2008 South Carolina Lidar: Orangeburg County | spatialRepresentationInfo|
---|---|
(MI_Metadata) fileIdentifier: gov.noaa.nmfs.inport:49974 language: LanguageCode: eng characterSet: (MD_CharacterSetCode) UTF8 hierarchyLevel: (MD_ScopeCode) dataset contact: (CI_ResponsibleParty) organisationName: OCM Partners contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (missing) address: (CI_Address) role: (CI_RoleCode) resourceProvider contact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact dateStamp: DateTime: 2022-08-09T17:11:38 metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data metadataStandardVersion: ISO 19115-2:2009(E) return to top spatialRepresentationInfo: return to top referenceSystemInfo: return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) authority: (CI_Citation) title: NAD83(NSRS2007) date: (CI_Date) date: 2008-11-12 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: European Petroleum Survey Group contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://apps.epsg.org/api/v1/CoordRefSystem/4759/export/?format=gml role: (missing) code: urn:ogc:def:crs:EPSG:4759 version: 6.18.3 return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) authority: (CI_Citation) title: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters alternateTitle: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters citedResponsibleParty: (CI_ResponsibleParty) organisationName: (withheld) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://apps.epsg.org/api/v1/VerticalCoordRefSystem/5703/?api_key=gml name: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters description: Link to Geographic Markup Language (GML) description of reference system. function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) resourceProvider citedResponsibleParty: (CI_ResponsibleParty) organisationName: European Petroleum Survey Group contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.epsg.org/ name: European Petroleum Survey Group Geodetic Parameter Registry description: Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. function: (CI_OnLineFunctionCode) search role: (CI_RoleCode) publisher VerticalCS: metaDataProperty: CommonMetaData: type: vertical informationSource: OGP revisionDate: 2006-11-28 isDeprecated: false identifier: urn:ogc:def:cs:EPSG::6499 name: Vertical CS. Axis: height (H). Orientation: up. UoM: meter. remarks: Used in vertical coordinate reference systems. axis: CoordinateSystemAxis: descriptionReference: urn:ogc:def:axis-name:EPSG::9904 identifier: urn:ogc:def:axis:EPSG::114 axisAbbrev: H axisDirection: up code: urn:ogc:def:crs:EPSG::5703 return to top identificationInfo: (MD_DataIdentification) citation: (CI_Citation) title: 2008 South Carolina Lidar: Orangeburg County alternateTitle: sc2008_orangeburg_m514_metadata date: (CI_Date) date: 2009 dateType: (CI_DateTypeCode) publication identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: Anchor: InPort Catalog ID 49974 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inport/item/49974 protocol: WWW:LINK-1.0-http--link name: Full Metadata Record description: View the complete metadata record on InPort for more information about this dataset. function: (CI_OnLineFunctionCode) information role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: Citation URL description: Online Resource function: (CI_OnLineFunctionCode) download role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer protocol: WWW:LINK-1.0-http--link name: Citation URL description: Online Resource function: (CI_OnLineFunctionCode) download role: (inapplicable) abstract: The project area is composed of 16 counties in the State of South Carolina - Cherokee, Union, Laurens, Greenwood, Newberry, Chester, Fairfield, Lancaster, Chesterfield, Marlboro, Darlington, Dillon, Marion, Williamsburg, Clarendon, and Orangeburg. This metadata file is for the lidar county deliverables for Orangeburg County, SC. The project area consists of approximately 10,194 square miles including a buffer of 50 feet along the edges of the project area and an additional buffer in some areas. The project design of the lidar data acquisition was developed to support a nominal post spacing of 1.4 meters. The Fugro EarthData, Inc. acquisition team of Fugro Horizons, Inc. and North West Group acquired 721 flight lines in 44 lifts from January 15, 2008 through February 10, 2008. The data was divided into 5000' by 5000' foot cells that serve as the tiling scheme. Lidar data collection was performed with a Cessna 310 aircraft, utilizing a Leica ALS50-II MPiA sensor, collecting multiple return x, y, and z data as well as intensity data. Lidar data was processed to achieve a bare ground surface (Classes 2 and 8). Lidar data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser range finding, GPS positioning and inertial measurement technologies, lidar instruments are able to make highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. This data set is an LAZ (compressed LAS) format file containing LIDAR point cloud data. purpose: The purpose of this project is to collect and deliver topographic elevation point data derived from multiple return light detection and ranging (lidar) measurements for a 16-county area in South Carolina. The elevation data will be used as base data for South