2008 - 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) South Coast LiDAR Project | spatialRepresentationInfo|
---|---|
(MI_Metadata) fileIdentifier: gov.noaa.nmfs.inport:49903 language: LanguageCode: eng characterSet: (MD_CharacterSetCode) UTF8 hierarchyLevel: (MD_ScopeCode) dataset contact: (CI_ResponsibleParty) organisationName: OCM Partners contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (missing) address: (CI_Address) role: (CI_RoleCode) resourceProvider contact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact dateStamp: DateTime: 2022-08-09T17:11:38 metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data metadataStandardVersion: ISO 19115-2:2009(E) return to top spatialRepresentationInfo: return to top referenceSystemInfo: return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) authority: (CI_Citation) title: NAD83(NSRS2007) date: (CI_Date) date: 2008-11-12 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: European Petroleum Survey Group contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://apps.epsg.org/api/v1/CoordRefSystem/4759/export/?format=gml role: (missing) code: urn:ogc:def:crs:EPSG:4759 version: 6.18.3 return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) authority: (CI_Citation) title: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters alternateTitle: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters citedResponsibleParty: (CI_ResponsibleParty) organisationName: (withheld) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://apps.epsg.org/api/v1/VerticalCoordRefSystem/5703/?api_key=gml name: North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters description: Link to Geographic Markup Language (GML) description of reference system. function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) resourceProvider citedResponsibleParty: (CI_ResponsibleParty) organisationName: European Petroleum Survey Group contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.epsg.org/ name: European Petroleum Survey Group Geodetic Parameter Registry description: Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. function: (CI_OnLineFunctionCode) search role: (CI_RoleCode) publisher VerticalCS: metaDataProperty: CommonMetaData: type: vertical informationSource: OGP revisionDate: 2006-11-28 isDeprecated: false identifier: urn:ogc:def:cs:EPSG::6499 name: Vertical CS. Axis: height (H). Orientation: up. UoM: meter. remarks: Used in vertical coordinate reference systems. axis: CoordinateSystemAxis: descriptionReference: urn:ogc:def:axis-name:EPSG::9904 identifier: urn:ogc:def:axis:EPSG::114 axisAbbrev: H axisDirection: up code: urn:ogc:def:crs:EPSG::5703 return to top identificationInfo: (MD_DataIdentification) citation: (CI_Citation) title: 2008 - 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) South Coast LiDAR Project alternateTitle: or2008_dogami_m519_metadata date: (CI_Date) date: 2009 dateType: (CI_DateTypeCode) publication identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: Anchor: InPort Catalog ID 49903 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inport/item/49903 protocol: WWW:LINK-1.0-http--link name: Full Metadata Record description: View the complete metadata record on InPort for more information about this dataset. function: (CI_OnLineFunctionCode) information role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: Citation URL description: Online Resource function: (CI_OnLineFunctionCode) download role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer protocol: WWW:LINK-1.0-http--link name: Citation URL description: Online Resource function: (CI_OnLineFunctionCode) download role: (inapplicable) abstract: The Oregon Department of Geology and Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for multiple areas within the State of Oregon. The areas for LiDAR collection have been designed as part of a collaborative effort of state, federal, and local agencies in order to meet a wide range of project goals. This LiDAR data set was collected between May 3, 2008 and April 25, 2009 and encompasses portions of the following counties in southwest Oregon: Coos, Curry, Lane, and Douglas. This data set consists of bare earth and unclassified points. There are approximately 8 points per square meter over terrestrial surfaces. In some areas of heavy vegetation or forest cover, there may be relatively few ground points in the LiDAR data. Elevation values for open water surfaces are not valid elevation values because few LiDAR points are returned from water surfaces. LiDAR intensity values were also collected. This LiDAR data set was collected on different dates and organized into 14 deliveries. To determine which delivery or deliveries are in your area of interest, view the delivery area coverage graphic at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/519/supplemental/2008_2009_dogami_oregon_lidar_south_coast.jpg The specific date of collection and total area covered for each delivery are listed below. Delivery 1: Date of Collection: 20080503-20080626 Total Area = 74.68 sq miles Delivery 2: Date of Collection: 20080503-20080626 Total Area = 138.73 sq miles Delivery 3: Date of Collection: 20080503-20080626 Total Area = 112.17 sq miles Delivery 4: Date of Collection: 20080612-20080629 Total Area = 177.55 sq miles Delivery 