Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 1 of 122

Osceola, Florida QL2 LiDAR

Report Produced for U.S. Geological Survey

USGS Contract: G10PC00013

Task Order: G15PD00887

Report Date: 10/21/2016

SUBMITTED BY:

Dewberry 1000 North Ashley Drive Suite 801 Tampa, FL 33602 813.225.1325

SUBMITTED TO: U.S. Geological Survey 1400 Independence Road Rolla, MO 65401 573.308.3765

Table of Contents

Executive Summary
The Project Team
Survey Area5
Date of Survey5
Coordinate Reference System5
LiDAR Vertical Accuracy
Project Deliverables
Project Tiling Footprint
LiDAR Acquisition Report
LiDAR Acquisition Details
LiDAR System parameters
Acquisition Status Report and Flightlines9
LiDAR Control10
Airborne GPS Kinematic 11
Generation and Calibration of Laser Points (raw data)11
Boresight and Relative accuracy13
Preliminary Vertical Accuracy Assessment14
LiDAR Processing & Qualitative Assessment15
Initial Processing15
Final Swath Vertical Accuracy Assessment15
Inter-Swath (Between Swath) Relative Accuracy16
Intra-Swath (Within a Single Swath) Relative Accuracy18
Horizontal Alignment
Point Density and Spatial Distribution 20
Data Classification and Editing21
LiDAR Qualitative Assessment
Visual Review
Data Voids
Artifacts 23
Bridge Removal Artifacts
Culverts and Bridges
In Ground Structures 27
Divots
Dense Vegetation/Marsh 29
Flight line Ridges

Temporal Differences
Formatting
Derivative LiDAR Products
Low Confidence Polygons
1-FT Contours
LiDAR Positional Accuracy
Background
Survey Vertical Accuracy Checkpoints
Vertical Accuracy Test Procedures
NVA
VVA
Vertical Accuracy Results
Horizontal Accuracy Test Procedures
Horizontal Accuracy Results
Breakline Production & Qualitative Assessment Report
Breakline Production Methodology45
Breakline Qualitative Assessment
Breakline Checklist
Data Dictionary
Horizontal and Vertical Datum
Coordinate System and Projection 47
Inland Streams and Rivers
Feature Definition
Inland Ponds and Lakes50
Beneath Bridge Breaklines
DEM Production & Qualitative Assessment
DEM Production Methodology53
DEM Qualitative Assessment
DEM Vertical Accuracy Results
DEM Checklist
Edge-Tie Analysis
Appendix A: Ground Control Point Survey Report
Ground Control Survey Report
Appendix B: Checkpoint Survey Report
1.1 Project Summary
1.2 Points of Contact

1.3	Project Area	
2.1	Survey Equipment	
2.2	Survey Point Detail	
2.3	Network Design	
2.4	Field Survey Procedures and Analysis	
2.5	Adjustment	
2.6	Data Processing Procedures	
Appe	ndix C: Complete List of Delivered Tiles	
	ndix D: GPS Processing	
	-	

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 5 of 122

Executive Summary

The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR) technology for the Osceola Project Area.

The LiDAR data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 2,500 feet by 2,500 feet. A total of 7292 tiles were produced for the project encompassing an area of approximately 1,566 sq. miles.

THE PROJECT TEAM

Dewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all LiDAR products, breakline production, Digital Elevation Model (DEM) production, and quality assurance.

Preble-Rish Inc.'s Frederick C. Rankin completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the LiDAR-derived surface model. He also verified the GPS base station coordinates used during LiDAR data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A for the Ground Control survey report and Appendix B for the Checkpoint survey report that were created for this portion of the project.

Aerial Cartographics of America, Inc (ACA) completed LiDAR data acquisition and data calibration for the project area.

SURVEY AREA

The project area addressed by this report falls within the Florida counties of Osceola, Polk and Orange.

DATE OF SURVEY

The LiDAR aerial acquisition was conducted from January 21, 2016 and April 13, 2016.

COORDINATE REFERENCE SYSTEM

Data produced for the project were delivered in the following reference system.

Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))

Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)

Coordinate System: Florida State Plane East (FIPS 0901)

Units: Horizontal units are in US Survey Feet, Vertical units are in US Survey Feet. **Geiod Model:** Geoid12B (Geoid 12B was used to convert ellipsoid heights to orthometric heights).

LIDAR VERTICAL ACCURACY

For the Osceola LiDAR Project, the tested $RMSE_z$ of the classified LiDAR data for checkpoints in non-vegetated terrain equaled **0.14ft (4.26cm)** compared with the 0.33 ft (10 cm) specification; and the NVA of the classified LiDAR data computed using $RMSE_z \times 1.9600$ was equal to **0.27ft (8.23cm)**, compared with the 0.64ft (19.6cm) specification.

