spatialRepresentationInfo
referenceSystemInfo
referenceSystemInfo
identificationInfo
distributionInfo
dataQualityInfo

October 2006 Scripps Institute of Oceanography (SIO) Lidar of Southern California Coastline: Long Beach to US/Mexico Border
 (MI_Metadata)
    fileIdentifier:  gov.noaa.nmfs.inport:50011
    language:
      LanguageCode:  eng
    characterSet:  (MD_CharacterSetCode) UTF8
    hierarchyLevel:  (MD_ScopeCode) dataset
    contact:  (CI_ResponsibleParty)
        organisationName:  OCM Partners
        contactInfo:  (CI_Contact)
            phone:  (CI_Telephone)
                voice: (missing)
            address:  (CI_Address)
        role:  (CI_RoleCode) resourceProvider
    contact:  (CI_ResponsibleParty)
        organisationName:  NOAA Office for Coastal Management
        contactInfo:  (CI_Contact)
            phone:  (CI_Telephone)
                voice:  (843) 740-1202
            address:  (CI_Address)
                deliveryPoint:  2234 South Hobson Ave
                city:  Charleston
                administrativeArea:  SC
                postalCode:  29405-2413
                country: (missing)
                electronicMailAddress:  coastal.info@noaa.gov
            onlineResource:  (CI_OnlineResource)
                linkage: https://coast.noaa.gov
                protocol:  WWW:LINK-1.0-http--link
                name:  NOAA Office for Coastal Management Website
                description:  NOAA Office for Coastal Management Home Page
                function:  (CI_OnLineFunctionCode) information
        role:  (CI_RoleCode) pointOfContact
    dateStamp:
      DateTime:  2024-02-29T00:00:00
    metadataStandardName:  ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
    metadataStandardVersion:  ISO 19115-2:2009(E)
return to top
    spatialRepresentationInfo:
return to top
    referenceSystemInfo:
return to top
      referenceSystemInfo:  (MD_ReferenceSystem)
          referenceSystemIdentifier:  (RS_Identifier)
              authority:  (CI_Citation)
                  title:  NAD83(HARN) / UTM zone 11N
                  date:  (CI_Date)
                      date:  2008-11-12
                      dateType:  (CI_DateTypeCode) publication
                  citedResponsibleParty:  (CI_ResponsibleParty)
                      organisationName:  European Petroleum Survey Group
                      contactInfo:  (CI_Contact)
                          onlineResource:  (CI_OnlineResource)
                              linkage: https://apps.epsg.org/api/v1/CoordRefSystem/3741/export/?format=gml
                      role: (missing)
              code:  urn:ogc:def:crs:EPSG:3741
              version:  6.18.3
return to top
    identificationInfo:  (MD_DataIdentification)
        citation:  (CI_Citation)
            title:  October 2006 Scripps Institute of Oceanography (SIO) Lidar of Southern California Coastline: Long Beach to US/Mexico Border
            alternateTitle:  scripps_200610_m567_metadata
            date:  (CI_Date)
                date:  2011
                dateType:  (CI_DateTypeCode) publication
            identifier:  (MD_Identifier)
                authority:  (CI_Citation)
                    title:  NOAA/NMFS/EDM
                    date: (inapplicable)
                code:
                  Anchor:  InPort Catalog ID 50011
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName: (inapplicable)
                contactInfo:  (CI_Contact)
                    onlineResource:  (CI_OnlineResource)
                        linkage: https://www.fisheries.noaa.gov/inport/item/50011
                        protocol:  WWW:LINK-1.0-http--link
                        name:  Full Metadata Record
                        description:  View the complete metadata record on InPort for more information about this dataset.