5: Date of Collection: 20080612-20080629 Total Area = 177.80 sq miles Delivery 6: Date of Collection: 20080615-20080803 Total Area = 437.95 sq miles Delivery 7: Date of Collection: 20080615-20080803 Total Area = 209.81 sq miles Delivery 8a: Date of Collection: 20080615-20080803 Total Area = 146.30 sq miles Delivery 8b: Date of Collection: 20080608-20080928 Total Area = 74.06 sq miles Delivery 9: Date of Collection: 20080608-20080928 Total Area = 217.22 sq miles Delivery 10: Date of Collection: 20080608-20080928 Total Area = 224.82 sq miles Delivery 11: Date of Collection: 20080727-20090425 Total Area = 237.06 sq miles Delivery 12: Date of Collection: 20080727-20090425 Total Area = 216.10 sq miles Delivery 13: Date of Collection: 20080727-20090425 Total Area = 181.17 sq miles Original contact information: Contact Name: Ian Madin Contact Org: DOGAMI Phone: 971-673-1542 Email: ian.madin@dogami.state.or.us This data set is an LAZ (compressed LAS) format file containing LIDAR point cloud data. purpose: Provide high resolution terrain elevation and land cover elevation data. credit: DOGAMI The custom download may be cited as National Oceanic and Atmospheric Administration (NOAA) Digital Coast Data Access Viewer. Charleston, SC: NOAA Office for Coastal Management. Accessed Aug 01, 2023 at https://coast.noaa.gov/dataviewer. status: (MD_ProgressCode) completed pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) custodian resourceMaintenance: (MD_MaintenanceInformation) maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) notPlanned descriptiveKeywords: (MD_Keywords) keyword: Bare earth keyword: Bare ground keyword: DOGAMI keyword: High-resolution keyword: Light Detection and Ranging type: (MD_KeywordTypeCode) theme descriptiveKeywords: (MD_Keywords) keyword: Lidar - partner (no harvest) type: (MD_KeywordTypeCode) project thesaurusName: (CI_Citation) title: InPort date: (inapplicable) resourceConstraints: (MD_LegalConstraints) useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Cite As: OCM Partners, [Date of Access]: 2008 - 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) South Coast LiDAR Project [Data Date Range], https://www.fisheries.noaa.gov/inport/item/49903. resourceConstraints: (MD_Constraints) useLimitation: NOAA provides no warranty, nor accepts any liability occurring from any incomplete, incorrect, or misleading data, or from any incorrect, incomplete, or misleading use of the data. It is the responsibility of the user to determine whether or not the data is suitable for the intended purpose. resourceConstraints: (MD_LegalConstraints) accessConstraints: (MD_RestrictionCode) otherRestrictions useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Access Constraints: None | Use Constraints: Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. | Distribution Liability: Any conclusions drawn from the analysis of this information are not the responsibility of the Oregon Department of Geology and Mineral Industries (DOGAMI), the Office for Coastal Management or its partners. resourceConstraints: (MD_SecurityConstraints) classification: (MD_ClassificationCode) unclassified classificationSystem: (missing) handlingDescription: (missing) aggregationInfo: (MD_AggregateInformation) aggregateDataSetName: (CI_Citation) title: NOAA Data Management Plan (DMP) date: (unknown) identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: 49903 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inportserve/waf/noaa/nos/ocmp/dmp/pdf/49903.pdf protocol: WWW:LINK-1.0-http--link name: NOAA Data Management Plan (DMP) description: NOAA Data Management Plan for this record on InPort. function: (CI_OnLineFunctionCode) information role: (inapplicable) associationType: (DS_AssociationTypeCode) crossReference spatialRepresentationType: (MD_SpatialRepresentationTypeCode) vector language: eng; US topicCategory: (MD_TopicCategoryCode) elevation environmentDescription: Microsoft Windows XP Version 5.1 (Build 2600) Service Pack 2; ESRI ArcCatalog 9.2.0.1324 extent: (EX_Extent) geographicElement: (EX_GeographicBoundingBox) westBoundLongitude: -124.568779 eastBoundLongitude: -123.545579 southBoundLatitude: 41.996103 northBoundLatitude: 44.000003 temporalElement: (EX_TemporalExtent) extent: TimePeriod: description: | Currentness: Ground Condition beginPosition: 2008-05-03 endPosition: 2009-04-25 supplementalInformation: Each delivery has an Oregon LiDAR Commission (OLC) QC Analysis Report and a Watershed Sciences LiDAR Report which may be accessed at: Delivery 1: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/519/supplemental Delivery 2: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/519/supplemental Delivery 3: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/519/supplemental Delivery 4: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/519/supplemental Delivery 5: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/519/supplemental Delivery 6, 7 and 8a: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/519/supplemental Delivery 8b, 9 and 10: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/519/supplemental Delivery 11, 12 and 13: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/519/supplemental A footprint of this data set may be viewed in Google Earth