2014 U.S. Geological Survey CMGP LiDAR: Post Sandy (New Jersey) | spatialRepresentationInfo|
---|---|
(MI_Metadata) fileIdentifier: gov.noaa.nmfs.inport:49867 language: LanguageCode: eng characterSet: (MD_CharacterSetCode) UTF8 hierarchyLevel: (MD_ScopeCode) dataset contact: (CI_ResponsibleParty) organisationName: OCM Partners contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (missing) address: (CI_Address) role: (CI_RoleCode) resourceProvider contact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact dateStamp: DateTime: 2022-08-09T17:11:38 metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data metadataStandardVersion: ISO 19115-2:2009(E) return to top spatialRepresentationInfo: return to top referenceSystemInfo: return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) authority: (CI_Citation) title: NAD83(2011) date: (CI_Date) date: 2008-11-12 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: European Petroleum Survey Group contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://apps.epsg.org/api/v1/CoordRefSystem/6318/export/?format=gml role: (missing) code: urn:ogc:def:crs:EPSG:6318 version: 6.18.3 return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) authority: (CI_Citation) title: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters alternateTitle: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters citedResponsibleParty: (CI_ResponsibleParty) organisationName: (withheld) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://apps.epsg.org/api/v1/VerticalCoordRefSystem/5703/?api_key=gml name: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters description: Link to Geographic Markup Language (GML) description of reference system. function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) resourceProvider citedResponsibleParty: (CI_ResponsibleParty) organisationName: European Petroleum Survey Group contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.epsg.org/ name: European Petroleum Survey Group Geodetic Parameter Registry description: Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. function: (CI_OnLineFunctionCode) search role: (CI_RoleCode) publisher VerticalCS: metaDataProperty: CommonMetaData: type: vertical informationSource: OGP revisionDate: 2006-11-28 isDeprecated: false identifier: urn:ogc:def:cs:EPSG::6499 name: Vertical CS. Axis: height (H). Orientation: up. UoM: meter. remarks: Used in vertical coordinate reference systems. axis: CoordinateSystemAxis: descriptionReference: urn:ogc:def:axis-name:EPSG::9904 identifier: urn:ogc:def:axis:EPSG::114 axisAbbrev: H axisDirection: up code: urn:ogc:def:crs:EPSG::5703 return to top identificationInfo: (MD_DataIdentification) citation: (CI_Citation) title: 2014 U.S. Geological Survey CMGP LiDAR: Post Sandy (New Jersey) alternateTitle: nj2014_usgs_cmgp_sandy_m4921_metadata date: (CI_Date) date: 2015-07-10 dateType: (CI_DateTypeCode) publication identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: Anchor: InPort Catalog ID 49867 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inport/item/49867 protocol: WWW:LINK-1.0-http--link name: Full Metadata Record description: View the complete metadata record on InPort for more information about this dataset. function: (CI_OnLineFunctionCode) information role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer protocol: WWW:LINK-1.0-http--link name: Citation URL description: Online Resource function: (CI_OnLineFunctionCode) download role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: Citation URL description: Online Resource function: (CI_OnLineFunctionCode) download role: (inapplicable) presentationForm: (unknown) abstract: TASK NAME: USGS New Jersey CMGP Sandy Lidar 0.7 Meter NPS LIDAR lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD00854 Woolpert Order No. 073714 CONTRACTOR: Woolpert, Inc. This task is issued under Contract Number G10PC00057, as task order number G13PD00854. This task order requires lidar data to be acquired over several areas in New Jersey to include the entire counties of Bergen, Essex, Hudson, Middlesex, Monmouth, and Union and including Morristown National Historical Park are part of the New Jersey area of interest (AOI), and will be acquired as part of this task order. The total area of the New Jersey Sandy Lidar AOI is approximately 1312 square miles. The lidar was collected and processed to meet a maximum Nominal Post Spacing (NPS) of 0.7 meters. The NPS assessment is made against single swath, first return data located within the geometrically usable center portion (typically nearly 90 percent) of each swath. This acquisition was part of a larger effort designed to capture one other USGS task order AOI in New