For the Osceola LiDAR Project, the tested VVA of the classified LiDAR data computed using the 95th percentile was equal to **0.45ft (13.7cm)** compared with the 0.96 ft (29.4 cm) specification.

Additional accuracy information and statistics for the classified LiDAR data, raw swath data, and bare earth DEM data are found in the following sections of this report.

PROJECT DELIVERABLES


The deliverables for the project are listed below.

- 1. Raw Point Cloud Data (Swaths)
- 2. Classified Point Cloud Data (Tiled)
- 3. Bare Earth Surface (Raster DEM IMG Format)
- 4. Intensity Images (8-bit gray scale, tiled, GeoTIFF format)
- 5. Breakline Data (File GDB)
- 6. Contours(File GDB, Tiled)
- 7. Low Confidence Polygons
- 8. Independent Survey Checkpoint Data (Report, Photos, & Points)
- 9. Calibration Points
- 10. Metadata
- 11. Project Report (Acquisition, Processing, QC)
- 12. Project Extents, Including a shapefile derived from the LiDAR Deliverable

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 7 of 122

PROJECT TILING FOOTPRINT

Seven thousand two hundred ninety two (7292) tiles were delivered for the project. Each tile's extent is 2,500 feet by 2,500 feet (see Appendix C for a complete listing of delivered tiles).

Osceola LiDAR Project Area

Figure 1 - Project Map

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 8 of 122

LiDAR Acquisition Report

Dewberry elected to subcontract the LiDAR acquisition and calibration activities to Aerial Cartographics of America Inc. (ACA). ACA was responsible for providing LiDAR acquisition, calibration and delivery of LiDAR data files to Dewberry.

Dewberry received calibrated swath data from ACA on May 9, 2016.

LIDAR ACQUISITION DETAILS

ACA planned 381 passes for the project area as a series of parallel flight lines with cross flight lines for the purposes of quality control. The flight plan included zigzag flight line collection as a result of the inherent IMU drift associated with all IMU systems. In order to reduce any margin for error in the flight plan, ACA followed FEMA's Appendix A "guidelines" for flight planning and, at a minimum, includes the following criteria:

- A digital flight line layout using Track Air flight design software for direct integration into the aircraft flight navigation system.
- Planned flight lines; flight line numbers; and coverage area.
- LiDAR coverage extended by a predetermined margin beyond all project borders to ensure necessary over-edge coverage appropriate for specific task order deliverables.
- Local restrictions related to air space and any controlled areas have been investigated so that required permissions can be obtained in a timely manner with respect to schedule. Additionally, ACA will file our flight plans as required by local Air Traffic Control (ATC) prior to each mission.

ACA monitored weather and atmospheric conditions and conducted LiDAR missions only when no conditions existed below the sensor that would affect the collection of data. These conditions included leaf-off for hardwoods, no snow, rain, fog, smoke, mist and low clouds. LiDAR systems are active sensors, not requiring light, thus missions may be conducted during night hours when weather restrictions do not prevent collection. ACA accesses reliable weather sites and indicators (webcams) to establish the highest probability for successful collection in order to position our sensor to maximize successful data acquisition.

Within 72-hours prior to the planned day(s) of acquisition, ACA closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis.

ACA LiDAR sensors are calibrated at a designated site located at the Kissimmee Airport in Kissimmee, Florida and are periodically checked and adjusted to minimize corrections at project sites.

LIDAR SYSTEM PARAMETERS

ACA operated a Cessna T-206 (Tail # N948IT) outfitted with a Riegl LMS-Q680i LiDAR system during the collection of the study area. Table 1 illustrates ACA system parameters for LiDAR acquisition on this project.

Item	Parameter	
System	Riegl LMS-Q680i	
Altitude (AGL meters)	701 m/2300 Ft	
Approx. Flight Speed (knots)	110 knots	
Scanner Pulse Rate (kHz)	280 kHz	
Scan Frequency (hz)	120 (1/s)	
Pulse Duration of the Scanner (microseconds)	0.005553571	
Pulse Width of the Scanner (m)	0.351 m	
Swath width (m)	809.49 m	
Central Wavelength of the Sensor Laser (nanometers)	1550	
Did the Sensor Operate with Multiple Pulses in The Air? (yes/no)	Yes	
Beam Divergence (milliradians)	0.5 mrad	
Nominal Swath Width on the Ground (m)	809.49 m	
Swath Overlap (%)	55%	
Total Sensor Scan Angle (degree)	60	
Computed Down Track spacing (m) per beam	0.47 m	
Computed Cross Track Spacing (m) per beam	0.429 m	
Nominal Pulse Spacing (single swath), (m)	0.45 m	
Nominal Pulse Density (single swath) (ppsm), (m)	4.94	
Aggregate NPS (m) (if ANPS was designed to be met through single coverage, ANPS and NPS will be equal)	0.45 m	
Aggregate NPD (m) (if ANPD was designed to be met through single coverage, ANPD and NPD will be equal)	4.94 m	
Maximum Number of Returns per Pulse	7	