Carolina's flood plain mapping program (as part of FEMA's Map Modernization Program) and for additional geospatial map products in the future. status: (MD_ProgressCode) completed pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) custodian resourceMaintenance: (MD_MaintenanceInformation) maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) unknown descriptiveKeywords: (MD_Keywords) keyword: Bare Earth keyword: Intensity keyword: Surface keyword: Terrain type: (MD_KeywordTypeCode) theme descriptiveKeywords: (MD_Keywords) keyword: Lidar - partner (no harvest) type: (MD_KeywordTypeCode) project thesaurusName: (CI_Citation) title: InPort date: (inapplicable) resourceConstraints: (MD_LegalConstraints) useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Cite As: OCM Partners, [Date of Access]: 2008 South Carolina Lidar: Orangeburg County [Data Date Range], https://www.fisheries.noaa.gov/inport/item/49974. resourceConstraints: (MD_Constraints) useLimitation: NOAA provides no warranty, nor accepts any liability occurring from any incomplete, incorrect, or misleading data, or from any incorrect, incomplete, or misleading use of the data. It is the responsibility of the user to determine whether or not the data is suitable for the intended purpose. resourceConstraints: (MD_LegalConstraints) accessConstraints: (MD_RestrictionCode) otherRestrictions useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Access Constraints: None | Use Constraints: None | Distribution Liability: Any conclusions drawn from the analysis of this information are not the responsibility of NOAA, the Office for Coastal Management or its partners. resourceConstraints: (MD_SecurityConstraints) classification: (MD_ClassificationCode) unclassified classificationSystem: (missing) handlingDescription: (missing) aggregationInfo: (MD_AggregateInformation) aggregateDataSetName: (CI_Citation) title: NOAA Data Management Plan (DMP) date: (unknown) identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: 49974 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inportserve/waf/noaa/nos/ocmp/dmp/pdf/49974.pdf protocol: WWW:LINK-1.0-http--link name: NOAA Data Management Plan (DMP) description: NOAA Data Management Plan for this record on InPort. function: (CI_OnLineFunctionCode) information role: (inapplicable) associationType: (DS_AssociationTypeCode) crossReference spatialRepresentationType: (MD_SpatialRepresentationTypeCode) vector language: eng; US topicCategory: (MD_TopicCategoryCode) elevation extent: (EX_Extent) geographicElement: (EX_GeographicBoundingBox) westBoundLongitude: -81.372904 eastBoundLongitude: -80.213204 southBoundLatitude: 33.17635 northBoundLatitude: 33.70735 temporalElement: (EX_TemporalExtent) extent: TimePeriod: description: | Currentness: Ground Condition beginPosition: 2008-01-15 endPosition: 2008-02-10 supplementalInformation: The LiDAR Quality Assurance (QA) Report Orangeburg County, South Carolina may be viewed at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/514/supplemental/LiDAR_QAQC_Report_Orangeburg.pdf return to top contentInfo: (MD_FeatureCatalogueDescription) complianceCode: false language: LanguageCode: eng includedWithDataset: false featureCatalogueCitation: (CI_Citation) title: Lidar point cloud data tiled in LAS 1.1 format; ASPRS classification scheme, class 12 - flight line overlap points, class 9 - points in water, class 8 - model-key points, class 2 - ground points, and class 1 - all other. date: (unavailable) return to top distributionInfo: (MD_Distribution) distributor: (MD_Distributor) distributorContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) distributor transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=514 protocol: WWW:LINK-1.0-http--link name: Customized Download description: Create custom data files by choosing data area, product type, map projection, file format, datum, etc. function: (CI_OnLineFunctionCode) download transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/514/index.html protocol: WWW:LINK-1.0-http--link name: Bulk Download description: Simple download of data files. function: (CI_OnLineFunctionCode) download return to top dataQualityInfo: (DQ_DataQuality) scope: (DQ_Scope) level: (MD_ScopeCode) dataset report: (DQ_QuantitativeAttributeAccuracy) nameOfMeasure: Accuracy evaluationMethodDescription: The following methods are used to assure lidar accuracy: 1. Use of IMU and ground control network utilizing GPS techniques 2. Use of airborne GPS in conjunction with the acquisition of lidar 3. Measurement of quality control ground survey points within the finished product. The boresight of the lidar was processed against the ground control for Orangeburg County which consisted of 29 lidar ground survey points and 1 airborne GPS (ABGPS) base station at the operation airport. The horizontal datum for the control was the North American Datum of 1983, 2007 adjustment (NAD83/2007). The vertical datum was the North American Vertical Datum of 1988 (NAVD88). The Geoid 2003 model was used to transform the ellipsoidal heights to GPS derived orthometric heights. ABGPS data was collected during the acquisition mission for each flight line. During the data acquisition the Positional Dilution of Precision (PDOP) for the ABGPS was monitored. The control points were