York. York. This data set is an LAZ (compressed LAS) format file containing LIDAR point cloud data. purpose: The lidar data will be acquired and processed under the requirements identified in this task order. This data will assist in the evaluation of storm damage and erosion of the local environment as part of USGS' Hurricane Sandy response. status: (MD_ProgressCode) completed pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) custodian resourceMaintenance: (MD_MaintenanceInformation) maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded graphicOverview: (MD_BrowseGraphic) fileName: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4921/supplemental/nj2014_usgs_cmgp_sandy_m4921.kmz fileDescription: This graphic shows the lidar coverage for the 2014 lidar acquisition for northeastern New Jersey. fileType: kmz descriptiveKeywords: (MD_Keywords) keyword: Lidar - partner (no harvest) type: (MD_KeywordTypeCode) project thesaurusName: (CI_Citation) title: InPort date: (inapplicable) resourceConstraints: (MD_LegalConstraints) useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Cite As: OCM Partners, [Date of Access]: 2014 U.S. Geological Survey CMGP LiDAR: Post Sandy (New Jersey) [Data Date Range], https://www.fisheries.noaa.gov/inport/item/49867. resourceConstraints: (MD_Constraints) useLimitation: NOAA provides no warranty, nor accepts any liability occurring from any incomplete, incorrect, or misleading data, or from any incorrect, incomplete, or misleading use of the data. It is the responsibility of the user to determine whether or not the data is suitable for the intended purpose. resourceConstraints: (MD_LegalConstraints) accessConstraints: (MD_RestrictionCode) otherRestrictions useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Access Constraints: None | Use Constraints: Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. These data depict the heights at the time of the survey and are only accurate for that time. None. However, users should be aware that temporal changes may have occurred since this dataset was collected and that some parts of these data may no longer represent actual surface conditions. Users should not use these data for critical applications without a full awareness of its limitations. Acknowledgement of the U.S. Geological Survey would be appreciated for products derived from these data. | Distribution Liability: Any conclusions drawn from the analysis of this information are not the responsibility of Woolpert, USGS, NOAA, the Office for Coastal Management or its partners. resourceConstraints: (MD_SecurityConstraints) classification: (MD_ClassificationCode) unclassified classificationSystem: (missing) handlingDescription: (missing) aggregationInfo: (MD_AggregateInformation) aggregateDataSetName: (CI_Citation) title: NOAA Data Management Plan (DMP) date: (unknown) identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: 49867 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inportserve/waf/noaa/nos/ocmp/dmp/pdf/49867.pdf protocol: WWW:LINK-1.0-http--link name: NOAA Data Management Plan (DMP) description: NOAA Data Management Plan for this record on InPort. function: (CI_OnLineFunctionCode) information role: (inapplicable) associationType: (DS_AssociationTypeCode) crossReference spatialRepresentationType: (MD_SpatialRepresentationTypeCode) vector language: eng; US topicCategory: (MD_TopicCategoryCode) elevation extent: (EX_Extent) geographicElement: (EX_GeographicBoundingBox) westBoundLongitude: -74.633103 eastBoundLongitude: -73.894114 southBoundLatitude: 40.0778648 northBoundLatitude: 41.1360069 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2014-03-21 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2014-03-22 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2014-03-24 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2014-03-26 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2014-03-27 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2014-03-31 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2014-04-01 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2014-04-06 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2014-04-19 temporalElement: (EX_TemporalExtent) extent: TimeInstant: description: | Currentness: Ground Condition timePosition: 2014-04-21 supplementalInformation: A footprint of this data set may be viewed in Google Earth at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4921/supplemental/nj2014_usgs_cmgp_sandy_m4921.kmz A map showing the Nominal Point Spacing for each area of the project may be viewed here: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4921/supplemental/nj2014_usgs_cmgp_sandy_m4921_lidarreport.pdf return to