

OLC Wasco County: Delivery One

Trimble R7 Receiver set up over GPS monument WASCO_02.

Data collected for: Oregon Department of Geology and Mineral Industries

800 NE Oregon Street Suite 965 Portland, OR 97232

Prepared by: WSI, A Quantum Spatial Company 421 SW 6th Avenue Suite 800 Portland, Oregon 97204 phone: (503) 505-5100 fax: (503) 546-6801

517 SW 2nd Street Suite 400 Corvallis, OR 97333 phone: (541) 752-1204 fax: (541) 752-3770

Contents

- 2 Project Overview
- 3 Aerial Acquisition 3 - LiDAR Survey
- 4 Ground Survey
 - 4 Instrumentation
 - 4 Monumentation
 - 6 Methodology
- 7 LiDAR Accuracy
 - 7 Relative Accuracy
 - 8 Vertical Accuracy
- 9 Density
 - 9 Pulse Density
 - 10 Ground Density
- 12 Appendix A : PLS Certification
- 13 Appendix B : GPS Monument Table

Overview

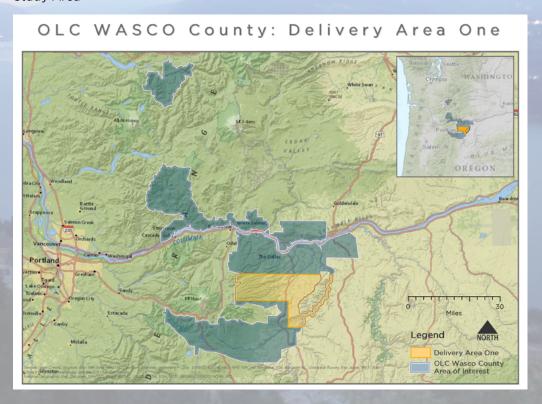
Project Overview

WSI has completed the acquisition and processing of Light Detection and Ranging (LiDAR) data for the OLC Wasco County Delivery Area One for the Oregon Department of Geology and Mineral Industries (DOGAMI). The Oregon LiDAR Consortium's Wasco County 2014 project area of interest (AOI) encompasses 1,020,680 acres. Delivery Area One encompasses 176,896.6 acres.

The collection of high resolution geographic data is part of an ongoing pursuit to amass a library of information accessible to government agencies as well as the general public.

WSI LiDAR data acquisition occurred from July 15 - September 19, 2014.

Settings for LiDAR data capture produced an average resolution of at least eight pulses per square meter.


Final products created that are included in Delivery Area One are LiDAR point cloud data, three-foot digital elevation models of bare earth ground models and highest-hit returns, 1.5-foot intensity rasters, three-foot ground density rasters, study area vector shapes, ground survey points and monuments, and corresponding statistical data.

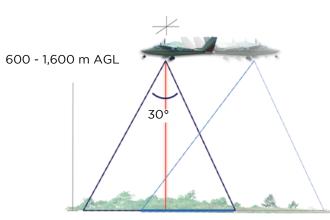
WSI acquires and processes data in the most current, NGS-approved datums and geoid. For OLC Wasco County, all final deliverables are projected in Oregon Statewide Lambert, endorsed by the Oregon Geographic Information Council (OGIC),¹ using the NAD83(2011) horizontal datum and the NAVD88 (Geoid 12A) vertical datum, with units in international feet.

OLC Wasco County Delivery One Data Delivered: January 2, 2014

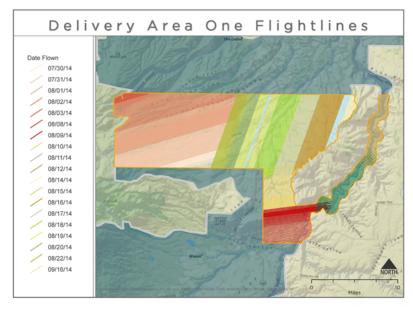
Acquisition Dates	7/15/2014 - 9/19/2014
Delivery Area One Area of Interest	176,896.6 acres
Projection	Oregon Statewide Lambert (OGIC)
Datum: horizontal & vertical	NAD83 (2011) NAVD88 (Geoid 12A)
Units	International Feet

Study Area

¹ http://www.oregon.gov/DAS/EISPD/GEO/pages/ coordination/projections/projections.aspx


Aerial Acquisition

LiDAR Survey


The LiDAR survey used a Leica ALS70 and an Optech Orion H sensor mounted in a Cessna U206G, Partenavia P.68, and Piper Navajo. The systems were programmed to emit single pulses at a rate of 219 kilohertz and flown between 600 and 1,600 meters above ground level (AGL), capturing a scan angle of +/-15 degrees from nadir (field of view equal to 30 degrees). These settings are developed to yield points with an average native density of greater than eight pulses per square meter over terrestrial surfaces.