                        function:  (CI_OnLineFunctionCode) information
                role: (inapplicable)
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName: (inapplicable)
                contactInfo:  (CI_Contact)
                    onlineResource:  (CI_OnlineResource)
                        linkage: https://coast.noaa.gov
                        protocol:  WWW:LINK-1.0-http--link
                        name:   Citation URL
                        description:  Online Resource
                        function:  (CI_OnLineFunctionCode) download
                role: (inapplicable)
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName: (inapplicable)
                contactInfo:  (CI_Contact)
                    onlineResource:  (CI_OnlineResource)
                        linkage: https://coast.noaa.gov/dataviewer
                        protocol:  WWW:LINK-1.0-http--link
                        name:   Citation URL
                        description:  Online Resource
                        function:  (CI_OnLineFunctionCode) download
                role: (inapplicable)
        abstract:  There was no metadata record provided along with this data set. Much of the information in this record, has been gleaned from the metadata record for a data set from this same project, for data collected in March of 2006. The minimal amount of known information that is specific to this data set has been included in this record where possible. This lidar point data set was collected during low tide conditions along an approximately 500-700 meter wide strip of the Southern California coastline within an area extending south from Long Beach to the US/Mexico border. Data were collected in Los Angeles, Orange and San Diego counties in October 2006. Data set features include water, beach, cliffs, and top of cliffs. The all points data set contains the complete point cloud of first and last return elevation and laser intensity measurements recorded during the fall 2006 airborne lidar survey conducted semi-annually by the University of Texas at Austin for the Southern California Beach Processes Study. Data represented is all points including terrain, vegetation, and structures. This data also contains returns from the water surface. No processing has been done to remove returns from terrain, vegetation, structures, or water surfaces. The data set was generated by the processing of laser range, scan angle, and aircraft attitude data collected using an Optech Inc. Airborne Laser Terrain Mapper (ALTM) 1225 in combination with geodetic quality Global Positioning System (GPS) airborne and ground-based receivers. The system was installed in a twin engine Partenavia P-68 (tail number N3832K) owned and operated by Aspen Helicopter, Inc. The lidar data set described by this document was collected in October of 2006. The 99d118 instrument settings for these flights were: laser pulse rate: 25 kHz scanner rate: 26 Hz, scan angle: +/- 20 deg beam divergence: narrow altitude: 300-600m AGL ground speed: 95-120kts Original contact information: Contact Name: Julie Thomas/Randy Bucciarelli Contact Org: SCBPS/CDIP, Scripps Institution of Oceanography Title: Project Managers Phone: 858-534-3032 This data set contains point cloud data(' in LAZ (compressed LAS) format', ''). The data may have been reprojected or otherwise modified from the original data in an automated process. Disregard projection information in this abstract and refer to the spatial reference section.
        purpose:  The data described in this document will be compared with previous and forthcoming data sets to determine rates of shoreline change along the Southern California coastline. The SCBPS program is designed to improve the understanding of beach sand transport by waves and currents, thus improving local and regional coastal management.
        credit:  SCBPS/CDIP is jointly funded by the US Army Corps of Engineers and the California Department of Boating and Waterways. The initial data are collected by Bureau of Economic Geology, the University of Texas at Austin: R. Gutierrez and T. Hepner. Center for Space Research, The University of Texas at Austin: A. Neuenschwander. Data are further classified and processed by the SCBPS group, located at the Scripps Institution of Oceanography. The custom download may be cited as National Oceanic and Atmospheric Administration (NOAA) Digital Coast Data Access Viewer. Charleston, SC: NOAA Office for Coastal Management. Accessed 2025-04-02 at https://coast.noaa.gov/dataviewer.