top contentInfo: (MD_FeatureCatalogueDescription) complianceCode: false language: LanguageCode: eng includedWithDataset: false featureCatalogueCitation: (CI_Citation) title: none date: (unavailable) return to top distributionInfo: (MD_Distribution) distributor: (MD_Distributor) distributorContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) distributor transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=4921 protocol: WWW:LINK-1.0-http--link name: Customized Download description: Create custom data files by choosing data area, product type, map projection, file format, datum, etc. function: (CI_OnLineFunctionCode) download transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4921/index.html protocol: WWW:LINK-1.0-http--link name: Bulk Download description: Simple download of data files. function: (CI_OnLineFunctionCode) download return to top dataQualityInfo: (DQ_DataQuality) scope: (DQ_Scope) level: (MD_ScopeCode) dataset report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Horizontal Positional Accuracy evaluationMethodDescription: Compiled to meet 0.42 meters horizontal accuracy at 95 percent confidence level.; Quantitative Value: 0.42 meters, Test that produced the value: lidar system specifications are available in the project report result: (missing) report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Vertical Positional Accuracy evaluationMethodDescription: LAS data covering the USGS New York CMGP Sandy Lidar 0.7 Meter NPS Lidar Task Order was compared to independent survey control points to determine the FVA of the LAS Swath and of the Bare-Earth DEM. In addition, this LAS data was compared to independent supplemental points from categories: Bare Earth Open Terrain, and Urban. LAS Swath Fundamental Vertical Accuracy (FVA) Tested 0.113 meters fundamental vertical accuracy at a 95 percent confidence level, derived according to NSSDA, in open terrain using 0.058 meters (RMSEz) x 1.96000 as defined by the National Standards for Spatial Data Accuracy (NSSDA); assessed and reported using National Digital Elevation Program (NDEP)/ASPRS Guidelines. Bare-Earth DEM Fundamental Vertical Accuracy (FVA) Tested 0.121 meters fundamental vertical accuracy at a 95 percent confidence level, derived according to NSSDA, in open terrain using 0.062 meters (RMSEz) x 1.96000 as defined by the National Standards for Spatial Data Accuracy (NSSDA); assessed and reported using National Digital Elevation Program (NDEP)/ASPRS Guidelines.; Quantitative Value: 0.113 meters, Test that produced the value: LAS Swath Fundamental Vertical Accuracy (FVA) Tested 0.113 meters fundamental vertical accuracy at a 95 percent confidence level, derived according to NSSDA, in open terrain using (RMSEz) x 1.96000 as defined by the National Standards for Spatial Data Accuracy (NSSDA); assessed and reported using Nationl Digital Elevation Program (NDEP)/ASPRS Guidelines and tested against the TIN.; Quantitative Value: 0.121 meters, Test that produced the value: Bare-Earth DEM Fundamental Vertical Accuracy (FVA) Tested 0.121 meters fundamental vertical accuracy at a 95 percent confidence level, derived according to NSSDA, in open terrain using (RMSEz) x 1.96000 as defined by the National Standards for Spatial Data Accuracy (NSSDA); assessed and reported using National Digital Elevation Program (NDEP)/ASPRS Guidelines and tested against the DEM.; Quantitative Value: 0.116 meters, Test that produced the value: Urban Land Cover Classification Supplemental Vertical Accuracy (SVA) Tested 0.116 meters supplemental vertical accuracy at the 95th percentile in the Urban supplemental class reported using National Digital Elevation Program (NDEP)/ASPRS Guidelines and tested against the DEM. Urban Errors larger than 95th percentile include: Point 3010, Easting 607295.08, Northing 4510823.43, Z-Error 0.120 meters Point 3013, Easting 600685.99, Northing 4502554.14, Z-Error 0.130 meters ; Quantitative Value: 0.116 meters, Test that produced the value: Consolidated Vertical Accuracy (CVA) Tested 0.116 meters consolidated vertical accuracy at the 95th percentile level; reported using National Digital Elevation Program (NDEP)/ASPRS Guidelines and tested against the DEM. CVA is based on the 95th percentile error in all land cover categories combined. Point 2008, Easting 600936.95, Northing 4524448.32, Z-Error 0.120 meters Point 3010, Easting 607295.08, Northing 4510823.43, Z-Error 0.120 meters Point 3013, Easting 600685.99, Northing 4502554.14, Z-Error 0.130 meters result: (missing) report: (DQ_CompletenessCommission) nameOfMeasure: Completeness Report evaluationMethodDescription: The lidar data is visually inspected for completeness to ensure that are no