USGS Atchafalaya 2 LiDAR | spatialRepresentationInfo|
---|---|
(MI_Metadata) fileIdentifier: gov.noaa.nmfs.inport:49765 language: LanguageCode: eng characterSet: (MD_CharacterSetCode) UTF8 hierarchyLevel: (MD_ScopeCode) dataset contact: (CI_ResponsibleParty) organisationName: OCM Partners contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (missing) address: (CI_Address) role: (CI_RoleCode) resourceProvider contact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact dateStamp: DateTime: 2022-08-09T17:11:36 metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data metadataStandardVersion: ISO 19115-2:2009(E) return to top spatialRepresentationInfo: return to top referenceSystemInfo: return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) authority: (CI_Citation) title: NAD83(2011) date: (CI_Date) date: 2008-11-12 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: European Petroleum Survey Group contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://apps.epsg.org/api/v1/CoordRefSystem/6318/export/?format=gml role: (missing) code: urn:ogc:def:crs:EPSG:6318 version: 6.18.3 return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) authority: (CI_Citation) title: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters alternateTitle: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters citedResponsibleParty: (CI_ResponsibleParty) organisationName: (withheld) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://apps.epsg.org/api/v1/VerticalCoordRefSystem/5703/?api_key=gml name: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters description: Link to Geographic Markup Language (GML) description of reference system. function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) resourceProvider citedResponsibleParty: (CI_ResponsibleParty) organisationName: European Petroleum Survey Group contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.epsg.org/ name: European Petroleum Survey Group Geodetic Parameter Registry description: Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. function: (CI_OnLineFunctionCode) search role: (CI_RoleCode) publisher VerticalCS: metaDataProperty: CommonMetaData: type: vertical informationSource: OGP revisionDate: 2006-11-28 isDeprecated: false identifier: urn:ogc:def:cs:EPSG::6499 name: Vertical CS. Axis: height (H). Orientation: up. UoM: meter. remarks: Used in vertical coordinate reference systems. axis: CoordinateSystemAxis: descriptionReference: urn:ogc:def:axis-name:EPSG::9904 identifier: urn:ogc:def:axis:EPSG::114 axisAbbrev: H axisDirection: up code: urn:ogc:def:crs:EPSG::5703 return to top identificationInfo: (MD_DataIdentification) citation: (CI_Citation) title: USGS Atchafalaya 2 LiDAR alternateTitle: la2013_usgs_atchafalaya_m4747_metadata date: (CI_Date) date: 2015-02 dateType: (CI_DateTypeCode) publication identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: Anchor: InPort Catalog ID 49765 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inport/item/49765 protocol: WWW:LINK-1.0-http--link name: Full Metadata Record description: View the complete metadata record on InPort for more information about this dataset. function: (CI_OnLineFunctionCode) information role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer protocol: WWW:LINK-1.0-http--link name: Citation URL description: Online Resource function: (CI_OnLineFunctionCode) download role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: Citation URL description: Online Resource function: (CI_OnLineFunctionCode) download role: (inapplicable) abstract: The Light Detection and Ranging (LiDAR) dataset is a survey of the Atchafalaya Basin project area. The entire survey area for Atchafalaya encompasses approximately 1650.5 square miles. The LiDAR point cloud was flown at a nominal post spacing of 1.0 meters for unobscured areas. The LiDAR data and derivative products produced are in compliance with the U.S. Geological Survey National Geospatial Program LIDAR Guidelines and Base Specifications, Version 13-ILMF 2010. The flight lines were acquired by Aerial Cartographics of America, Inc "ACA", which required eight missions between December 18, 2012 - March 01, 2013. Derivative products from the aerial acquisition include: raw point cloud data in LAS v1.2 format, classified point cloud data in LAS v1.2 format, bare earth surface (raster DEM) tiles in 32-bit floating point raster ERDAS .IMG format, breaklines in ESRI Arc Shape format, control points