Table 1: ACA LiDAR System Parameters

ACQUISITION STATUS REPORT AND FLIGHTLINES

Upon notification to proceed, the flight crew loaded the flight plans and validated the flight parameters. The Acquisition Manager contacted air traffic control and coordinated flight pattern requirements. LiDAR acquisition began immediately upon notification that control base stations were in place. During flight operations, the flight crew monitored weather and atmospheric conditions. LiDAR missions were flown only when no condition existed below the sensor that would affect the collection of data. The pilot constantly monitored the aircraft course, position, pitch, roll, and yaw of the aircraft. The sensor operator monitored the sensor, the status of PDOPs, and performed the first Q/C review during acquisition. The flight crew constantly reviewed weather and cloud locations. Any flight lines impacted by unfavorable conditions were marked as invalid and re-flown immediately or at an optimal time.

Figure 2 shows the combined trajectory of the flight lines.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 10 of 122

Figure 2: Trajectories as planned by ACA

LIDAR CONTROL

Two Leica GS14 base stations were used during each flight. Each base station was set on one of the closest of the sixteen NGS monuments recovered as part of the project. These base stations were used to control the LiDAR acquisition for the Osceola County QL2 LiDAR project area. The coordinates of all used base stations are provided in the table below.

Name	NAD83(2011) Flori	da State Plane East Zone	Orthometric Ht (NAVD88
	Easting X (ft)	Northing Y (ft)	Geoid12B,ft)
AB5478	631573.38	1374800.82	75.141
AB5482	604549.95	1433053.94	69.412
AB5498	508908.72	1426446.69	78.999
AB5503	505940.89	1405986.06	74.881
AF6097	614001.26	1311079.64	68.714
AF6121	606515.82	1256753.59	60.579
AF6134	631895.46	1243075.86	69.502
AF7103	599246.59	1330578.47	75.376
AF7643	570148.21	1262168.84	61.564
AK6933	655130.15	1432707.69	65.986
AK6935	678778.58	1375220.92	50.157
AK7111	477009.28	1427522.14	86.404
CW6769	580462.92	1395969.10	72.956
DJ8307	697553.66	1217516.51	53.967
DL6642	515785.19	1440218.98	76.795
AK7134	493426.95	1475306.44	105.9

Table 2 - Base Stations used to control LiDAR acquisition

AIRBORNE GPS KINEMATIC

Airborne GPS data was processed using the Applanix MMS PosPac V7.2 software suite. Flights were flown with a minimum of 6 satellites in view (13° above the horizon) and with a PDOP of better than 4. Distances from base station to aircraft were kept to a maximum of 25km.

For all flights, the GPS data can be classified as excellent, with GPS residuals of 3cm average or better but no larger than 10cm being recorded.

GPS processing reports for each mission are included as a separate Appendix D so as not to add over 100 pages to this report.

GENERATION AND CALIBRATION OF LASER POINTS (RAW DATA)

The initial step of calibration is to verify availability and status of all needed GPS and Laser data against field notes and compile any data if not complete.

Subsequently the mission points are output using Riegl Riprocess initially with default values from Riegl or the last mission calibrated for the system. The initial point generation for each mission calibration is verified within Microstation/Terramatch for calibration errors. If a calibration error greater than specification is observed within the mission, the roll, pitch and scanner scale corrections that need to be applied are calculated. The missions with the new calibration values are regenerated and validated internally once again to ensure quality.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 12 of 122

Data collected by the LiDAR unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GPS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database.

On a project level, a supplementary coverage check is carried out to ensure no data voids unreported by Field Operations are present.

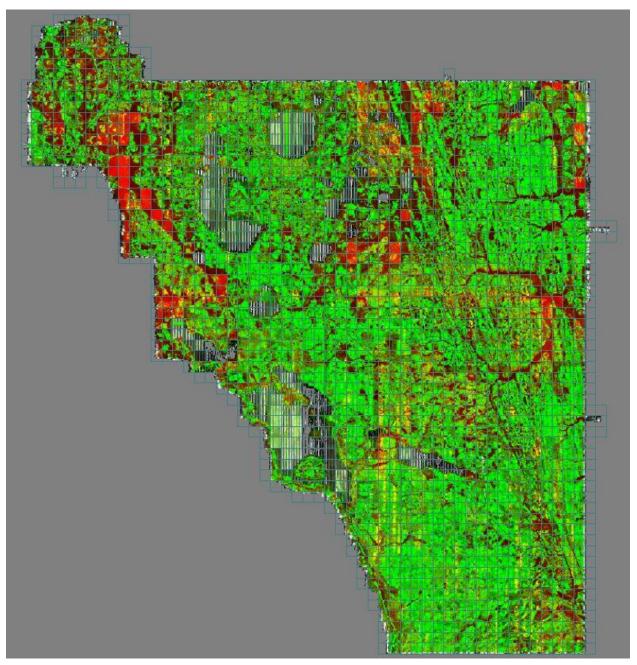


Figure 3 – LiDAR Swath output showing complete coverage.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 13 of 122