void areas or missing data. result: (missing) report: (DQ_ConceptualConsistency) nameOfMeasure: Conceptual Consistency evaluationMethodDescription: All formatted data cover the entire area specified for this project and are validated using a combination of commercial lidar processing software, GIS software, and proprietary programs to ensure proper formatting and loading prior to delivery. result: (missing) lineage: (LI_Lineage) statement: (missing) processStep: (LI_ProcessStep) description: Using two Leica ALS70 (lidar) systems on board a Cessna 404 and Cessna 310 aircraft, lidar data, at a nominal pulse spacing (NPS) of 0.7 meters, was collected for this task order (approximately 304 square miles). AGL = 7500 feet - Aircraft Speed = 150 Knots, Field of View (Full) = 32 degrees, Pulse Rate = 239 kHz, Scan Rate = 41.6 Hz, with an average side lap of 25%. Multiple returns were recorded for each laser pulse along with an intensity value for each return. This acquisition was part of a larger effort designed to capture one other USGS task order AOI in New Jersey. For the New York portion of the collection, ten (10) missions were flown between March 21, 2014 and April 21, 2014. Six (6) Global Navigation Satellite System (GNSS) Base Stations were used in support of the lidar data acquisition. Specific information regarding latitude, longitude, and ellipsoid height to the L1 phase center is included in the lidar processing report. As a supplement to the USGS task order collection, Woolpert acquired lidar data of New York City as part of a 2013 task order for the NGA. This was acquired using a Leica ALS70 (lidar) system on board a Cessna 404 and produced lidar data, at a nominal pulse spacing (NPS) of 0.91 meters. AGL = 7500 feet - Aircraft Speed = 150 Knots, Field of View (Full) = 40 degrees, Pulse Rate = 239 kHz, Scan Rate = 36.9 Hz, with an average side lap of 30%. For the NGA task order portion of the collection One (1) mission was used. This mission was flown on August 6, 2013. One (1) Global Navigation Satellite System (GNSS) Base Station was used in support of the lidar data acquisition. Specific information regarding latitude, longitude, and ellipsoid height to the L1 phase center is included in the lidar processing report. Multiple returns were recorded for each laser pulse along with an intensity value for each return. The flight plan for the New York City NGA Lidar task order was developed with 11 additional cross flights over the Manhattan Metropolitan area to minimize data shadowing and data voids in the lidar dataset caused by tall buildings. USGS requested use of this data from the NGA in order to reduce the duplication of lidar data acquisition effort on the New York CMGP Sandy Lidar task order. dateTime: DateTime: 2014-03-22T00:00:00 processStep: (LI_ProcessStep) description: The NGA approved the use of this lidar data for the USGS task order. Following the approval by NGA, Woolpert was able to utilize the cross flights acquired as part of the NGA task order to minimize data shadowing and data voids caused by tall buildings in the USGS New York CMGP Sandy Lidar task order AOI. The lidar data acquisition parameters for this mission are detailed in the lidar processing report for this task order. For all acquired lidar data as part of entire USGS New York City task order, the geoid used to reduce satellite derived elevations to orthometric heights was GEOID12A. Data for the task order is referenced to the UTM Zone 18N, North American Datum of 1983 (2011), and NAVD88, in meters. Once the data acquisition and GPS processing phases are complete, the lidar data was processed immediately to verify the coverage had no voids. The GPS and IMU data was post processed using differential and Kalman filter algorithms to derive a best estimate of trajectory. The quality of the solution was verified to be consistent with the accuracy requirements of the project. The SBET was used to reduce the lidar slant range measurements to a raw reflective surface for each flight line. The coverage was classified to extract a bare earth digital elevation model (DEM) and separate last returns. The ALS70 calibration and system performance is verified on a periodic basis using Woolpert's calibration range. The calibration range consists of a large building and runway. The edges of the building and control points along the runway have been located using conventional survey methods. Inertial measurement unit (IMU) misalignment angles and horizontal accuracy are calculated by comparing the position of the building edges between opposing flight lines. The scanner scale factor and vertical accuracy is calculated through comparison of lidar data against control