in ESRI Arc Shape format, project report, and FGDC compliant XML metadata. This data set is an LAZ (compressed LAS) format file containing LIDAR point cloud data. purpose: The purpose of this project was to produce a high resolution LiDAR data set to assist in change detection mapping of the Atchafalaya Basin located in Southern Louisiana. status: (MD_ProgressCode) completed pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) custodian resourceMaintenance: (MD_MaintenanceInformation) maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) unknown graphicOverview: (MD_BrowseGraphic) fileName: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4747/supplemental/la2013_usgs_atchafalaya_m4747.kmz fileDescription: This graphic shows the coverage of the 2012 Atchafalaya Louisiana data collection. fileType: kmz descriptiveKeywords: (MD_Keywords) keyword: Winter type: (MD_KeywordTypeCode) temporal thesaurusName: (CI_Citation) title: Season date: (missing) descriptiveKeywords: (MD_Keywords) keyword: 2013 type: (MD_KeywordTypeCode) temporal thesaurusName: (CI_Citation) title: Year date: (missing) descriptiveKeywords: (MD_Keywords) keyword: United States type: (MD_KeywordTypeCode) place thesaurusName: (CI_Citation) title: Country date: (missing) descriptiveKeywords: (MD_Keywords) keyword: Iberville and St Martin type: (MD_KeywordTypeCode) place thesaurusName: (CI_Citation) title: Parishes date: (missing) descriptiveKeywords: (MD_Keywords) keyword: USGS type: (MD_KeywordTypeCode) theme descriptiveKeywords: (MD_Keywords) keyword: Lidar - partner (no harvest) type: (MD_KeywordTypeCode) project thesaurusName: (CI_Citation) title: InPort date: (inapplicable) resourceConstraints: (MD_LegalConstraints) useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Cite As: OCM Partners, [Date of Access]: USGS Atchafalaya 2 LiDAR [Data Date Range], https://www.fisheries.noaa.gov/inport/item/49765. resourceConstraints: (MD_Constraints) useLimitation: NOAA provides no warranty, nor accepts any liability occurring from any incomplete, incorrect, or misleading data, or from any incorrect, incomplete, or misleading use of the data. It is the responsibility of the user to determine whether or not the data is suitable for the intended purpose. resourceConstraints: (MD_LegalConstraints) accessConstraints: (MD_RestrictionCode) otherRestrictions useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Access Constraints: None | Use Constraints: The data depicts the elevations at time of survey and are accurate only for that time. Exercise professional judgement in using this data. | Distribution Liability: Any conclusions drawn from the analysis of this information are not the responsibility of USGS, Northrop Grumman, NOAA, the Office for Coastal Management or its partners. resourceConstraints: (MD_SecurityConstraints) classification: (MD_ClassificationCode) unclassified classificationSystem: (missing) handlingDescription: (missing) aggregationInfo: (MD_AggregateInformation) aggregateDataSetName: (CI_Citation) title: NOAA Data Management Plan (DMP) date: (unknown) identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: 49765 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inportserve/waf/noaa/nos/ocmp/dmp/pdf/49765.pdf protocol: WWW:LINK-1.0-http--link name: NOAA Data Management Plan (DMP) description: NOAA Data Management Plan for this record on InPort. function: (CI_OnLineFunctionCode) information role: (inapplicable) associationType: (DS_AssociationTypeCode) crossReference spatialRepresentationType: (MD_SpatialRepresentationTypeCode) vector language: eng; US topicCategory: (MD_TopicCategoryCode) elevation extent: (EX_Extent) geographicElement: (EX_GeographicBoundingBox) westBoundLongitude: -92.2550429924 eastBoundLongitude: -91.1566907901 southBoundLatitude: 29.3595954527 northBoundLatitude: 30.8269431712 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2012-12-18 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2012-12-19 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2012-12-21 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2013-01-28 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2013-02-19 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2013-02-20 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2013-03-01 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2013-03-02 supplementalInformation: A footprint of this data set may be viewed in Google Earth