The native pulse density is the number of pulses emitted by the LiDAR system. Some types of surfaces such as dense vegetation or water may return fewer pulses than the laser originally emitted. Therefore, the delivered density can be less than the native density and lightly vary according to distributions of terrain, land cover, and water bodies. The study area was surveyed with opposing flight line side-lap of greater than 60 percent with at least 100 percent overlap to reduce laser shadowing and increase surface laser painting. The system allows up to four range measurements per pulse, and all discernible laser returns were processed for the output dataset.

To solve for laser point position, it is vital to have an accurate description of aircraft position and attitude. Aircraft position is described as x, y, and z and measured twice per second (two hertz) by an onboard differential GPS unit. Aircraft attitude is measured 200 times per second (200 hertz) as pitch, roll, and yaw (heading) from an onboard inertial measurement unit (IMU). As illustrated in the accompanying map, 413 flightlines provide coverage of the study area.

Project Flightlines

OLC Wasco County LiDAR Acquisition Specifications			
Sensors Deployed	Leica ALS 70 and Orion H		
Aircraft	Cessna U206G, Piper Navajo, Partenavia P.68		
Survey Altitude (AGL)	600 - 1,600 meters		
Pulse Rate	219 kHz		
Pulse Mode	Single (SPiA)		
Field of View (FOV)	30°		
Roll Compensated	Yes		
Overlap	100% overlap with 60% sidelap		
Pulse Emission Density	\geq 8 pulses per square meter		

Ground Survey

Ground control surveys, including monumentation, aerial targets, and ground check points (GCPs) were conducted to support the airborne acquisition. Ground control data are used to geospatially correct the aircraft positional coordinate data and to perform quality assurance checks on final LiDAR data products. See the table to the right for specifications of equipment used.

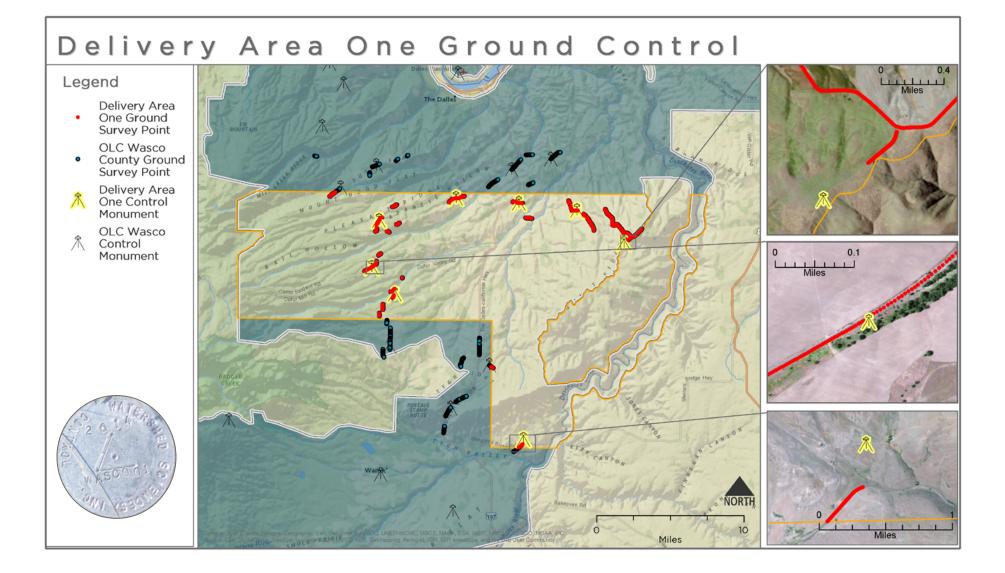
Instrumentation

All Global Navigation Satellite System (GNSS) static surveys utilized Trimble R7 GNSS receivers with Zephyr Geodetic Model 2 RoHS antennas and Trimble R8 GNSS receivers with internal antennas. Rover surveys for GCP collection were conducted with Trimble R6, Trimble R8, and Trimble R10 GNSS receivers.