BORESIGHT AND RELATIVE ACCURACY

The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the LiDAR unit or GPS. Roll, heading, pitch and scanner scale are optimized during the calibration process until the relative accuracy is met.

Relative accuracy and internal quality are checked using at least 3 regularly spaced QC blocks in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed. Color scale is adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point to point, flight line to flight line and mission to mission agreement.

For this project the specifications used are as follow: Relative accuracy <= 6cm RMSDz within individual swaths and <=8 cm RMSDz between adjacent and overlapping swaths.

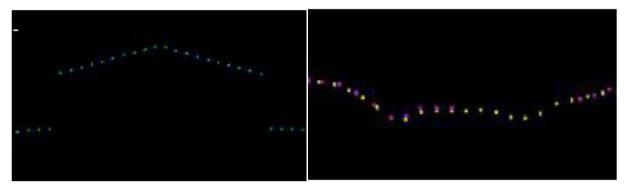


Figure 4 – Profile views showing correct roll and pitch adjustments.

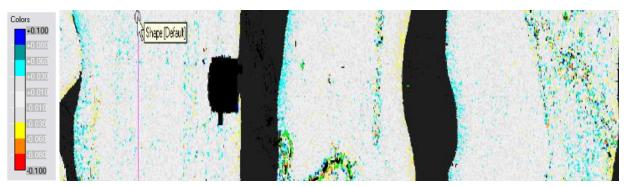


Figure 5 – QC block colored by distance to ensure accuracy at swath edges.

A different set of QC blocks are generated for final review after all transformations have been applied.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 14 of 122

PRELIMINARY VERTICAL ACCURACY ASSESSMENT

A preliminary RMSE_z error check is performed by ACA at this stage of the project life cycle in the raw LiDAR dataset against GPS static and kinematic data and compared to RMSE_z project specifications. The LiDAR data is examined in non-vegetated, flat areas away from breaks. LiDAR ground points for each flight line generated by an automatic classification routine are used.

Prior to delivery to Dewberry, the elevation data was verified internally to ensure it met Non-vegetated Vertical Accuracy (NVA) requirements (RMSE_z \leq 10 cm/0.33 ft and Accuracy at the 95% confidence level \leq 19.6 cm/0.64 ft) when compared to static and kinematic GPS checkpoints. Below is a summary for the test:

The calibrated Osceola County QL2 LiDAR dataset was tested to 0.188 FT vertical accuracy at 95% confidence level based on RMSE_z (0.096 FT x 1.9600) when compared to 25 GPS static check points. The following are the final statistics for the GPS static checkpoints used by ACA to internally verify vertical accuracy.

Number	NAD83(2011) Florida State Plane East Zone		NAVD88 (Geoid 12B)	Laser Z (ft)	Delta Z
	Easting X (ft)	Northing Y (ft)	Known Z (ft)		Della Z
1	680191.877	1452296.979	40.410	40.440	+0.030
2	698276.228	1322140.535	34.814	34.770	-0.044
3	692661.909	1211402.002	69.153	69.070	-0.083
4	618197.017	1221056.935	55.706	55.710	+0.004
5	533875.931	1326659.484	52.388	52.390	+0.002
6	649572.831	1287863.477	70.849	70.910	+0.061
7	635371.914	1385010.711	76.048	75.950	-0.098
8	494342.953	1389521.856	71.943	71.860	-0.083
9	445328.454	1430756.615	192.147	192.390	+0.243
10	465100.214	1434611.408	106.965	107.100	+0.135
11	454218.150	1482342.163	130.943	131.170	+0.227
12	471486.710	1479657.440	97.054	97.040	-0.014
13	489034.678	1466499.464	98.750	98.800	-0.014
14	515232.165	1455748.200	84.815	84.740	-0.075
15	600059.199	1455463.458	64.891	64.720	-0.171
16	595538.905	1261643.809	56.731	56.720	-0.011
17	556025.484	1419419.156	73.098	73.190	+0.092
18	657725.716	1432623.766	67.133	67.030	-0.103
19	658221.704	1232725.191	69.599	69.650	+0.051
20	594718.403	1336001.148	71.980	71.980	+0.000
21	510923.280	1426934.560	66.280	66.290	+0.010
22	681573.632	1373748.832	55.865	55.860	-0.005
23	691348.461	1268127.684	60.964	60.870	-0.094
24	567514.711	1367373.382	66.612	66.550	-0.062
25	645796.080	1339420.971	67.008	67.010	-0.062

Table 3 - Static GPS Vertical Accuracy Results

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 15 of 122

Overall the calibrated LiDAR data products collected by ACA meet or exceed the requirements set out in the Statement of Work. The quality control requirements of ACA quality management program were adhered to throughout the acquisition stage for this project to ensure product quality.