at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4747/supplemental/la2013_usgs_atchafalaya_m4747.kmz A report for this dataset is available at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4747/supplemental/la2013_usgs_atchafalaya_m4747_surveyreport.pdf return to top contentInfo: (MD_FeatureCatalogueDescription) complianceCode: false language: LanguageCode: eng includedWithDataset: false featureCatalogueCitation: (CI_Citation) title: none date: (unavailable) return to top distributionInfo: (MD_Distribution) distributor: (MD_Distributor) distributorContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) distributor transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=4747 protocol: WWW:LINK-1.0-http--link name: Customized Download description: Create custom data files by choosing data area, product type, map projection, file format, datum, etc. function: (CI_OnLineFunctionCode) download transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4747/index.html protocol: WWW:LINK-1.0-http--link name: Bulk Download description: Simple download of data files. function: (CI_OnLineFunctionCode) download return to top dataQualityInfo: (DQ_DataQuality) scope: (DQ_Scope) level: (MD_ScopeCode) dataset report: (DQ_QuantitativeAttributeAccuracy) nameOfMeasure: Accuracy evaluationMethodDescription: These data are not attributed. result: (missing) report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Horizontal Positional Accuracy evaluationMethodDescription: There is not a systematic method of testing when testing horizontal accuracy in LiDAR. However this is tested during calibration of the sensor and is rechecked during the comparing of parallel and perpendicular flight lines. Additionally the horizontal accuracy is checked by collecting building corners during the survey. Lines are then digitized representing the building outline and the differences are measure from each individual survey point to the corner of the building outline. Stats are calculated to ensure horizontal tolerances are met. These measurements resulted in an RMSEr of 0.39 meters and equals a RMSE accuracy of 0.68 meter horizontal accuracy at the 95 % confidence level. Method used was the NSSDA standard for horizontal accuracy assessment. RMSEr * 1.73 = Horizontal Accuracy at the 95% confidence interval. ; Quantitative Value: 0.39 meters, Test that produced the value: 39 cm RMSE (0.68 meter horizontal accuracy at the 95 % confidence level) result: (missing) report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Vertical Positional Accuracy evaluationMethodDescription: The accuracy assessment was performed using the NSSDA standard method to compute the root mean square error (RMSE) based on a comparison of ground control points (GCP) and DEM derived from the LiDAR dataset. Testing was performed prior to gridding of the filtered LiDAR data points and construction of the 32-bit ESRI float grid format bare earth tiles. The RMSEz figure was used to compute the vertical National Standard for Spatial Data Accuracy (NSSDA). A spatial proximity analysis was used to select edited LiDAR data points contiguous to the relevant GCPs. A search radius decision rule is applied with consideration of terrain complexity, cumulative error and adequate sample size. Cumulative error results from the errors inherent in the various sources of horizontal measurement. These sources include the airborne GPS, GCPs and the uncertainty of the accuracy of the LiDAR data points. This accuracy is achieved prior to the subsampling that occurs through integration with the inertial measurement unit (IMU) positions that are recorded. It is unclear at this time whether the initial accuracy is maintained. The horizontal accuracy of the GCPs is estimated to be in the range of approximately .03 to .04 meters. Finally, sample size was considered. The specification for the National Standard for Spatial Data Accuracy is a minimum of 20 points to conduct a statistically significant accuracy evaluation which provides a reasonable approximation of a normal distribution. The intent of the NSSDA is to reflect the geographic area of interest and the distribution of error in the data set (Federal Geographic Data Committee, 1998, Geospatial National Standard for Spatial Data Accuracy, Federal Geographic Data Committee Secretariat, Reston, Virginia, p.3-4). Additional steps were taken to ensure the vertical accuracy of the LiDAR data including: Step 1: Precision Bore