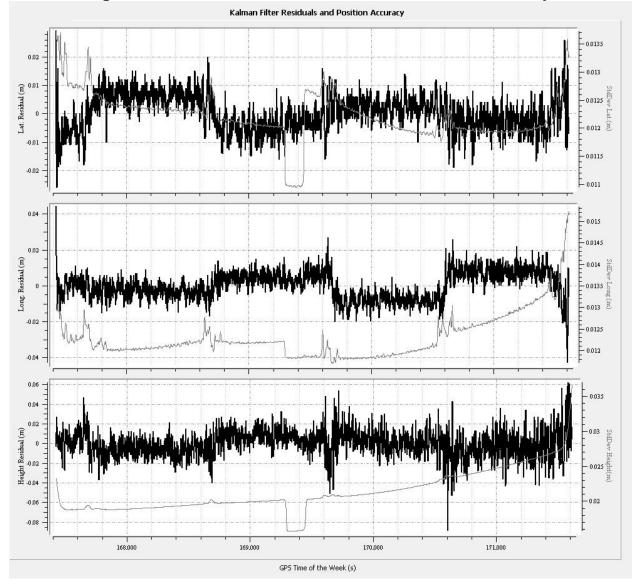


Figure 8: Kalman Filter Residuals and Position Accuracy

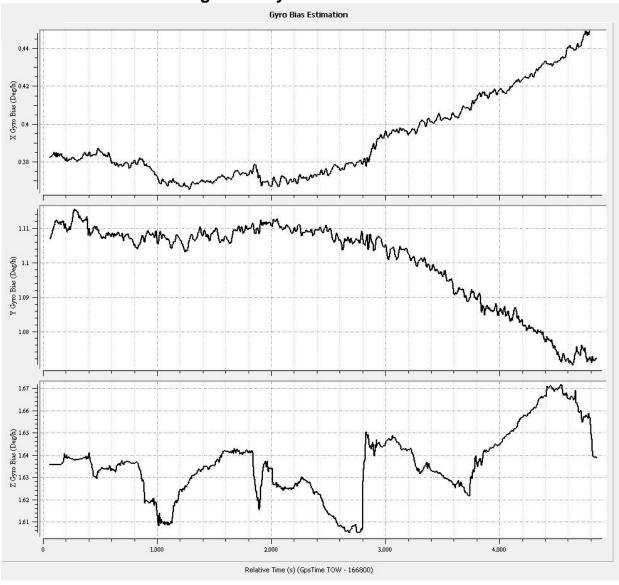
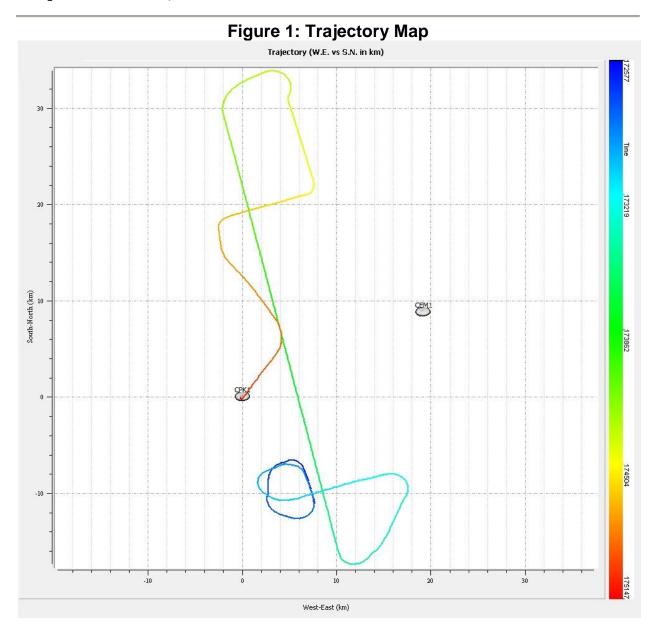