at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/519/supplemental/2008-2009_DOGAMI_Oregon_South_Coast_Lidar.kmz return to top distributionInfo: (MD_Distribution) distributor: (MD_Distributor) distributorContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) distributor transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=519 protocol: WWW:LINK-1.0-http--link name: Customized Download description: Create custom data files by choosing data area, product type, map projection, file format, datum, etc. function: (CI_OnLineFunctionCode) download transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/519/index.html protocol: WWW:LINK-1.0-http--link name: Bulk Download description: Simple download of data files. function: (CI_OnLineFunctionCode) download return to top dataQualityInfo: (DQ_DataQuality) scope: (DQ_Scope) level: (MD_ScopeCode) dataset report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Horizontal Positional Accuracy evaluationMethodDescription: Horizontal accuracies were not specified in the agreement since true horizontal accuracy is regarded as a product of the LiDAR ground foot print. LiDAR is referenced to co-acquired GPS base station data that has accuracies far greater than the value of the LiDAR foot print. The ground footprint is equal to 1/3333rd of above ground flying height. Survey altitude for this acquisition was targeted at 900 meters yielding a ground foot print of 0.27 meters. This value exceeds the typical accuracy value of ground control used to reference the LiDAR data (<0.01m). Project specifications required the LiDAR foot print to fall within 0.15 and 0.40 meters. For more information about the horizontal accuracy, please refer to the reports for each delivery, listed above in the Supplemental_Information field of this metadata record. result: (missing) report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Vertical Positional Accuracy evaluationMethodDescription: Because this data set was collected in 14 different deliveries, each delivery has a different RMSE. The specific RMSE for each delivery is listed below: Delivery 1: RMSE: 0.061 m (0.2 ft) Delivery 2: RMSE: 0.066 m (0.21 ft) Delivery 3: RMSE: 0.054 m (0.178 ft) Delivery 4: RMSE: 0.057 m (0.187 ft) Delivery 5: RMSE: 0.058 m (0.191 ft) Delivery 6: RMSE: 0.057 m (0.186 ft) Delivery 7: RMSE: 0.057 m (0.186 ft) Delivery 8a: RMSE: 0.057 m (0.186 ft) Delivery 8b: RMSE: 0.073 m (0.24 ft) Delivery 9: RMSE: 0.073 m (0.24 ft) Delivery 10: RMSE: 0.073 m (0.24 ft) Delivery 11: RMSE: 0.071 m (0.158 ft) Delivery 12: RMSE: 0.071 m (0.158 ft) Delivery 13: RMSE: 0.071 m (0.158 ft) For more information about the vertical accuracies, please refer to the survey reports for each of these deliveries, listed above in the Supplemental_Information field of this metadata record. result: (missing) report: (DQ_CompletenessCommission) nameOfMeasure: Completeness Report evaluationMethodDescription: LiDAR data has been collected and processed for all areas within the project study area. result: (missing) report: (DQ_ConceptualConsistency) nameOfMeasure: Conceptual Consistency evaluationMethodDescription: Upon receipt from vendor (Watershed Sciences), all LiDAR data was independently reviewed by staff from the Oregon Department of Geology and Mineral Industries (DOGAMI) to ensure project specifications were met. All data were inventoried for completeness and data were checked for quality, which included examining LiDAR data for errors associated with internal data consistency, model quality, and accuracy. result: (missing) lineage: (LI_Lineage) statement: (missing) processStep: (LI_ProcessStep) description: The LiDAR data was collected between May 3, 2008 and April 25, 2009. The survey used a Leica ALS50 Phase II laser system mounted in a Cessna Caravan 208B. The system was set to acquire > or = 105,000 laser pulses per second (i.e. 105 kHz pulse rate) and flown at 900 meters above ground level (AGL), capturing a scan angle of +/- 14 degrees from nadir. These settings were developed to yield points with an average native density of > or = 8 points per square meter over terrestrial surfaces. The native pulse density is the number of pulses emitted by the LiDAR system. Some types of surfaces (i.e. dense vegetation or water) may return fewer pulses than the laser originally emitted. Therefore, the delivered density can be less than the native density and lightly variable according to distributions of terrain, land cover, and water bodies. The completed areas were surveyed with opposing flight line side-lap of > or = 50% (> or = 100% overlap) to reduce laser shadowing and increase surface laser painting. The system allows up to four range measurements per pulse, and all discernible laser returns were processed for the output dataset. During the LiDAR survey of the study area, a static (1 Hz recording frequency) ground survey was conducted over monuments with known coordinates. After the airborne survey, the static GPS data are processed using triangulation with CORS stations checked against the Online Positioning User Service (OPUS) to quantify daily variance. Multiple sessions are processed over the same monument to confirm the antenna height measurements and reported position accuracy. Multiple DGPS units are used for the ground real-time kinematic (RTK) portion of the survey. To collect accurate