Monumentation

Existing and newly established survey benchmarks serve as control points during LiDAR acquisition. Monument locations were selected with consideration for satellite visibility, field crew safety, and optimal location for GCP coverage. NGS benchmarks are preferred for control points; however, in the absence of NGS benchmarks, WSI produces our own monuments, and every effort is made to keep them within the public right of way or on public lands. If monuments are necessary on private property, consent from the owner is required. All monumentation is done with $5/8^{\circ} \times 30^{\circ}$ rebar topped with a two-inch diameter aluminum cap stamped "Watershed Sciences, Inc. Control." The table at right provides the list of monuments used in Delivery Area One. See Appendix B for a complete list of monuments placed within the OLC Wasco County 2014 Study Area.

Instrumentation				
Receiver Model	Antenna	OPUS Antenna ID	Use	
Trimble R7 GNSS	Zephyr GNSS Geodetic Model 2 RoHS	TRM57971.00	Static	
Trimble R8	Integrated Antenna R8 Model 2	TRM_R8_GNSS	Static, Rover	
Trimble R10	Integrated Antenna R10	TRMR10	Rover	
Trimble R6	Integrated Antenna R10	TRMR10	Rover	


Delivery Area One GPS Monuments				
PID	Latitude	Longitude	Ellipsoid Height (m)	NAVD88 Height (m)
WASCO_01	45° 25′ 33.92221″	-121° 17′ 35.67224″	694.143	715.200
WASCO_02	45° 24' 00.14524"	-121° 15′ 38.58602″	668.266	67.992
WASCO_07	45° 28' 20.67253"	-121° 17' 01.49189"	652.762	673.886
WASCO_10	45° 29' 26.20935"	-121° 05′ 18.01985″	348.496	369.761
WASCO_11	45° 29' 41.84872"	-121° 10′ 33.92138″	352.139	373.376
WASCO_12	45° 29' 00.75217"	-121° 00′ 25.75182″	459.025	480.243
WASCO_15	45° 27' 06.62583"	-120° 56' 27.83190"	839.258	860.373
WASCO_17	45° 15′ 30.16588″	-121° 04′ 46.54399″	366.298	387.695

Coordinates are on the NAD83 (2011) datum, epoch 2010.00. NAVD88 height referenced to Geoid12A.

GPS receiver set over GPS Monument WASCO_07.

Ground Survey

Ground Survey

Methodology

To correct the continuously recorded aircraft position, WSI concurrently conducts multiple static GNSS ground surveys over each monument. All control monuments are observed for a minimum of two survey sessions, each lasting no fewer than two hours. Data are collected at a rate of one hertz, using a 10 degree mask on the antenna. The static GPS data are then triangulated with nearby Continuously Operating Reference Stations (CORS) using the Online Positioning User Service (OPUS) for precise positioning.

Ground Check Points (GCPs) are collected using Real Time Kinematic (RTK), Post-Processed Kinematic (PPK), and Fast-Static (FS) survey techniques. For RTK surveys, a base receiver is positioned at a nearby monument to broadcast a kinematic correction to a roving receiver; for PPK and FS surveys, however, these corrections are post-processed. All GCP measurements are made during periods with a Position Dilution of Precision (PDOP) no greater than 3.0 and in view of at least six satellites for both receivers. Relative errors for the position must be less than 1.5 centimeters horizontal and 2.0 centimeters vertical in order to be accepted.

In order to facilitate comparisons with high quality LiDAR data, GCP measurements are not taken on highly reflective surfaces such as center line stripes or lane markings on roads. GCPs are taken no closer than one meter to any nearby terrain breaks such as road edges or drop offs. GCPs were collected within as many flight lines as possible; however, the distribution depended on ground access constraints and may not be equitably distributed throughout the study area.

Monument Accuracy		
FGDC-STD-007.2-1998 Rating		
St Dev NE	0.05 m Horizonta	
St Dev z	0.05 m Vertical	

WSI ground professional collecting ground survey points in OLC Wasco County study area.