measured by technicians using Terrascan and Fugro EarthData proprietary software and applied to the boresight solution for the project lines. result: (missing) report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Horizontal Positional Accuracy evaluationMethodDescription: The minimum expected horizontal accuracy was tested during the boresight process to meet or exceed the National Standard for Spatial Data Accuracy (NSSDA). Horizontal accuracy is 1 meter RMSE or better. result: (missing) report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Vertical Positional Accuracy evaluationMethodDescription: 94 high accuracy checkpoints were surveyed following FEMA Guidelines and Specifications for Flood Hazard Mapping Partners Appendix A: Guidance for Aerial mapping and Surveying which is based on the NSSDA. Compared with the 0.363m specification for vertical accuracy at the 95% confidence level, equivalent to 2-foot contours, the dataset passes by all methods of accuracy assessment (tested by Dewberry): Tested 0.189 meter Fundamental Vertical Accuracy at 95 percent confidence level in open terrain using RMSEz x 1.9600 (FEMA/NSSDA and NDEP/ASPRS methodologies); Tested 0.145 meter Consolidated Vertical Accuracy at 95th percentile in all land cover categories combined (NDEP/ASPRS methodology); Tested 0.134 meter Supplemental Vertical Accuracy at 95th percentile in Vegetated terrain (NDEP/ASPRS methodology); Tested 0.110 meter Supplemental Vertical Accuracy at 95th percentile in Urban terrain (NDEP/ASPRS methodology). result: (missing) report: (DQ_CompletenessCommission) nameOfMeasure: Completeness Measure evaluationMethodDescription: Cloud Cover: 0 result: (missing) report: (DQ_CompletenessCommission) nameOfMeasure: Completeness Report evaluationMethodDescription: The bare earth surface will contain voids where insufficient energy was reflected from the surface to generate a valid return from the terrain. Voids in the bare earth surface tend to occur in heavily vegetated areas, water bodies, and beneath buildings, motor vehicles, bridges etc. Fresh or wet asphalt, wet sand and certain types of vegetation can also cause voids or anomalous elevations. result: (missing) report: (DQ_ConceptualConsistency) nameOfMeasure: Conceptual Consistency evaluationMethodDescription: Compliance with the accuracy standard was ensured by the collection of GPS ground control during the acquisition of aerial lidar and the establishment of a GPS base station operation airport. The following checks were performed. 1. The ground control and airborne GPS data stream were validated through a fully analytical boresight adjustment. 2. The Lidar elevation data were checked against the project control. 3. Lidar elevation data was validated through an inspection of edge matching and visual inspection for quality (artifact removal). result: (missing) lineage: (LI_Lineage) statement: (missing) processStep: (LI_ProcessStep) description: 1. Lidar, GPS, and IMU data was processed together using lidar processing software. 2. The lidar data set for each flight line was checked for project area coverage and lidar post spacing was checked to ensure it meets project specifications. 3. The lidar collected at the calibration area and project area were used to correct the rotational, atmospheric, and vertical elevation differences that are inherent to lidar data. 4. Intensity rasters were generated to verify that intensity was recorded for each lidar point. 5. Lidar data was transformed to the specified project coordinate system. 6. By utilizing the ground survey data collected at the calibration site and project area, the lidar data was vertically biased to the ground. 7. Comparisons between the biased lidar data and ground survey data within the project area were evaluated and a final RMSE value was generated to ensure the data meets project specifications. 8. Lidar data in overlap areas of project flight lines were trimmed and data from all swaths were merged into a single data set. 9. The data set was trimmed to the digital project boundary including an additional buffer zone of 50 feet (buffer zone assures adequate contour generation from the DEM). 10.The resulting data set is referred to as the raw lidar data. dateTime: DateTime: 2008-07-08T00:00:00 processStep: (LI_ProcessStep) description: 1. The raw lidar data was processed through a minimum block mean algorithm, and points were classified as either bare earth or non-bare earth. 2. User developed "macros" that factor mean terrain angle and height from the ground were used to determine bare earth point classification. 3. The next phase of the surfacing process was a 2D edit procedure that ensures the accuracy of the automated feature classification. 4. Editors used a combination of imagery, intensity of the lidar reflection, profiles, and tin-editing software to assess points. 5. The lidar data was filtered, as necessary, using a quadric error metric to remove redundant points. This method leaves points where there is a change in the slope of surfaces (road ditches) and eliminates points from evenly sloped terrain (flat field) where the points do not affect the surface. 6. The algorithms for filtering data were utilized within Fugro EarthData's proprietary software and commercial software written by TerraSolid. 