ground surveyed points, a GPS base unit is set up over monuments to broadcast a kinematic correction to a roving GPS unit. The ground crew uses a roving unit to receive radio-relayed kinematic corrected positions from the base unit. This method is referred to as real-time kinematic (RTK) surveying and allows precise location measurement (sigma < or = 1.5 cm (0.6 in)). dateTime: DateTime: 2009-01-01T00:00:00 processStep: (LI_ProcessStep) description: 1. Laser point coordinates are computed using the IPAS and ALS Post Processor software suites based on independent data from the LiDAR system (pulse time, scan angle), and aircraft trajectory data (SBET). Laser point returns (first through fourth) are assigned an associated (x, y, z) coordinate along with unique intensity values (0-255). The data are output into large LAS v. 1.1 files; each point maintains the corresponding scan angle, return number (echo), intensity, and x, y, z (easting, northing, and elevation) information. 2. These initial laser point files are too large to process. To facilitate laser point processing, bins (polygons) are created to divide the dataset into manageable sizes (< 500 MB). Flightlines and LiDAR data are then reviewed to ensure complete coverage of the study area and positional accuracy of the laser points. 3. Once the laser point data are imported into bins in TerraScan, a manual calibration is performed to assess the system offsets for pitch, roll, heading, and mirror scale. Using a geometric relationship developed by Watershed Sciences, each of these offsets is resolved and corrected if necessary. 4. The LiDAR points are then filtered for noise, pits, and birds by screening for absolute elevation limits, isolated points, and height above ground. Each bin is then inspected for pits and birds manually; spurious points are removed. For a bin containing approximately 7.5-9.0 million points, an average of 50-100 points are typically found to be artificially low or high. These spurious non-terrestrial laser points must be removed from the dataset. Common sources of non-terrestrial returns are clouds, birds, vapor, and haze. 5. The internal calibration is refined using TerraMatch. Points from overlapping lines are tested for internal consistency and final adjustments are made for system misalignments (i.e., pitch, roll, heading offsets and mirror scale). Automated sensor attitude and scale corrections yield 3-5 cm improvements in the relative accuracy. Once the system misalignments are corrected, vertical GPS drift is then resolved and removed per flight line, yielding a slight improvement (<1 cm) in relative accuracy. At this point in the workflow, data have passed a robust calibration designed to reduce inconsistencies from multiple sources (i.e. sensor attitude offsets, mirror scale, GPS drift) using a procedure that is comprehensive (i.e. uses all of the overlapping survey data). Relative accuracy screening is complete. 6. The TerraScan software suite is designed specifically for classifying near-ground points (Soininen, 2004). The processing sequence begins by 'removing' all points that are not 'near' the earth based on geometric constraints used to evaluate multi-return points. The resulting bare earth (ground) model is visually inspected and additional ground point modeling is performed in site-specific areas (over a 50-meter radius) to improve ground detail. This is only done in areas with known ground modeling deficiencies, such as: bedrock outcrops, cliffs, deeply incised stream banks, and dense vegetation. In some cases, ground point classification includes known vegetation (i.e., understory, low/dense shrubs, etc.) and these points are manually reclassified as non-grounds. dateTime: DateTime: 2009-01-01T00:00:00 processStep: (LI_ProcessStep) description: The NOAA Office for Coastal Management (OCM) received the files in las format. The files contained LiDAR elevation and intensity measurements. The data were in Oregon Lambert (NAD83), International Feet coordinates and NAVD88 (Geoid 03) vertical datum. OCM performed the following processing to the data to make it available within the Digital Coast: 1. The data were converted from Oregon Lambert (NAD83), International Feet coordinates to geographic coordinates. 2. The data were converted from NAVD88 (orthometric) heights to GRS80 (ellipsoid) heights using Geoid 03. 3. The vertical units of the data were converted from International feet to meters. 4. The data were sorted by latitude and the headers were updated. dateTime: DateTime: 2010-06-01T00:00:00 processStep: (LI_ProcessStep) description: The vertical values in this data set have been converted to reference North American Vertical Datum of 1988 (NAVD88) (GEOID18) meters, using the GEOID18 grids provided by the National Geodetic Survey. Any datum and projection transformations were then done with the Office for Coastal Management 'datum_shift' program. Compression to an LAZ file was done with the LAStools 'laszip' program and can be unzipped with the same free program (laszip.org) Processing notes: dateTime: DateTime: 2023-08-01T05:58:52 processor: (CI_ResponsibleParty) individualName: NOAA Office for Coastal Management contactInfo: (CI_Contact) address: (CI_Address) electronicMailAddress: coastal.info@noaa.gov role: (CI_RoleCode) processor |