        status:  (MD_ProgressCode) completed
        pointOfContact:  (CI_ResponsibleParty)
            organisationName:  NOAA Office for Coastal Management
            contactInfo:  (CI_Contact)
                phone:  (CI_Telephone)
                    voice:  (843) 740-1202
                address:  (CI_Address)
                    deliveryPoint:  2234 South Hobson Ave
                    city:  Charleston
                    administrativeArea:  SC
                    postalCode:  29405-2413
                    country: (missing)
                    electronicMailAddress:  coastal.info@noaa.gov
                onlineResource:  (CI_OnlineResource)
                    linkage: https://coast.noaa.gov
                    protocol:  WWW:LINK-1.0-http--link
                    name:  NOAA Office for Coastal Management Website
                    description:  NOAA Office for Coastal Management Home Page
                    function:  (CI_OnLineFunctionCode) information
            role:  (CI_RoleCode) pointOfContact
        pointOfContact:  (CI_ResponsibleParty)
            organisationName:  NOAA Office for Coastal Management
            contactInfo:  (CI_Contact)
                phone:  (CI_Telephone)
                    voice:  (843) 740-1202
                address:  (CI_Address)
                    deliveryPoint:  2234 South Hobson Ave
                    city:  Charleston
                    administrativeArea:  SC
                    postalCode:  29405-2413
                    country: (missing)
                    electronicMailAddress:  coastal.info@noaa.gov
                onlineResource:  (CI_OnlineResource)
                    linkage: https://coast.noaa.gov
                    protocol:  WWW:LINK-1.0-http--link
                    name:  NOAA Office for Coastal Management Website
                    description:  NOAA Office for Coastal Management Home Page
                    function:  (CI_OnLineFunctionCode) information
            role:  (CI_RoleCode) custodian
        resourceMaintenance:  (MD_MaintenanceInformation)
            maintenanceAndUpdateFrequency:  (MD_MaintenanceFrequencyCode) asNeeded
        descriptiveKeywords:  (MD_Keywords)
            keyword:  Latitude
            keyword:  Longitude
            keyword:  beach
            keyword:  intensity
            keyword:  point file
            keyword:  shoreline
            type:  (MD_KeywordTypeCode) theme
        descriptiveKeywords:  (MD_Keywords)
            keyword:  2006
            keyword:  October
            type:  (MD_KeywordTypeCode) temporal
        descriptiveKeywords:  (MD_Keywords)
            keyword:  Lidar - partner (no harvest)
            type:  (MD_KeywordTypeCode) project
            thesaurusName:  (CI_Citation)
                title:  InPort
                date: (inapplicable)
        resourceConstraints:  (MD_LegalConstraints)
            useConstraints:  (MD_RestrictionCode) otherRestrictions
            otherConstraints:   This data set was compiled dynamically. It will be removed 10 days after 2025-04-02 from the NOAA system. Cite As: OCM Partners, [Date of Access]: October 2006 Scripps Institute of Oceanography (SIO) Lidar of Southern California Coastline: Long Beach to US/Mexico Border [Data Date Range], https://www.fisheries.noaa.gov/inport/item/50011.
        resourceConstraints:  (MD_Constraints)
            useLimitation:  NOAA provides no warranty, nor accepts any liability occurring from any incomplete, incorrect, or misleading data, or from any incorrect, incomplete, or misleading use of the data. It is the responsibility of the user to determine whether or not the data is suitable for the intended purpose.
        resourceConstraints:  (MD_LegalConstraints)
            accessConstraints:  (MD_RestrictionCode) otherRestrictions
            otherConstraints:   This data set was compiled dynamically. It will be removed 10 days after 2025-04-02 from the NOAA system. Access Constraints: None
        resourceConstraints:  (MD_LegalConstraints)
            useConstraints:  (MD_RestrictionCode) otherRestrictions
            otherConstraints:   This data set was compiled dynamically. It will be removed 10 days after 2025-04-02 from the NOAA system. Use Constraints: Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations.
        resourceConstraints:  (MD_LegalConstraints)
            useLimitation:  (MD_RestrictionCode) otherRestrictions
            otherConstraints:   This data set was compiled dynamically. It will be removed 10 days after 2025-04-02 from the NOAA system. Distribution Liability: This data was collected in partnership with Scripps Institution of Oceanography, The University of California, San Diego. Any conclusions drawn from analysis of this information are not the responsibility of the Bureau of Economic Geology or the University of Texas at Austin, NOAA, the Office for Coastal Management or its partners.