LiDAR Processing & Qualitative Assessment

INITIAL PROCESSING

Once Dewberry receives the calibrated swath data from the acquisition provider, Dewberry performs several validations on the dataset prior to starting full-scale production on the project. These validations include vertical accuracy of the swath data, inter-swath (between swath) relative accuracy validation, intra-swath (within a single swath) relative accuracy validation, verification of horizontal alignment between swaths, and confirmation of point density and spatial distribution. This initial assessment allows Dewberry to determine if the data are suitable for full-scale production. Addressing issues at this stage allows the data to be corrected while imposing the least disruption possible on the overall production workflow and overall schedule.

Final Swath Vertical Accuracy Assessment

Once Dewberry received the calibrated swath data from ACA, Dewberry tested the vertical accuracy of the non-vegetated terrain swath data prior to additional processing. Dewberry tested the vertical accuracy of the swath data using the ninety-one non-vegetated (open terrain and urban) independent survey check points. The vertical accuracy is tested by comparing survey checkpoints in non-vegetated terrain to a triangulated irregular network (TIN) that is created from the raw swath points. Only checkpoints in non-vegetated terrain can be tested against raw swath data because the data has not undergone classification techniques to remove vegetation. buildings, and other artifacts from the ground surface. Checkpoints are always compared to interpolated surfaces from the LiDAR point cloud because it is unlikely that a survey checkpoint will be located at the location of a discrete LiDAR point. Dewberry typically uses LP360 software to test the swath LIDAR vertical accuracy, Terrascan software to test the classified LiDAR vertical accuracy, and Esri ArcMap to test the DEM vertical accuracy so that three different software programs are used to validate the vertical accuracy for each project. Project specifications require a NVA of 19.6 cm (0.64 ft) based on the RMSE_z (10 cm/0.33 ft) x 1.96. The dataset for the Osceola LiDAR Project satisfies this criteria. This raw LiDAR swath data set was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 10 cm (0.33ft) RMSE_z Vertical Accuracy Class. Actual NVA accuracy was found to be RMSE_z = 8.8cm (0.29ft), equating to \pm 17 cm (0.56 ft) at 95% confidence level. The table below shows all calculated statistics for the raw swath data.

100 % of Totals# of PointsRMSEz (ft) NVA Spec=0.33 ftNVA- Non- vegetated Vertical Accuracy ((RMSEz x 1.9600) Spec=0.64 ft	Mean Media (ft) (ft)	n Skew De (ft		Max (ft)	Kurtosis
---	-------------------------	------------------	--	-------------	----------

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 16 of 122

Non- Vegetate	d										
Terrain	91	0.29	0.56	0.05	0.01	6.58	0.28	-0.33	2.42	55.00	

Table 4: NVA at 95% Confidence Level for Raw Swaths

One checkpoint (NVA-38) was removed from the raw swath vertical accuracy testing due to its location outside the project boundary. Figure 6, below, shows the location of the LiDAR point outside the project boundary.

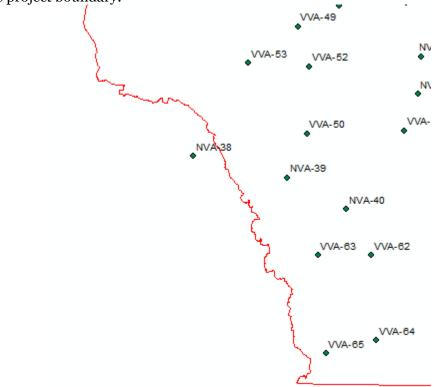


Figure 6 – Non- Vegetated checkpoint 38, shown outside the project boundary.

