

OLC Clackamol Delivery 1

Base station and radio unit set up over control "CLACK_10"

Data collected for: Department of Geology and Mineral Industries

800 NE Oregon Street Suite 965 Portland, OR 97232

Prepared by: WSI

421 SW 6th Avenue Suite 800 Portland, Oregon 97204 phone: (503) 505-5100 fax: (503) 546-6801 517 SW 2nd Street Suite 400 Corvallis, OR 97333 phone: (541) 752-1204 fax: (541) 752-3770

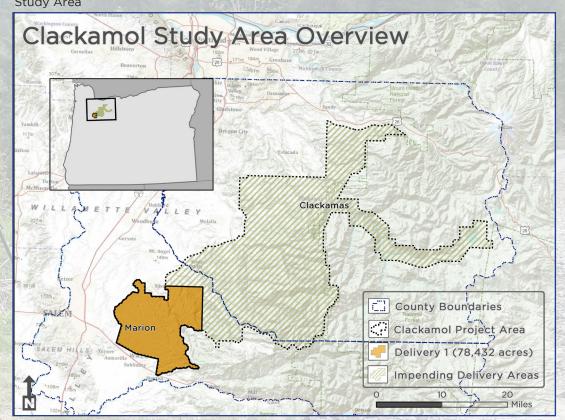
Contents

- 2 Project Overview
- 3 Aerial Acquisition
 - 3 LiDAR Survey
- 4 Ground Survey
 - 4 Instrumentation
 - 4 Monumentation
 - 5 Methodology
- 6 Accuracy
 - 6 Relative Accuracy
 - 7 Vertical Accuracy
- 8 Density
 - 8 Pulse Density
 - 8 Ground Density
- 9 Appendix
 - 9 LiDAR-derived Imagery
 - 12 Certifications

Base station set up over control "CLACK_02"

Project Overview

WSI has collected Light Detection and Ranging (LiDAR) data for Delivery 1 of the Oregon Clackamol Study Area for the Oregon Department of Geology and Mineral Industries (DO-GAMI). The Oregon LiDAR Consortium's Clackamol project area encompasses approximately 78,000 acres in Clackamas and Marion County. Oregon. The study area is predominantly comprised of rural and forested lands, including the Clackamas River, Timothy Lake, and Silver Creek Reservoir.


The collection of high resolution geographic data is part of an ongoing pursuit to amass a library of information accessible to government agencies as well as the general public.

Between May 1, 2013 and May 6, 2013, WSI employed remote-sensing lasers in order to obtain a total area flown of 80.504 acres of which 78.432 acres comprise the area of interest. Settings for LiDAR data capture produced an average resolution of at least eight pulses per square meter.

Final products created include LiDAR point cloud data, one meter digital elevation models of bare earth ground model and highest-hit returns, intensity rasters, study area vector shapes, and corresponding statistical data.

Clackamol Delivery 1 AOI Data Delivered June 28, 2013 Acquisition Date May 1, 2013 - May 6, 2013 Area of Interest 78.432 acres Total Area Flown 80.504 acres Data OGIC HARN Oregon Statewide Projection Lambert Conformal Conic NAD83 (2011) Datum: horizontal & vertical NAVD88 (Geoid 12A) Units International Feet