        resourceConstraints:  (MD_SecurityConstraints)
            classification:  (MD_ClassificationCode) unclassified
            classificationSystem: (missing)
            handlingDescription: (missing)
        aggregationInfo:  (MD_AggregateInformation)
            aggregateDataSetName:  (CI_Citation)
                title:  NOAA Data Management Plan (DMP)
                date: (unknown)
                identifier:  (MD_Identifier)
                    authority:  (CI_Citation)
                        title:  NOAA/NMFS/EDM
                        date: (inapplicable)
                    code:  50011
                citedResponsibleParty:  (CI_ResponsibleParty)
                    organisationName: (inapplicable)
                    contactInfo:  (CI_Contact)
                        onlineResource:  (CI_OnlineResource)
                            linkage: https://www.fisheries.noaa.gov/inportserve/waf/noaa/nos/ocmp/dmp/pdf/50011.pdf
                            protocol:  WWW:LINK-1.0-http--link
                            name:  NOAA Data Management Plan (DMP)
                            description:  NOAA Data Management Plan for this record on InPort.
                            function:  (CI_OnLineFunctionCode) information
                    role: (inapplicable)
            associationType:  (DS_AssociationTypeCode) crossReference
        spatialRepresentationType:  (MD_SpatialRepresentationTypeCode) vector
        language:  eng; US
        topicCategory:  (MD_TopicCategoryCode) elevation
        extent:  (EX_Extent)
            geographicElement:  (EX_GeographicBoundingBox)
                westBoundLongitude:  -118.00024
                eastBoundLongitude:  -117.246803
                southBoundLatitude:  32.824379
                northBoundLatitude:  33.658808
            temporalElement:  (EX_TemporalExtent)
                extent:
                  TimeInstant:
                    description:   | Currentness: Ground Condition
                    timePosition:  2006-10-01
        supplementalInformation:  There was no metadata record provided along with this data set. Much of the information in this record, has been gleaned from the metadata record for a data set from this same project, for data collected in March of 2006. The minimal known information that is specific to this data set has been included in this record where possible. The ALTM 1225 (SN#99d118) lidar instrument has the following specifications: operating altitude = 410-2,000 m AGL; maximum laser pulse rate = 25 kHz; laser scan angle = variable from 0 to +/-20deg from nadir; scanning frequency = variable, 28 Hz at the 20deg scan angle; and beam divergence: narrow = 0.2 milliradian (half angle, 1/e). The ALTM 1225 does not digitize and record the waveform of the laser reflection, but records the range and backscatter intensity of the first and last laser reflection using a constant-fraction discriminator and two Timing Interval Meters (TIM). ALTM elevation points are computed using three sets of data: laser ranges and their associated scan angles, platform position and orientation information, and calibration data and mounting parameters (Wehr and Lohr, 1999). Global Positioning System (GPS) receivers in the aircraft and on the ground provide platform positioning. The GPS receivers record pseudo-range and phase information for post-processing. Platform orientation information comes from an Inertial Measurement Unit (IMU) containing three orthogonal accelerometers and gyroscopes. An aided-Inertial Navigation System (INS) solution for the aircraft's attitude is estimated from the IMU output and the GPS information. Wehr, A. and U. Lohr, 1999, Airborne laser scanning - an introduction and overview, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 54, no.2-3, pp.68-82. A footprint of this data set may be viewed in Google Earth at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/567/supplemental/Scripps_October_2006_Lidar_Long_Beach_to_Mexico_Border.kmz
return to top
    distributionInfo:  (MD_Distribution)
        distributor:  (MD_Distributor)
            distributorContact:  (CI_ResponsibleParty)
                organisationName:  NOAA Office for Coastal Management
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  (843) 740-1202
                    address:  (CI_Address)
                        deliveryPoint:  2234 South Hobson Ave
                        city:  Charleston
                        administrativeArea:  SC
                        postalCode:  29405-2413
                        country: (missing)
                        electronicMailAddress:  coastal.info@noaa.gov
                    onlineResource:  (CI_OnlineResource)
                        linkage: https://coast.noaa.gov
                        protocol:  WWW:LINK-1.0-http--link
                        name:  NOAA Office for Coastal Management Website
                        description:  NOAA Office for Coastal Management Home Page
                        function:  (CI_OnLineFunctionCode) information
                role:  (CI_RoleCode) distributor
        transferOptions:  (MD_DigitalTransferOptions)
            onLine:  (CI_OnlineResource)
                linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=567
                protocol:  WWW:LINK-1.0-http--link
                name:  Customized Download
                description:  Create custom data files by choosing data area, product type, map projection, file format, datum, etc.