Inter-Swath (Between Swath) Relative Accuracy

Dewberry verified inter-swath or between swath relative accuracy of the dataset by creating Delta-Z (DZ) orthos. According to the SOW, USGS LiDAR Base Specifications v1.2, and ASPRS Positional Accuracy Standards for Digital Geospatial Data, 10 cm Vertical Accuracy Class or QL2 data must meet inter-swath relative accuracy of 8 cm RMSDz or less with maximum differences less than 16 cm. These measurements are to be taken in non-vegetated and flat open terrain using single or only returns from all classes. Measurements are calculated in the DZ orthos on 1-meter pixels or cell sizes. Areas in the dataset where overlapping flight lines are within 8 cm of each other within each pixel are colored green, areas in the dataset where overlapping flight lines have elevation differences in each pixel between 8 cm -12 cm are colored yellow, and areas in the dataset where overlapping flight lines are colored according to their intensity values. Areas of vegetation and steep slopes (slopes with 12 cm or more of valid elevation change across 1 linear meter) are expected to appear yellow or red in the DZ orthos from

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 17 of 122

the initial ground classification only, while keeping all other parameters consistent. This allows Dewberry to review the ground classification relative accuracy beneath vegetation and to ensure flight line ridges or other issues do not exist in the final classified data.

Flat, open areas are expected to be green in the DZ orthos. Large or continuous sections of yellow or red pixels can indicate the data was not calibrated correctly or that there were issues during acquisition that could affect the usability of the data, especially when these yellow/red sections follow the flight lines and not the terrain or areas of vegetation. The DZ orthos for Osceola are shown in the figure below; this project meets inter-swath relative accuracy specifications.

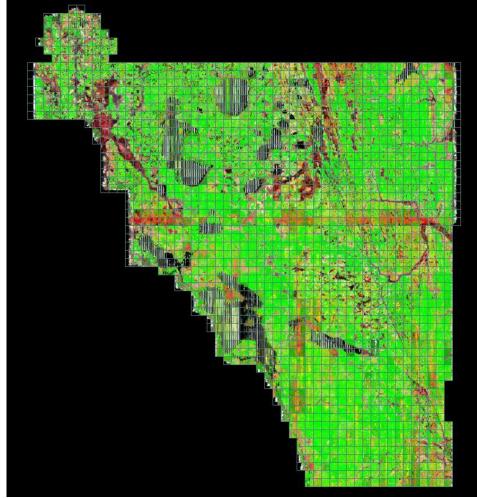


Figure 7–At full project scale, there are a few areas of red that appear to follow flight lines and suggest relative accuracy issues. Dewberry verified these areas and confirmed that water bodies, vegetation, and slope were the cause of higher DZ values in these locations. An example is shown in the figure below. Inter-swath relative accuracy for the Osceola Lidar Project meets specifications

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 18 of 122

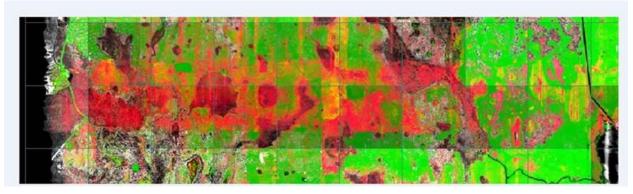


Figure 8- This image shows a close-up of one the red areas shown in the figure above where DZ values between swaths exceed 16 cm. Dewberry verified these areas and confirmed the differences are due to water bodies, vegetation, and sloped terrain.

Intra-Swath (Within a Single Swath) Relative Accuracy

Dewberry verifies the intra-swath or within swath relative accuracy by using Quick Terrain Modeler (QTM) scripting and visual reviews. QTM scripting is used to calculate the maximum difference of all points within each 1-meter pixel/cell size of each swath. Dewberry analysts then identify planar surfaces acceptable for repeatability testing and analysts review the QTM results in those areas. According to the SOW, USGS LiDAR Base Specifications v1.2, and ASPRS Positional Accuracy Standards for Digital Geospatial Data, 10 cm Vertical Accuracy Class or QL2 data must meet intra-swath relative accuracy of 6 cm maximum difference or less. The image below shows two examples of the intra-swath relative accuracy of Osceola; this project meets intra-swath relative accuracy specifications.

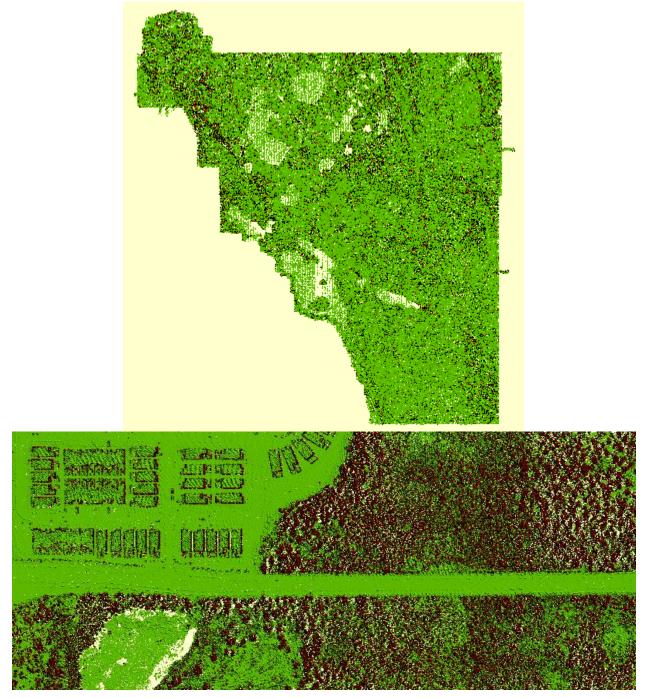
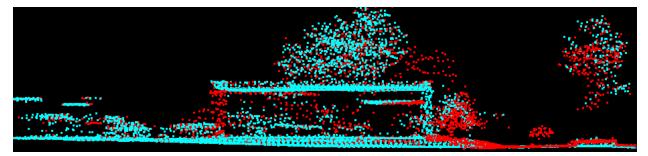