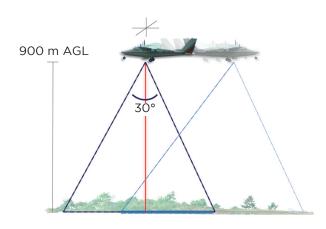
Study Area

Aerial Acquisition

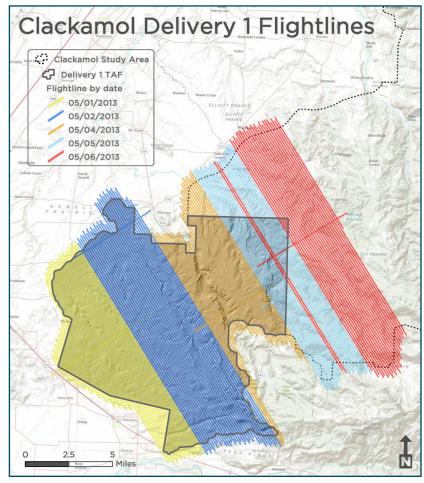
Cessna Caravan

LiDAR Survey

The LiDAR survey utilized a Leica ALS60 sensor mounted in a Cessna Caravan 208B. The system was programmed to emit single pulses at a rate of 96 to 106 kilohertz, and flown at 900 meters above ground level (AGL), capturing a scan angle of +/-15 degrees from nadir (field of view equal to 30 degrees). These settings are developed to yield points with an average native density of greater than eight pulses per square meter over terrestrial surfaces. The native pulse density is the number of pulses emitted by the LiDAR system. Some types of surfaces such as dense vegetation or water may return fewer pulses than the laser originally emitted. Therefore, the delivered density can be less than the native density and lightly vary according to distributions of terrain, land cover, and water bodies. The study area was


surveyed with opposing flight line side-lap of greater than 60 percent with at least 100 percent overlap to reduce laser shadowing and increase surface laser painting. The system allows up to four range measurements per pulse, and all discernable laser returns were processed for the output dataset.

To solve for laser point position, it is vital to have an accurate description of aircraft position and attitude. Aircraft position is described as x, y, and z and measured twice per second (two hertz) by an onboard differential GPS unit. Aircraft attitude is measured 200 times per second (200 hertz) as pitch, roll, and yaw (heading) from an onboard inertial measurement unit (IMU). As illustrated in the accompanying map, 162 flightlines provide coverage for Delivery 1 of the study area.


Clackamol Delivery 1 Acquisition Specs		
Sensors Deployed	Leica ALS 60	
Aircraft	Cessna Caravan 208B	
Survey Altitude (AGL)	900 m	
Pulse Rate	96-106 kHz	
Pulse Mode	Single (SPiA)	
Field of View (FOV)	30°	
Roll Compensated	Yes	
Overlap	100% overlap with 60% sidelap	
Pulse Emission Density	≥ 8 pulses per square meter	

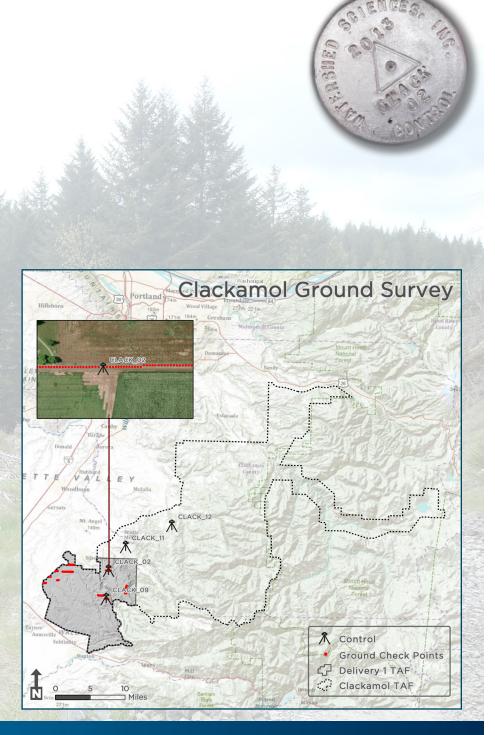
Sensor ALS 60

Project Flightlines

Ground Survey

During the LiDAR survey, static (one hertz recording frequency) ground surveys were conducted over four monuments with known coordinates. After the airborne survey, the static GPS data were processed using triangulation with CORS stations and using the Online Positioning User Service (OPUS) to quantify daily variance. Multiple sessions were processed over the same monument to confirm antenna height measurements and reported position accuracy.

Instrumentation


For this study area all Global Navigation Satellite System (GNSS) survey work utilizes a Trimble GNSS receiver model R7 with a Zephyr Geodetic Antenna Model 2 for static control points. The Trimble GPS R8 unit is used primarily for real time kinematic (RTK) work but can also be used as a static receiver. For RTK data, the collector begins recording after remaining stationary for five seconds then calculating the pseudo range position from at least three epochs with the relative

error under 1.5 centimeters horizontal and 2.0 centimeters vertical. All GPS measurements are made with dual frequency L1-L2 receivers with carrier-phase correction.