                function:  (CI_OnLineFunctionCode) download
        transferOptions:  (MD_DigitalTransferOptions)
            onLine:  (CI_OnlineResource)
                linkage: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/567/index.html
                protocol:  WWW:LINK-1.0-http--link
                name:  Bulk Download
                description:  Simple download of data files.
                function:  (CI_OnLineFunctionCode) download
return to top
    dataQualityInfo:  (DQ_DataQuality)
        scope:  (DQ_Scope)
            level:  (MD_ScopeCode) dataset
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Horizontal Positional Accuracy
            evaluationMethodDescription:  There was no metadata record provided along with this data set, therefore the horizontal accuracy information is unknown. However, to provide some idea of the horizontal accuracy for a comparable data set, the horizontal accuracy information provided below, was gleaned from the metadata record for this same project, for data collected in March of 2006. The lidar data is estimated to have a horizontal error of less than or equal to 0.50 m from comparison between kinematic GPS road survey and a 1m resolution grey-scale image generated from the lidar backscatter intensity data. Kinematic GPS data were superimposed on the lidar backscatter image and examined for any mismatch between the horizontal position of the ground GPS and the corresponding features on the lidar image. Horizontal agreement between the ground kinematic GPS and the lidar was within the resolution of the 1m -resolution backscatter image.
            result: (missing)
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Vertical Positional Accuracy
            evaluationMethodDescription:  There was no metadata record provided along with this data set, therefore the vertical accuracy information is unknown. However, to provide some idea of the vertical accuracy for a comparable data set, the vertical accuracy information provided below, was gleaned from the metadata record for this same project, for data collected in March of 2006. The March 2006 lidar data were compared to the 1998 ATM LIDAR data to determine offsets in the vertical position. The ATM survey points were estimated to have a vertical accuracy of +/- 15 cm. The March 2006 lidar data set was sorted to find data points that fell within 0.5 m of an ATM LIDAR survey point along piers in the survey area. The mean elevation difference between the elevation differences between the March 2006 survey and the ATM survey were used to estimate and remove TIM1 and TIM2 elevation biases from each lidar flight. The standard deviation of these elevation differences provided estimates of the lidar precision. After bias adjustment the mean lidar elevations had a vertical accuracy of 0.10 m.
            result: (missing)
        report:  (DQ_CompletenessCommission)
            nameOfMeasure:  Completeness Report
            evaluationMethodDescription:  Data were edited by an automated method to remove obvious outliers above a threshold of 150m.
            result: (missing)
        report:  (DQ_ConceptualConsistency)
            nameOfMeasure:  Conceptual Consistency
            evaluationMethodDescription:  Not Applicable
            result: (missing)
        lineage:  (LI_Lineage)
            statement: (missing)
            processStep:  (LI_ProcessStep)
                description:  GPS and XYZ-Point Data Processing There was no metadata record provided along with this data set, therefore the process description is unknown. However, to provide some idea of plausible processing, the information provided below, was gleaned from the metadata record for a data set from this same project, for data collected in March of 2006. Transfer raw ALTM 1225 flight data (laser ranges with associated scan angle information and IMU data), airborne GPS data collected at 1 Hz using Ashtech receiver, and ground-based GPS data collected at 1 Hz using Ashtech Z-12 receivers to processing computer. Generate decimated lidar point file from above three data sets using Optech's Realm 2.27 software. This is a 9-column ASCII data set with the following format: time tag; first pulse Easting, Northing, HAE; last pulse Easting, Northing, HAE; first pulse intensity; and last pulse intensity. View decimated lidar point file to check data coverage (i.e. sufficient overlap of flight lines and point spacing). Compute base station coordinates using National Geodetic Survey's PAGES-NT software. Compute aircraft trajectories from each base station GPS dataset using National Geodetic Survey's KINPOS software. Solutions