sighting (Check Edge-matching) Step 2: Compare the LiDAR data to the Field Survey (The vertical accuracy requirements meet or exceed the required RMSEz of 12.5cm and the vertical accuracy of 24.5cm at the 95% confidence level). Data collected under this task order exceeds the required National Standards for Spatial Database Accuracy (NSSDA) accuracy standards. SVA accuracies at the 95th Percentile collected and tested, as target accuracies results as follows:Bare-Earth= 0.17, Tall Weeds and Crops=0.24 meters, Brush Lands and Trees= 0.48 , Forested and Fully Grown=0.12 . Consolidated Vertical Accuracies (CVA) at the 95th Percentile =0.32 meters. Final accuracy statement for this task order is as follows; FVA Tested 0.17 meters vertical accuracy at the 95% confidence level.; Quantitative Value: 0.086 meters, Test that produced the value: 8.6 cm RMSEz result: (missing) report: (DQ_CompletenessCommission) nameOfMeasure: Completeness Report evaluationMethodDescription: Ground Truth data was collected of the five major land cover classes present within the study area. 20 points were collected in each of the five vegetation classes that were present within the AOI bare earth, tall weeds and crops, brush lands and trees, forested and fully grown, and swamp and marsh or wetlands. Pair of points was surveyed using the local Gulf-Net RTK Cooperative network once completed the total station is used to collect the taller vegetation classes. A total station was used to collect all the shots collected in the taller vegetation class, due to the limited GPS signal when working in and around vegetation canopy. result: (missing) report: (DQ_ConceptualConsistency) nameOfMeasure: Conceptual Consistency evaluationMethodDescription: The GPS survey was tied into the Gulf-Net RTK Cooperative Network located in Louisiana. The Gulf-Net network is a network of continuously operating GPS reference stations that provides Real Time Kinematic (RTK) capabilities within a Real Time Network (RTN). This allows corrections to be applied to the points as they are being collected, eliminating the need for an adjustment. Several existing control monuments listed in the NSRS database were used as checks within the Gulf-Net Network. This confirmed network accuracies were being met during the field survey as well as providing a redundancy check on the Gulf-Net network. The Specified local network accuracy of 5cm at the 95% confidence level was met or exceeded. Data analysis was accomplished by comparing ground truth checkpoints with LIDAR points from the derived DEM and reported three ways 1. FVA 2. SVA 3. CVA. Additionally the FVA points were assessed against the TIN derived from the LAS LiDAR point cloud controlled and calibrated swath data to ensure they met the required accuracy of 12.5cm RMSEz and 24.5cm at the 95% confidence interval. result: (missing) lineage: (LI_Lineage) statement: (missing) processStep: (LI_ProcessStep) description: The ABGPS, inertial measurement unit (IMU), and raw scans are collected during the LiDAR aerial survey. The ABGPS monitors the xyz position of the sensor and the IMU monitors the orientation. During the aerial survey, laser pulses reflected from features on the ground surface are detected by the receiver optics and collected by the data logger. GPS locations are based on data collected by receivers on the aircraft and base stations on the ground. The ground base stations are placed no more than 40 km radius from the flight survey area. dateTime: DateTime: 2013-03-01T00:00:00 processStep: (LI_ProcessStep) description: The ABGPS, IMU, and raw scans are integrated using proprietary software developed by Lieca and delivered with the Lieca System. The resultant file is in a LAS binary file format. The LAS version 1.2 file format can be easily transferred from one file format to another. It is a binary file format that maintains information specific to the LiDAR data (return number, intensity value, xyz, etc.). The resultant points are produced in the NAD83 UTM 15 North Coordinate System, with units in Meters and referenced to the NAVD88 datum. The LiDAR mass points were processed in American Society for Photogrammetry and Remote Sensing LAS 1.2 format. The header file for each dataset is complete as defined by the LAS 1.2 specification. The datasets were divided into a 1500 meter by 1500 meter tiling scheme, named according to the US National Grid scheme. The tiles are contiguous, do not overlap, and