Monumentation

Existing and established survey benchmarks serve as control points during LiDAR acquisition including those previously set by WSI. NGS benchmarks are preferred for control points; however, in the absence of NGS benchmarks, WSI produces its own monuments. These monuments are spaced at a minimum of one mile and every effort is made to keep them within the public right of way or on public lands. If monuments are necessary on private property, consent from the owner is required. All monumentation is done with 5/8" x 30" rebar topped with a 2 inch diameter aluminum cap stamped "Watershed Sciences, Inc. Control." Four new monuments were established and occupied for delivery one of the Clackamol survey (see table below).

4	Monuments			
SCOOLUS .		Datum NAD 83 (2011)		GRS 80
NAME OF THE PARTY	Name	Latitude	Longitute	Ellipsoid Height (m)
WOOD FREE	CLACK_02	44 58 27.25312	-122 42 23.71872	344.502
	CLACK_09	44 54 55.43616	-122 42 40.84951	316.897
	CLACK_11	45 01 28.32332	-122 39 30.77089	248.322
	CLACK_12	45 04 15.04296	-122 31 28.78390	404.381

Methodology

Each aircraft is assigned a ground crew member with two R7 receivers and an R8 receiver. The ground crew vehicles are equipped with standard field survey supplies and equipment including safety materials. All control points are observed for a minimum of two survey sessions lasting no fewer than two hours. At the beginning of every session the tripod and antenna are reset, resulting in two independent instrument heights and data files. Data are collected at a rate of one hertz, using a 10 degree mask on the antenna.

The ground crew uploads the GPS data to the Dropbox website on a daily basis to be returned to the office for Professional Land Surveyor (PLS) oversight, Qual-

ity Assurance/Quality Control (QA/QC) review, and processing. OPUS processing triangulates the monument position using three CORS stations resulting in a fully adjusted position. Blue Marble Geographics Desktop v.2.5.0 is used to convert the geodetic positions from the OPUS reports. After multiple days of data have been collected at each monument, accuracy and error ellipses are

WSI collected 1,752 RTK points and utilized 4 monuments.

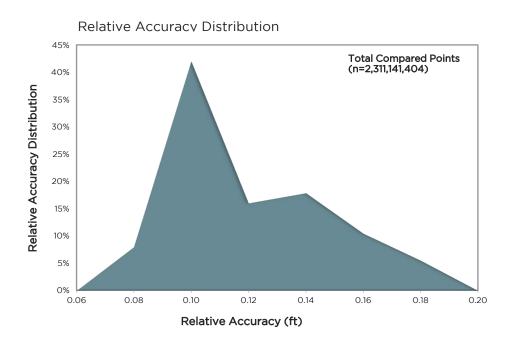
calculated. This information leads to a rating of the monument based on FGDC-STD-007.2-1998 Part 2 at the 95 percent confidence level (see monument accuracy table).

All RTK measurements are made during periods with a Position Dilution of Precision (PDOP) of less

Monument Accuracy		
FGDC-STD-007.2-1998 Rating		
St Dev NE	0.020 m	
St Dev z	0.020 m	

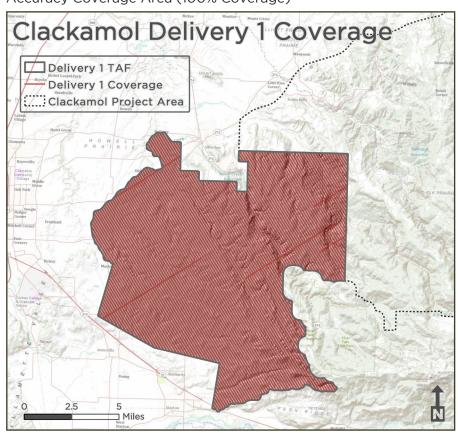
than 3.0 and in view of at least six satellites by the stationary reference and roving receiver. RTK positions are collected on 20 percent of the flight lines and on bare earth locations such as paved, gravel or stable dirt roads, and other locations where the ground is clearly visible (and is likely to remain visible) from the sky during the data acquisition and RTK measurement period(s). In order to facilitate comparisons with LiDAR survey points, RTK measurements are not taken on highly reflective surfaces such as center line stripes or lane markings on roads. RTK points are taken no closer than one meter to any nearby terrain breaks such as road edges or drop offs. Examples of identifiable locations would include manhole and other flat utility structures that have clearly indicated center points or other measurement locations. Multiple differential GPS units are used in the ground based real-time kinematic portion of the survey. To collect accurate ground surveyed points, a GPS base unit is set up over monuments to broadcast a kinematic correction to a roving GPS unit. The ground crew uses a roving unit to receive radio-relayed kinematic corrected positions from the base unit. This RTK survey allows precise location measurement (≤ 1.5 centimeters).