LiDAR Accuracy

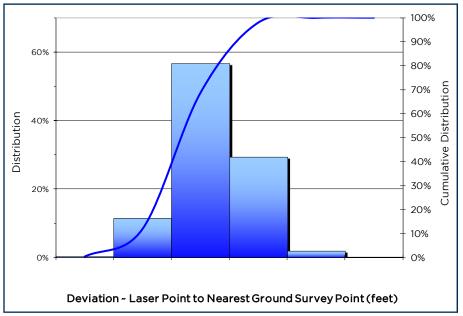

Relative Accuracy

Relative accuracy refers to the internal consistency of the data set and is measured as the divergence between points from different flightlines within an overlapping area. Divergence is most apparent when flightlines are opposing. When the LiDAR system is well calibrated the line to line divergence is low (<10 centimeters). Internal consistency is affected by system attitude offsets (pitch, roll, and heading), mirror flex (scale), and GPS/IMU drift.

Relative accuracy statistics are based on the comparison of 962 full and partial flightlines. Relative accuracy is reported for the cumulative delivered portions of the study area.

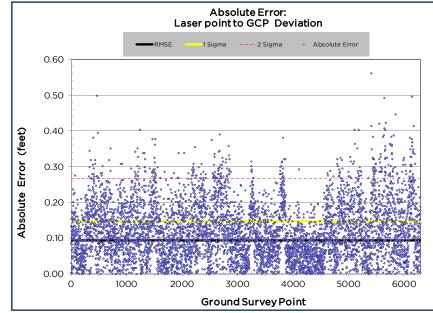
Relative Accuracy Calibration Results N = 962 flightlines			
Project Average	0.11 ft. (0.03 m)		
Median Relative Accuracy	0.11 ft. (0.03 m)		
1σ Relative Accuracy	0.12 ft. (0.04 m)		
2σ Relative Accuracy	0.15 ft. (0.04 m)		

Relative Accuracy Distribution

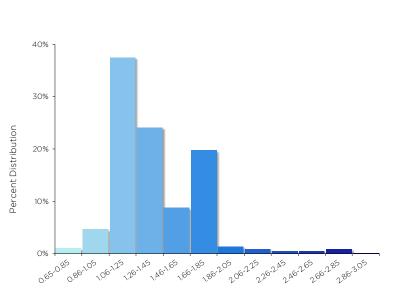


Vertical Accuracy


Vertical Accuracy reporting is designed to meet guidelines presented in the National Standard for Spatial Data Accuracy (NSSDA) (FGDC, 1998) and the ASPRS Guidelines for Vertical Accuracy Reporting for LiDAR Data V1.0 (ASPRS, 2004). The statistical model compares known ground check points to the triangulated LiDAR surface. Vertical accuracy statistical analysis uses ground control points in open areas where the LiDAR system has a "very high probability" that the sensor will measure the ground surface and is evaluated at the 95th percentile. For the OLC Wasco County 2014 Delivery Area One, 6,295 GCPs were collected. Statistics are shown for Delivery Area One.

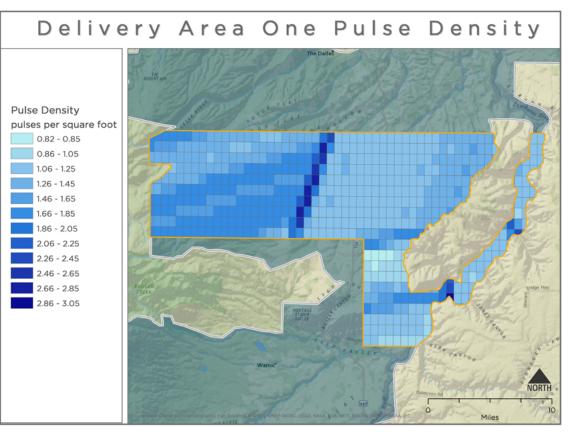

For this project, no independent survey data were collected, nor were reserved points collected for testing. As such, vertical accuracy statistics are reported as "Compiled to Meet." Vertical Accuracy is reported for the entire study area and reported in the table below. Histogram and absolute deviation statistics displayed below.