are suitable for seamless topographic data mosaics that include no "no data" areas. The names of the tiles include numeric column and row designations and all files utilize the LAS file extension dateTime: DateTime: 2013-03-11T00:00:00 processStep: (LI_ProcessStep) description: The unedited data are classified to facilitate the application of the appropriate feature extraction filters. A combination of proprietary filters are applied as appropriate for the production of bare earth digital elevation models (DEMs). Interactive editing methods are applied to those areas where it is inappropriate or impossible to use the feature extraction filters, based upon the design criteria and/or limitations of the relevant filters. These same feature extraction filters are used to produce elevation height surfaces. dateTime: DateTime: 2013-04-09T00:00:00 processStep: (LI_ProcessStep) description: Filtered and edited data are subjected to rigorous QA/QC, according to the Northrop Grumman, Advanced GEOINT Solutions Operating Unit Quality Control Plan and Procedures. A series of quantitative and visual procedures are employed to validate the accuracy and consistency of the filtered and edited data. Ground control is established by Northrop Grumman, Advanced GEOINT Solutions Operating Unit and GPS-derived ground control points (GCPs) in various areas of dominant and prescribed land cover. These points are coded according to land cover, surface material, and ground control suitability. A suitable number of points are selected for calculation of a statistically significant accuracy assessment, as per the requirements of the National Standard for Spatial Data Accuracy. A spatial proximity analysis is used to select edited LiDAR data points within a specified distance of the relevant GCPs. A search radius decision rule is applied with consideration of terrain complexity, cumulative error, and adequate sample size. Accuracy validation and evaluation is accomplished using proprietary software to apply relevant statistical routines for calculation of Root Mean Square Error (RMSE) and the National Standard for Spatial Data Accuracy (NSSDA), according to Federal Geographic Data Committee (FGDC) specifications. dateTime: DateTime: 2013-07-05T00:00:00 processStep: (LI_ProcessStep) description: The Bare Earth DEM was extracted from the raw LIDAR products and attributed with the bare earth elevation for each cell of the DEM. Bare Earth DEMs do not include buildings, vegetation, bridges or overpass structures in the bare earth model. Where abutments were clearly delineated, this transition occurred at the junction of the bridge and abutment. Where this junction was not clear, the extractor used their best estimate to delineate the separation of ground from elevated bridge surface. In the case of bridges over water bodies, if the abutment was not visible, the junction was biased to the prevailing stream bank so as not to impede the flow of water in a hydrographic model. Bare earth surface includes the top of water bodies not underwater terrain, if visible. dateTime: DateTime: 2013-07-19T00:00:00 processStep: (LI_ProcessStep) description: The NOAA Office for Coastal Management (OCM) received the topographic lidar files in LAS format from SWFWMD. The files contained lidar easting, northing, elevation, intensity, return number, etc. The data was received in Florida State Plane West 0902 (US ft) and NAVD88 (US ft). OCM performed the following processing for data storage and Digital Coast provisioning purposes: 1. The files were reviewed and erroneous elevations were removed. 2. Class 11 (withheld) points were reclassed to Class 15 (as needed). dateTime: DateTime: 2015-01-15T00:00:00 processStep: (LI_ProcessStep) description: The vertical values in this data set have been converted to reference North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters, using the GEOID18 grids provided by the National Geodetic Survey. Any datum and projection transformations were then done with the Office for Coastal Management 'datum_shift' program. Compression to an LAZ file was done with the LAStools 'laszip' program and can be unzipped with the same free program (laszip.org) Processing notes: dateTime: DateTime: 2023-07-01T06:53:07 processor: (CI_ResponsibleParty) individualName: NOAA Office for Coastal Management contactInfo: (CI_Contact) address: (CI_Address) electronicMailAddress: coastal.info@noaa.gov role: (CI_RoleCode) processor |