for base stations coordinates and aircraft trajectories are in the International Terrestrial Reference Frame of 2000 (ITRF2000). A final aircraft trajectory was computed from a weighted average of the trajectories from the two base stations. Epoch-by-epoch weighting for the individual trajectories was inversely proportional to the baseline length (distance from base station) and solution RMS. Transformed trajectory solution from ITRF2000 to North American Datum of 1983 (NAD83) using the National Geodetic Survey's Horizontal Time Dependent Positioning software (http://www.ngs.noaa.gov/TOOLS/Htdp/Htdp.html). Input NAD83 trajectories and aircraft inertial measurement unit data into Applanix's POSProc version 2.1.4 to compute an optimal 50Hz inertial navigation solution (INS) and smoothed best estimate of trajectory (SBET). Substitute the INS and SBET into Realm 2.27. Generate a set of initial lidar instrument calibration parameters (pitch, roll, scale, and elevation bias) for each lidar flight, then incrementally improve parameters by iteratively comparing a subset of the lidar output to the GPS kinematic ground control. Once the instrument calibration parameters are sufficiently accurate, create the complete lidar point file (9-column ASCII file) for the entire survey area in UTM Zone 11 with elevations being heights above the GRS-80 reference ellipsoid (HAE). The output format from REALM 2.27 was a 9-column ASCII file containing: the second in the GPS week, easting, northing and HAE of the first lidar return, the easting, northing and HAE of the last lidar return, and the laser backscatter intensity of the first and last returns.
                dateTime:
                  DateTime:  2006-01-01T00:00:00
            processStep:  (LI_ProcessStep)
                description:  Using the GEOID99 model, heights above the GRS80 ellipsoid were converted to orthometric heights with respect to the North American Vertical Datum of 1988 (NAVD88). Parse the 9-column lidar point file into 3.75-minute quarter-quadrangle components. Convert UTM Easting and Northing to geodetic latitude and longitude with respect to the GRS80 ellipsoid. The conversion was computed using the TMGEOD and TCONPC fortran subroutines written by T. Vincenty (NGS). Each record contains 9 columns of data: time tag (seconds in the GPS week), first return Latitude,first return Longitude, first return NAVD88, last return Latitude, last return Longitude, last return NAVD88, first return intensity, and last return intensity. In some cases either the first or last return values may be missing (5 columns). Latitude and longitude are in decimal degrees with nine significant digits to retain the 0.01m resolution of the UTM coordinates. West longitude is negative and north latitude is positive. The UTM quarter-quad files were re-organized into latitude delineated files. UTM quarter-quads files that were delineated by the same upper and lower latitude bounds were concatenated. The lat-long files were named by the month-year of the survey (e.g. mar06) and the lower latitude bounding the quarter-quad.
                dateTime:
                  DateTime:  2006-01-01T00:00:00
            processStep:  (LI_ProcessStep)
                description:  Created initial metadata
                dateTime:
                  DateTime:  2003-04-18T00:00:00
            processStep:  (LI_ProcessStep)
                description:  The NOAA Office for Coastal Management (OCM) received the lidar files in ASCII format. The files contained lidar intensity and elevation measurements. OCM performed the following processing for data storage and Digital Coast provisioning purposes: 1. Data converted from UTM coordinates to geograhic coordinates. 2. Data converted from NAVD88 heights to ellipsoid heights using GEOID03. 3. Data converted from dual return xyz format to xyz text format with return numbers to las format. 4. The LAS data were sorted by latitude and the headers were updated.
                dateTime:
                  DateTime:  2011-03-01T00:00:00
            processStep:  (LI_ProcessStep)
                description:   The dataset has been mosaiced, reprojected, and clipped as needed from the original input files using PDAL and GDAL commands.
                dateTime:
                  DateTime:  2025-04-02
                processor:  (CI_ResponsibleParty)
                    individualName:  NOAA Office for Coastal Management
                    contactInfo:  (CI_Contact)
                        address:  (CI_Address)
                            electronicMailAddress:  coastal.info@noaa.gov
                    role:  (CI_RoleCode) processor