7. The flight line overlap points were merged back into filtered data set for delivery product. 8. The point cloud data were delivered tiled in LAS 1.1 format; class 12 - flight line overlap points, class 9 - points in water, class 8 - model-key points, class 2 - ground points, and class 1 - all other. dateTime: DateTime: 2008-11-10T00:00:00 processStep: (LI_ProcessStep) description: Lidar intensity images were generated in TerraSolid software. The images are then brought up in Photoshop to see if a curve is needed to modify the radiometrics and to ensure they match from group to group. Along with looking for missing coverage and clipping to the boundary, the following steps are run in Photoshop: 1. Flip 0 values to 1 2. Change 3-band images to 1 band 3. Restore GeoTIFF headers. The intensity images were delivered in GeoTIFF format. dateTime: DateTime: 2008-11-14T00:00:00 processStep: (LI_ProcessStep) description: Tiled lidar LAS datasets are imported into a single multipoint geodatabase featureclass. Only Ground and Model-Keypoint are imported. An ArcGIS geodatabase terrain feature class is created using the terrain creation dialogue provided through ArcCatalog. The multipoint featureclass is imported as mass point features in the terrain. An overall tile boundary for the county is input as a soft clip feature for the terrain. The terrain pyramid level resolutions and scales are automatically calculated based on the point coverage for the county. dateTime: DateTime: 2008-11-15T00:00:00 processStep: (LI_ProcessStep) description: The NOAA Office for Coastal Management (OCM) received files in LAS format. The files contained LiDAR intensity and elevation measurements. OCM performed the following processing on the data to make it available within Digital Coast: 1. The data were converted from State Plane, SPCS Zone 3900 coordinates to geographic coordinates. 2. The data were converted from NAVD88 heights to ellipsoid heights using Geoid03. 3. The LAS header fields were sorted by latitude and updated. dateTime: DateTime: 2009-09-01T00:00:00 source: (LI_Source) description: Source Contribution: The Fugro EarthData, Inc. acquisition team of Fugro Horizons, Inc. and North West Group collected ALS50-II derived lidar over 16 counties in the State of South Carolina with a 1.4m, nominal post spacing using a Cessna 310 aircraft. The collection for the entire project area was accomplished from January 15, 2008 through February 10, 2008 (Flight dates were January 15, 16, 18, 20, 21, 25, 27, 28, 29, 30, 31 and February 2, 3, 4, 7, 8, 10). The collection was performed using a Leica ALS50-II MPiA lidar system, serial numbers ALS039 and ALS064, including an inertial measuring unit (IMU) and a dual frequency GPS receiver. This project required 44 lifts of flight lines to be collected. The lines were flown at an average of 6,000 feet above mean terrain using a maximum pulse rate frequency of 112,000 pulses per second. The planned maximum baseline length was 50 miles. | Type of Source Media: external hard drive sourceCitation: (CI_Citation) title: Aerial Acquisition of Lidar Data for 16 counties in the State of South Carolina date: (CI_Date) date: 2008-02-15 dateType: (CI_DateTypeCode) publication sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimePeriod: beginPosition: 2008-01-15 endPosition: 2008-02-10 source: (LI_Source) description: Source Contribution: The State of South Carolina, Department of Natural Resources provided digital orthophotography covering the project area in support of this project. | Type of Source Media: external hard drive sourceCitation: (CI_Citation) title: Orangeburg County, SC - Digital Orthophotography date: (missing) sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2006-05-30 source: (LI_Source) description: Source Contribution: ESP under contract to Fugro EarthData, Inc. successfully established ground control for Orangeburg County, SC. A total of 29 ground control points in Orangeburg County, SC were acquired. GPS was used to establish the control network. The horizontal datum was the North American Datum of 1983, 2007 adjustment (NAD83/2007). The vertical datum was the North American Vertical Datum of 1988 (NAVD88). | Type of Source Media: electronic mail system sourceCitation: (CI_Citation) title: South Carolina Lidar, Quality Control Surveys, 16 Counties date: (CI_Date) date: 2008-01-31 dateType: (CI_DateTypeCode) publication sourceExtent: (EX_Extent) temporalElement: (EX_TemporalExtent) extent: TimeInstant: timePosition: 2008-01-21 processStep: (LI_ProcessStep) description: The vertical values in this data set have been converted to reference North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters, using the GEOID18 grids provided by the National Geodetic Survey. Any datum and projection transformations were then done with the Office for Coastal Management 'datum_shift' program. Compression to an LAZ file was done with the LAStools 'laszip' program and can be unzipped with the same free program (laszip.org) Processing notes: dateTime: DateTime: 2023-08-01T05:56:51 processor: (CI_ResponsibleParty) individualName: NOAA Office for Coastal Management contactInfo: (CI_Contact) address: (CI_Address) electronicMailAddress: coastal.info@noaa.gov role: (CI_RoleCode) processor |