Vertical Accuracy Results			
Delivery Area			
Sample Size (n)	6,295 Ground check points		
Root Mean Square Error	0.09 ft. (0.03 m)		
1 Standard Deviation	0.15 ft. (0.05 m)		
2 Standard Deviation	0.27 ft. (0.08 m)		
Average Deviation	0.12 ft. (0.04 m)		
Minimum Deviation	-0.30 ft. (-0.09 m)		
Maximum Deviation	0.56 ft. (0.17 m)		



Density

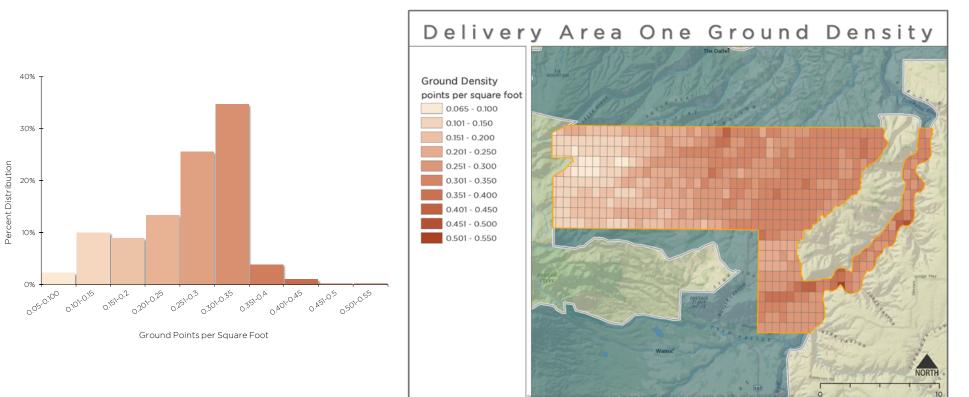
Pulse Density


Final pulse density is calculated after processing and is a measure of first returns per sampled area. Some types of surfaces (e.g., dense vegetation, water) may return fewer pulses than the laser originally emitted. Therefore, the delivered density can be less than the native density and vary according to terrain, land cover, and water bodies. Density histograms and maps have been calculated based on first return laser pulse density and ground-classified laser point density. Densities are reported for the delivery area.

Pulses per Square Foot

Average	pulses per	pulses per	
Pulse	square meter	square foot	
Density	15.09	1.40	

Average Pulse Density per 0.75' USGS Quad (color scheme aligns with density chart).



Miles

Ground Density

Ground classifications were derived from ground surface modeling. Further classifications were performed by reseeding of the ground model where it was determined that the ground model failed, usually under dense vegetation and/or at breaks in terrain, steep slopes, and at tile boundaries. The classifications are influenced by terrain and grounding parameters that are adjusted for the dataset. The reported ground density is a measure of ground-classified point data for the delivery area.

	points per	points per
Ground	square meter	square foot
Density	2.80	0.26

Average Ground Density per 0.75' USGS Quad (color scheme aligns with density chart).

[Page Intentionally Blank]

Appendix

Appendix A : PLS Certification

WSI provided LiDAR Services for OLC Wasco County LiDAR Project Delivery 1 as described in this report.

I, John English, have reviewed the attached report for completeness and herby state that it is a complete and accurate report of this project.

John I. Eggh 12/31/2014

John English Project Manager WSI, a Quantum Spatial Company

I, Christopher Glantz, being duly registered as a Professional Land Surveyor in the state of Oregon, say that I hereby certify the methodologies and results of the attached LiDAR project, and that Static GNSS occupations on the Base Stations during airborne flights and RTK survey on hard-surface and GCP's were performed using commonly accepted Standard Practices. Field work conducted for this report was conducted between July 15, 2014 and September 19, 2014. Accuracy statistics shown in the Accuracy Section of this Report have been review by me and found to meet the "National Standard for Spatial Data Accuracy".

12/31/2014

Christopher Glantz, PLS Land Surveyor WSI, a Quantum Spatial Company Portland, OR 97204

RENEWS 6/30/2015

Appendix B : GPS Monument Table

List of GPS monuments used in OLC Wasco County Survey Area. Coordinates are on the NAD83 (2011) datum, epoch 2010.00. NAVD88 height referenced to Geoid12A.