R7 Receiver



Accuracy

Relative Accuracy


Relative accuracy refers to the internal consistency of the data set and is measured as the divergence between points from different flightlines within an overlapping area. Divergence is most apparent when flightlines are opposing. When the LiDAR system is well calibrated the line to line divergence is low (<10 centimeters). Internal consistency is affected by system attitude offsets (pitch, roll, and heading), mirror flex (scale), and GPS/IMU drift.

Relative accuracy statistics are based on the comparison of 162 flight-lines and over 2.3 billion points. Relative accuracy is reported for the entire study area.

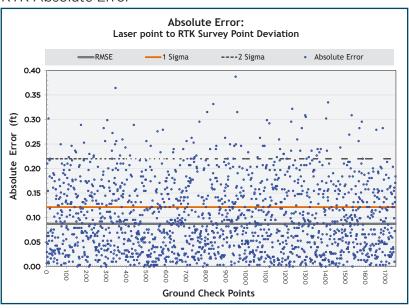
Relative Accuracy Calibration Results			
Project Average	0.11 ft. (0.03 m)		
Median Relative Accuracy	0.10 ft. (0.03 m)		
1σ Relative Accuracy	0.12 ft. (0.04 m)		
2σ Relative Accuracy	0.16 ft. (0.05 m)		

Accuracy Coverage Area (100% Coverage)

Vertical Accuracy

Vertical Accuracy reporting is designed to meet guidelines presented in the National Standard for Spatial Data Accuracy (NSSDA) (FGDC, 1998) and the **ASPRS Guidelines for Vertical** Accuracy Reporting for LiDAR Data V1.0 (ASPRS, 2004). The statistical model compares known RTK ground survey points to the closest laser point. Vertical accuracy statistical analysis uses ground control points in open areas where the LiDAR system has a "very high probability" that the sensor will measure the ground surface and is evaluated at the 95th percentile. For the Clacka-

mol study area, 1,752 RTK points were collected.

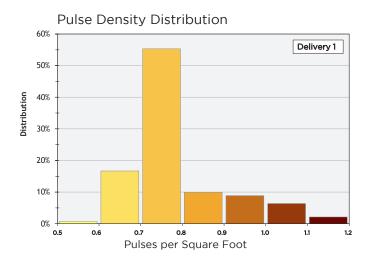

For this project, no independent survey data were collected, nor were reserved points collected for testing. As such, vertical accuracy statistics are reported as "Compiled to Meet." Vertical Accuracy is reported for the entire study area and reported in the table below. Histogram and absolute deviation statistics displayed to the right.

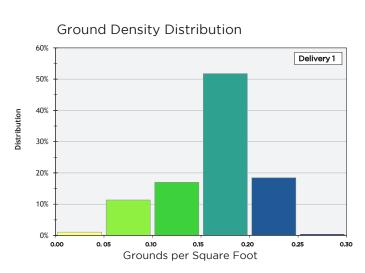
Vertical Accuracy Results			
Sample Size (n)	1,752		
Root Mean Square Error	0.09 ft (0.03 m)		
1 Standard Deviation	0.12 ft (0.04 m)		
2 Standard Deviation	0.22 ft (0.07 m)		
Average Deviation	-0.08 ft (-0.03 m)		
Minimum Deviation	-0.39 ft (-0.12 m)		
Maximum Deviation	0.22 ft (0.07 m)		