Figure 9: Gyro Bias Estimation

Output Result for JD13091 $_3$

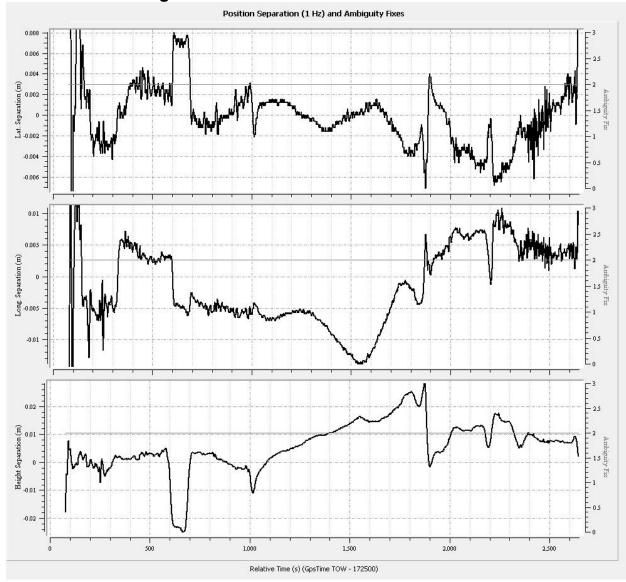


Figure 2: Position and Standard Deviation

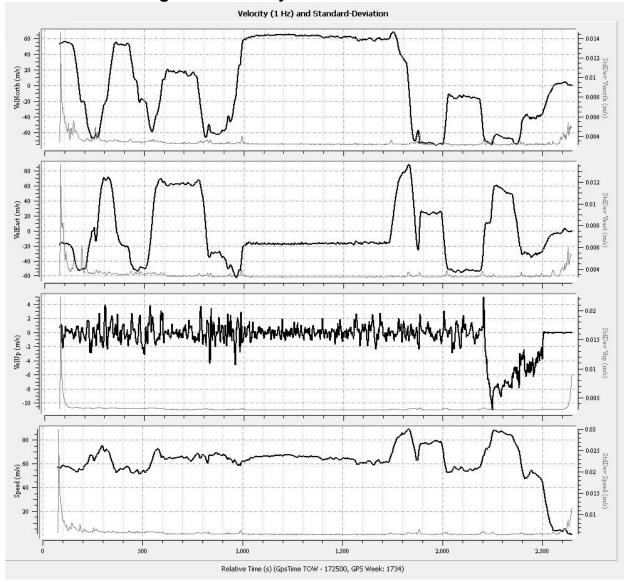


Figure 3: Velocity and Standard Deviation

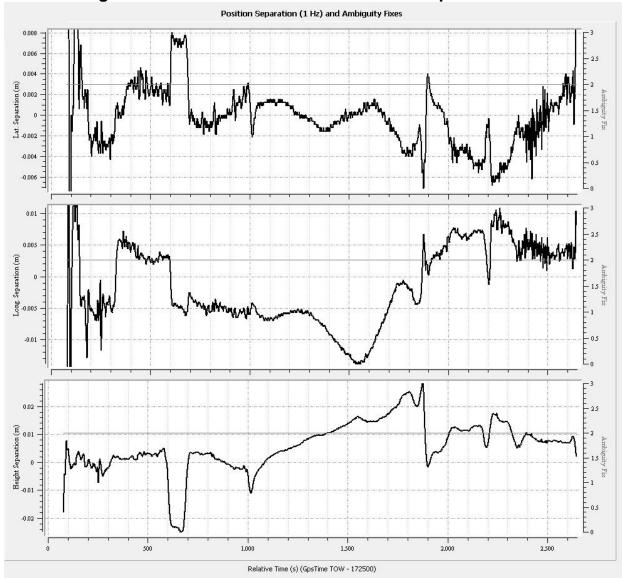


Figure 4: Forward/Reverse or Combined Separation Plot

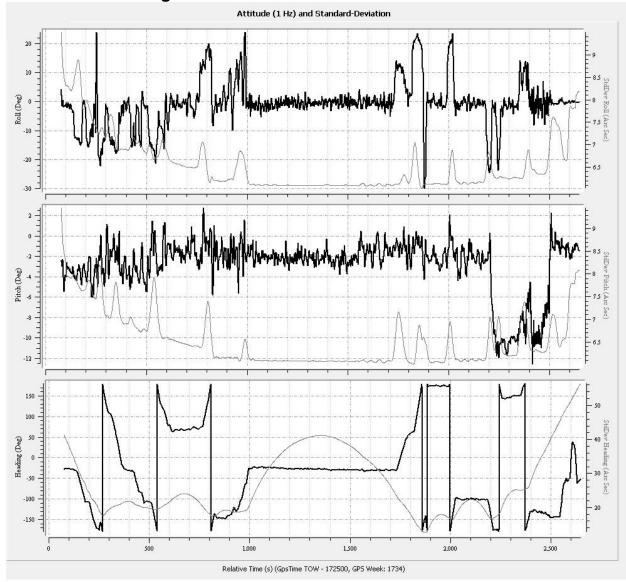