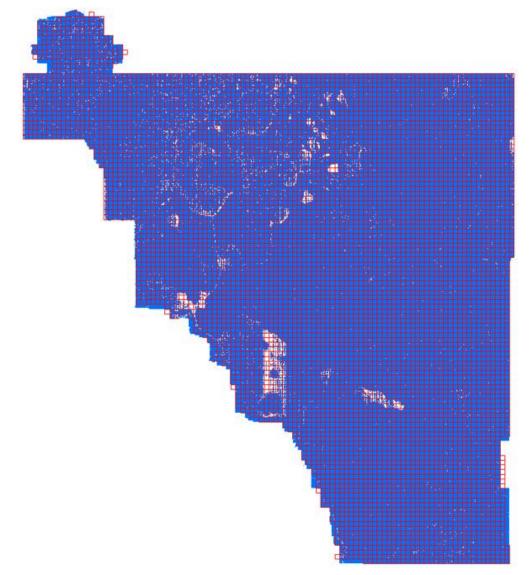
Figure 9–Intra-swath relative accuracy. The top image shows the full project area; areas where the maximum difference is ≤6 cm per pixel within each swath are colored green and areas exceeding 6 cm are colored red. The bottom image is a close-up of a flat area. With the exception of structures/forest (shown in red as the elevation/height difference in vegetated areas and along structures will exceed 6 cm) this open flat area is acceptable for repeatability testing. Intra-swath relative accuracy passes specifications.

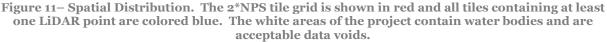
Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 20 of 122

Horizontal Alignment

To ensure horizontal alignment between adjacent or overlapping flight lines, Dewberry uses QTM scripting and visual reviews. QTM scripting is used to create files similar to DZ orthos for each swath but this process highlights planar surfaces, such as roof tops. In particular, horizontal shifts or misalignments between swaths on roof tops and other elevated planar surfaces are highlighted. Visual reviews of these features, including additional profile verifications, are used to confirm the results of this process. The image below shows an example of the horizontal alignment between swaths for Osceola; no horizontal alignment issues were identified.




Figure 10– Horizontal Alignment. Two separate flight lines differentiated by color (Teal/Red) are shown in this profile. There is no visible offset between these two flight lines. No horizontal alignment issues were identified.


Point Density and Spatial Distribution

The required Aggregate Nominal Point Spacing (ANPS) for this project is no greater than 0.5 feet, which equates to an Aggregate Nominal Point Density (ANPD) of 4 points per square meter or greater. Density calculations were performed using first return data only located in the geometrically usable center portion (typically ~90%) of each swath. By utilizing statistics, the project area was determined to have an ANPS of 0.31 feet or an ANPD of 10.4 points per square meter which satisfies the project requirements.

The spatial distribution of points must be uniform and free of clustering. This specification is tested by creating a grid with cell sizes equal to the design NPS*2. QTM scripting is then used to calculate the number of first return points of each swath within each grid cell. At least 90% of the cells must contain 1 LiDAR point, excluding acceptable void areas such as water or low NIR reflectivity features, i.e. some asphalt and roof composition materials. This project passes spatial distribution requirements, as shown in the image below.

DATA CLASSIFICATION AND EDITING

Once the calibration, absolute swath vertical accuracy, and relative accuracy of the data was confirmed, Dewberry utilized a variety of software suites for data processing. The data was processed using GeoCue and TerraScan software. The initial step is the setup of the GeoCue project, which is done by importing a project defined tile boundary index encompassing the entire project area. The acquired 3D laser point clouds, in LAS binary format, were imported into the GeoCue project and tiled according to the project tile grid. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine classifies any obvious low outliers in the dataset to class 7 and high outliers in the dataset to class 18. Points along flight line edges that are geometrically unusable are identified as withheld and classified to a separate class so that they will not be used in the initial ground algorithm. After points that could negatively affect the

ground are removed from class 1, the ground layer is extracted from this remaining point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model.