Vertical Accuracy Distribution

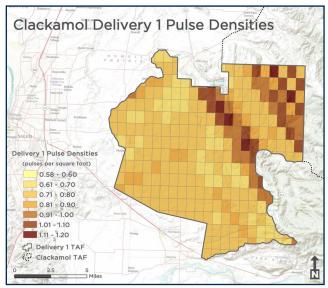
RTK Absolute Error

Density

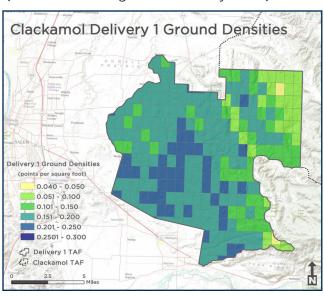

Pulse Density


Some types of surfaces (e.g., dense vegetation, water) may return fewer pulses than the laser originally emitted. Therefore, the delivered density can be less than the native density and vary according to terrain, land cover, and water bodies. Density histograms and maps have been calculated based on first return laser pulse density and ground-classified laser point density.

Average Point Densities			
	Pulse Density (sq m)		Ground Density (sq m)
0.78	8.40	0.16	1.75

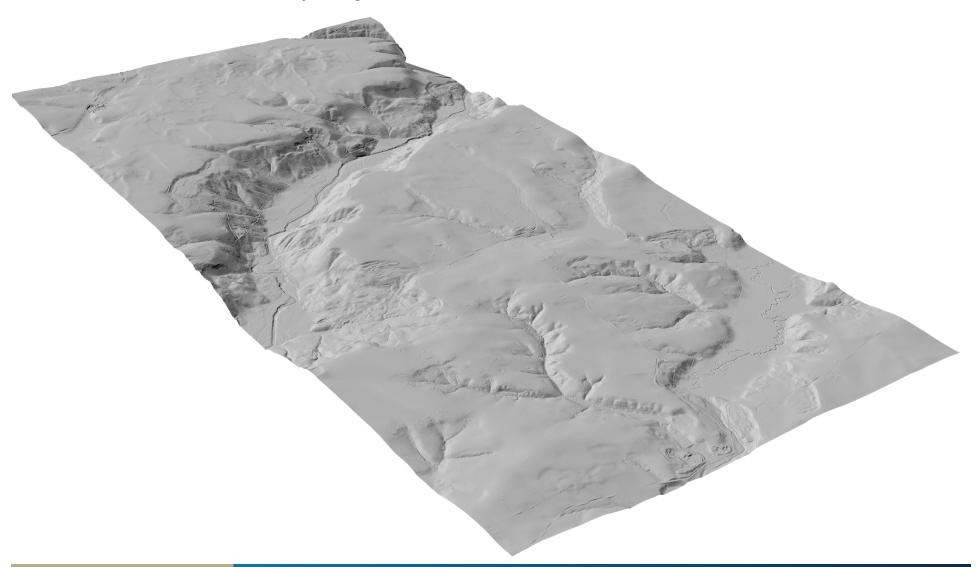

Ground Density

Ground classifications were derived from ground surface modeling. Further classifications were performed by reseeding of the ground model where it was determined that the ground model failed, usually under dense vegetation and/or at breaks in terrain, steep slopes, and at tile boundaries.



Average Pulse Density per 0.75' USGS Quad (color scheme aligns with density chart)

Average Ground Density per 0.75' USGS Quad (color scheme aligns with density chart)



LiDAR-derived Imagery

LiDAR point cloud with RGB extraction from 2012 NAIP imagery; image includes agricultural lands five miles southeast of Silverton, Oregon, along Highway 214.

Bare earth hilshade of the Silver Creek Valley looking South.

Certification

Watershed Sciences provided LiDAR services for the Clackamol study area as described in this report.

I, Mathew Boyd, have reviewed the attached report for completeness and hereby state that it is a complete and accurate report of this project.

Mathew Boyd Principal

Watershed Sciences, Inc.

Mouth Bayd

I, Christopher W. Yotter-Brown, being first dully sworn, say that as described in the Ground Survey subsection of the Acquisition section of this report was completed by me or under my direct supervision and was completed using commonly accepted standard practices. Accuracy statistics shown in the Accuracy Section have been reviewed by me to meet National Standard for Spatial Data Accuracy.

Christopher W. Yotter-Brown, PLS Oregon & Washington

WSI

Portland, OR 97204

Clark and putter

OREGON JULY 19 2004 Christopher W. Yoner - Brown 60438 Ls

RENEWAL DATE: 6/30/2014