Figure 5: Attitude and Standard Deviation

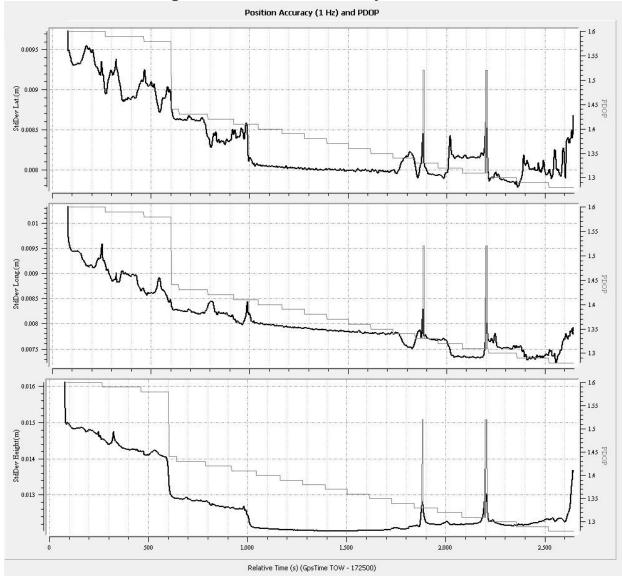


Figure 6: Position Accuracy and PDOP

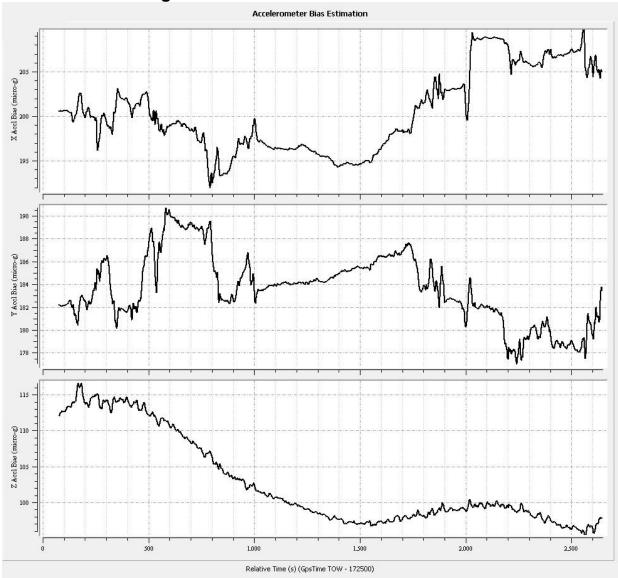


Figure 7: Accelerometer Bias Estimation

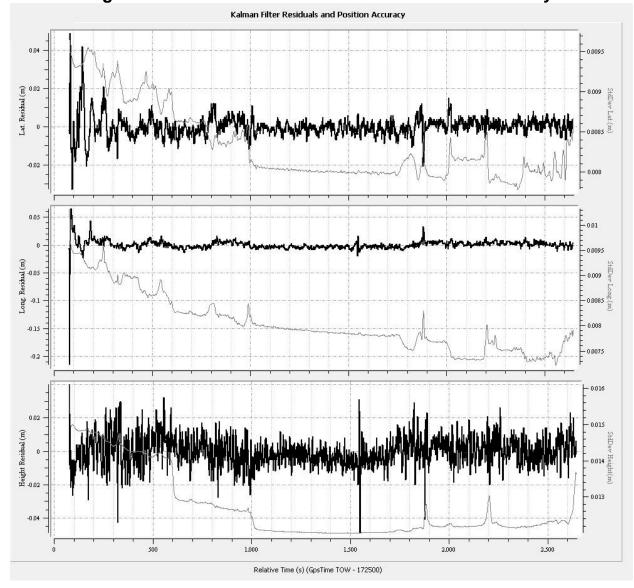


Figure 8: Kalman Filter Residuals and Position Accuracy

Figure 9: Gyro Bias Estimation