OLC Wasco County GPS Monuments				
PID	Latitude	Longitude	Ellipsoid Height (m)	Orthometric Height (m)
RC1228	45° 06′ 49.69688″	-121° 19′ 19.81403″	624.578	646.030
RC2736	45° 37′ 04.04622″	-121° 10′ 30.56142″	46.512	67.992
WASCO_01	45° 25′ 33.92221″	-121° 17′ 35.67224″	694.143	715.200
WASCO_02	45° 24′ 00.14524″	-121° 15′ 38.58602″	668.266	689.337
WASCO_03	45° 30′ 15.15952″	-121° 20′ 16.05414″	706.121	727.237
WASCO_04	45° 31′ 35.06899″	-121° 17′ 17.45080″	659.572	680.767
WASCO_05	45° 40′ 58.30068″	-121° 18′ 03.00268″	194.683	216.110
WASCO_06	45° 39' 58.42964"	-121° 20′ 07.36657″	328.069	349.483
WASCO_07	45° 28′ 20.67253″	-121° 17′ 01.49189″	652.762	673.886
WASCO_08	45° 37′ 33.53662″	-121° 21′ 18.77199″	485.153	506.493
WASCO_09	45° 36′ 23.21905″	-121° 20′ 06.73995″	618.486	639.790
WASCO_10	45° 29′ 26.20935″	-121° 05′ 18.01985″	348.496	369.761
WASCO_11	45° 29′ 41.84872″	-121° 10′ 33.92138″	352.139	373.376
WASCO_12	45° 29′ 00.75217″	-121° 00′ 25.75182″	459.025	480.243
WASCO_13	45° 20′ 54.35426″	-121° 16′ 00.43344″	731.185	752.265
WASCO_14	45° 33′ 50.86097″	-121° 21′ 51.83958″	628.086	649.267
WASCO_15	45° 27′ 06.62583″	-120° 56′ 27.83190″	839.258	860.373
WASCO_16	45° 19′ 51.53124″	-121° 07′ 39.82528″	771.520	792.637
WASCO_17	45° 15′ 30.16588″	-121° 04′ 46.54399″	366.298	387.695
WASCO_18	45° 17′ 18.80793″	-121° 10′ 52.79618″	490.765	512.026
WASCO_19	45° 32′ 02.50205″	-121° 02′ 38.17485″	323.491	344.841
WASCO_20	45° 31′ 24.81814″	-121° 05′ 55.22316″	226.261	247.595
WASCO_21	45° 34′ 50.63889″	-120° 42′ 20.51709″	406.207	427.542
WASCO_22	45° 36′ 32.32168″	-120° 43′ 27.27584″	322.623	343.983

OLC Wasco County GPS Monuments				
PID	Latitude	Longitude	Ellipsoid Height (m)	Orthometric Height (m)
WASCO_23	45° 39' 25.35061"	-120° 50′ 31.98330″	195.187	216.568
WASCO_25	45° 40′ 26.60543″	-121° 06′ 03.21471″	340.241	361.552
WASCO_26	45° 43' 42.64888"	-120° 58′ 06.01776″	457.564	478.693
WASCO_27	45° 11′ 11.42881″	-121° 10′ 36.88163″	516.322	537.783
WASCO_28	45° 13′ 21.18185″	-121° 16′ 41.26494″	529.382	550.863
WASCO_29	45° 17′ 13.71773″	-121° 43′ 43.89634″	1148.089	1168.978
WASCO_30	45° 15′ 09.56681″	-121° 45′ 06.60188″	1077.776	1098.738
WASCO_31	45° 11′ 41.00706″	-121° 41′ 34.26892″	1145.538	1166.520
WASCO_32	45° 13′ 23.06365″	-121° 33′ 08.21340″	1268.450	1289.391
WASCO_33	45° 08' 01.07100"	-121° 37′ 24.78080″	1069.357	1090.435
WASCO_34	45° 16′ 27.80611″	-121° 29′ 24.41946″	1315.774	1336.621
WASCO_35	45° 37′ 57.72073″	-121° 58′ 13.51239″	-5.667	16.201
WASCO_36	45° 41′ 55.00914″	-121° 52′ 30.78102″	23.857	45.572
WASCO_37	45° 46′ 57.14196″	-121° 20′ 34.59729″	711.981	732.985
WASCO_38	45° 45' 30.26559"	-121° 24′ 17.71854″	589.260	610.392
WASCO_39	45° 42′ 40.65511″	-121° 46′ 39.83483″	12.803	34.339
WASCO_40	45° 43′ 43.90661″	-121° 33′ 54.44150″	315.186	336.630