points along the runway. Field calibration is performed on all flight lines to refine the IMU misalignment angles. IMU misalignment angles are calculated from the relative displacement of features within the overlap region of adjacent (and opposing) flight lines. The raw lidar data is reduced using the refined misalignment angles. dateTime: DateTime: 2014-03-22T00:00:00 processStep: (LI_ProcessStep) description: Ground control and QAQC control point survey was performed by Woolpert surveyors, to support the USGS New York CMGP Sandy Lidar 0.7 Meter NPS LIDAR project. All surveys were performed in such a way as to achieve ground control that supports lidar data at 9.25 cm RMSE accuracy and satisfy a local network accuracy of 5 cm at a 95% confidence level. All ground control survey field activities took place from 12/03/2013 thru 05/07/14. Woolpert collected control data for data processing as supplemental QAQC points. The supplemental QAQC points were collected to be used in independent accuracy testing. The survey was performed using two (2) Trimble Navigation R8 Model 3 GNSS Dual Frequency GPS receivers with a Trimble TDL-450 radio as dual base stations in conjunction with simultaneous data collected across two (2) Continuously Operating Reference Stations (CORS) GPS receivers. Additionally, Woolpert utilized a Trimble Navigation R8 Model 3 GNSS dual-frequency GPS receiver and a TSC2 data collector as a rover. Woolpert surveyors,utilizing Real-Time Kinematic GPS techniques, made observations using 1-second epoch rates and observations of 60 to 180 seconds. Each station was occupied twice to insure necessary horizontal and vertical accuracies. All GPS ground control observations were processed using Trimble Navigation's Trimble Business Center. All horizontal GPS control was based on UTM Zone 18N, NAD83(2011) expressed in meters. The vertical datum used for this project was based on the North American Vertical Datum of 1988 (NAVD88), GEOID12A, also expressed in meters. dateTime: DateTime: 2013-12-03T00:00:00 processStep: (LI_ProcessStep) description: The individual flight lines were inspected to ensure the systematic and residual errors have been identified and removed. Then, the flight lines were compared to adjacent flight lines for any mismatches to obtain a homogeneous coverage throughout the project area. The point cloud underwent a classification process to determine bare-earth points and non-ground points utilizing "first and only" as well as "last of many" lidar returns. This process determined Default (Class 1), Ground (Class 2), Noise (Class 7), Water (Class 9), Ignored Ground (Class 10), Overlap Default (Class 17) and Overlap Ground (Class 18). The bare-earth (Class 2 - Ground) lidar points underwent a manual QA/QC step to verify the quality of the DEM as well as a peer-based QC review. This included a review of the DEM surface to remove artifacts and ensure topographic quality. Classification of water (class 9) and ignored ground (class 10) was completed via the use of the hydrologic breaklines collected for the hydro-flattening phase. The overlap classes were determined by first identifying the overlapping areas and reclassifying the LAS data by offset from a corridor. This allows the returns located on the edge of the swath to be removed from the bare earth coverage in an effort to produce a more uniform data density. The returns determined to be overlap are then further classified to produce overlap default (class 17) and overlap ground (class 18). The surveyed ground control points are used to make vertical adjustments to the data set and to perform the accuracy checks and statistical analysis of the lidar dataset. Supervisory QC monitoring of work in progress and completed editing ensured consistency of classification character and adherence to project requirements across the entire project area. The resulting deliverables for this task order consist of classified LAS file in LAS 1.2 format, Raw Swath LAS files in LAS 1.2 format, 1 meter pixel size DEM files in ERDAS IMG format, 1 meter pixel size 8-bit Intensity files in GeoTIFF format, and Hydrologic Breakline data in ESRI shape file format. dateTime: DateTime: 2014-03-22T00:00:00 processStep: (LI_ProcessStep) description: The individual flight lines were inspected to ensure the systematic and residual errors have been identified and removed. Then, the flight lines were compared to adjacent flight lines for any mismatches to obtain a homogeneous coverage throughout the project area. The point cloud underwent a classification process to determine bare-earth points and non-ground points utilizing "first and only" as well as "last of many" lidar returns. This process determined Default (Class 1), Ground (Class 2), Noise (Class 7), Water (Class 9), Ignored Ground (Class 10), Overlap Default (Class 17) and Overlap Ground (Class 18). The bare-earth (Class 2 - Ground) lidar points underwent a manual QA/QC step to verify the quality of the DEM as well as a peer-based QC review. This included a review of the DEM surface to remove artifacts and ensure topographic quality. Classification of water (class 9) and ignored ground (class 10) was completed via the use of the hydrologic breaklines collected for the hydro-flattening phase. The overlap classes were determined by first identifying the overlapping areas and reclassifying the LAS data by offset from a corridor. This allows the returns located on the edge of the swath to be removed from the bare earth coverage in an effort to produce a more uniform data density. The returns determined to be overlap are then further classified to produce overlap default (class 17) and overlap ground (class 18). The surveyed ground control points are used to make vertical adjustments to the data set and to perform the accuracy checks and statistical analysis of the lidar dataset. Supervisory QC monitoring of work in progress and completed editing ensured consistency of classification character and adherence to project requirements across the entire project area. The hydrologic breaklines were produced according to USGSv1.0 specifications. The compilation procedure included use of lidar intensity, bare earth surface model, point cloud data, open source imagery in an effort to manually compile hydrologic features in a 2-d environment. Following the compilation phase, a separate process was used to adjust the breakline data to best match the water level at the time of the lidar collection. Any ponds and/or lakes were adjusted to be at or just below the bank and to be at a constant elevation. Any streams were adjusted to be at or just below the bank and to be monotonic. Manual QAQC and peer-based QC review was performed on all delineated data to ensure horizontal placement quality and on all adjusted data to ensure vertical placement quality. The final hydrologic breakline product was delivered in ESRI shape file format and was also used in the processing of the DEM deliverable. dateTime: DateTime: 2014-03-22T00:00:00 processStep: (LI_ProcessStep) description: Tile Size: 1,500m x 1,500m. The tile file name was derived from the southwest corner of each tile. The tiles are named based on the US National Grid. Project data extent was provided by USGS and subsequently buffered by 100 meters and provided in shape file format. Project deliverables were clipped to the 100 meter data extent. dateTime: DateTime: 2014-03-22T00:00:00 processStep: (LI_ProcessStep) description: The NOAA Office for Coastal Management (OCM) received the topographic files in classified LAZ format from USGS' ftp site. The data were received in UTM Zone 18N NAD83 coordinates (meters) and vertically referenced to NAVD88 using the Geoid12a model in meters. OCM performed the following processing for data storage and Digital Coast provisioning purposes: 1. LAS files were compressed to LAZ format with LASTools. 2. LAS files were removed of any duplicated points and extraneous points were reclassified to noise. 3. The delivered tiles overlapped with an adjacent project, as they were collected simultaneously but delivered separately. In order to remove duplicated points between deliveries, a line of demarcation was created within the Hudson River along the state boundaries of New York and New Jersey. Points which existed in both deliveries were remove from the other project if they fell in the opposite state. Special care was applied to Liberty Island as it legally resides in New York state. 4. The LAS files were transformed to geographic (decimal degrees), ellipsoidal coordinates (meters) referenced to the Geoid12a model. dateTime: DateTime: 2015-07-01T00:00:00 processStep: (LI_ProcessStep) description: The vertical values in this data set have been converted to reference North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters, using the GEOID18 grids provided by the National Geodetic Survey. Any datum and projection transformations were then done with the Office for Coastal Management 'datum_shift' program. Compression to an LAZ file was done with the LAStools 'laszip' program and can be unzipped with the same free program (laszip.org) Processing notes: dateTime: DateTime: 2023-08-01T05:46:59 processor: (CI_ResponsibleParty) individualName: NOAA Office for Coastal Management contactInfo: (CI_Contact) address: (CI_Address) electronicMailAddress: coastal.info@noaa.gov role: (CI_RoleCode) processor |