This surface model is generated using three main parameters: building size, iteration angle and iteration distance. The initial model is based on low points being selected by a "roaming window" with the assumption that these are the ground points. The size of this roaming window is determined by the building size parameter. The low points are triangulated and the remaining points are evaluated and subsequently added to the model if they meet the iteration angle and distance constraints. This process is repeated until no additional points are added within iterations. A second critical parameter is the maximum terrain angle constraint, which determines the maximum terrain angle allowed within the classification model.

Each tile was then imported into Terrascan and a surface model was created to examine the ground classification. Dewberry analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present following the initial processing conducted by Dewberry. Dewberry analysts employ 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points are removed from the ground classification. Bridge decks are classified to class 17 using bridge breaklines compiled by Dewberry. After the ground classification corrections were completed, the dataset was processed through a water classification routine that utilizes breaklines compiled by Dewberry to automatically classify hydro features. The water classification routine selects ground points within the breakline polygons and automatically classifies them as class 9, water. During this water classification routine, points that are within 1x NPS or less of the hydrographic features are moved to class 10, an ignored ground due to breakline proximity. Overage points are then identified in Terrascan and GeoCue is used to set the overlap bit for the overage points and the withheld bit is set on the withheld points previously identified in Terrascan before the ground classification routine was performed.

The LiDAR tiles were classified to the following classification schema:

- Class 1 = Unclassified, used for all other features that do not fit into the Classes 2, 7, 9, 10, 17, or 18, including vegetation, buildings, etc.
- Class 2 = Bare-Earth Ground
- Class 7 = Low Noise
- Class 9 = Water, points located within collected breaklines
- Class 10 = Ignored Ground due to breakline proximity
- Class 17 = Bridge Decks
- Class 18 = High Noise

After manual classification, the LAS tiles were peer reviewed and then underwent a final QA/QC. After the final QA/QC and corrections, the LAS files were then converted from LAS v1.2 to LAS v1.4 using GeoCue software. At this time, all headers, appropriate point data records, and variable length records, including spatial reference information, are updated in GeoCue software and then verified using proprietary Dewberry tools.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 23 of 122

LiDAR Qualitative Assessment

Dewberry's qualitative assessment utilizes a combination of statistical analysis and interpretative methodology or visualization to assess the quality of the data for a bare-earth digital terrain model (DTM). This includes creating pseudo image products such as LiDAR orthos produced from the intensity returns, Triangular Irregular Network (TIN)'s, Digital Elevation Models (DEM) and 3-dimensional models as well as reviewing the actual point cloud data. This process looks for anomalies in the data, areas where man-made structures or vegetation points may not have been classified properly to produce a bare-earth model, and other classification errors. This report will present representative examples where the LiDAR and post processing had issues as well as examples of where the LiDAR performed well.

VISUAL REVIEW

The following sections describe common types of issues identified in LiDAR data and the results of the visual review for Osceola.

Data Voids

The LAS files are used to produce density grids using the commercial software package QT Modeler (QTM) which creates a 3-dimensional data model derived from Class 2 (ground) points in the LAS files. Grid spacing is based on the project density deliverable requirement for unobscured areas. Acceptable voids (areas with no LiDAR returns in the LAS files) that are present in the majority of LiDAR projects include voids caused by bodies of water. No unacceptable voids are present in the Osceola LiDAR project.

Artifacts

Artifacts are caused by the misclassification of ground points and usually represent vegetation and/or man-made structures. The artifacts identified are usually low lying structures, such as porches or low vegetation used as landscaping in neighborhoods and other developed areas. These low lying features are extremely difficult for the automated algorithms to detect as non-ground and must be removed manually. The vast majority of these features have been removed but a small number of these features are still in the ground classification. The limited numbers of features remaining in the ground are usually 0.3 feet or less above the actual ground surface, and should not negatively impact the usability of the dataset.

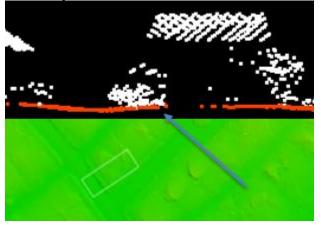


Figure 12– Tile LID2015_062864_E_C. Profile with points colored by class (class 1=white, class 2=orange) is shown in the top view and a TIN of the surface is shown in the bottom view. The arrow

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 24 of 122

identifies low vegetation points. A limited number of these small features are still classified as ground but do not impact the usability of the dataset.

Bridge Removal Artifacts

The DEM surface models are created from TINs or Terrains. TIN and Terrain models create continuous surfaces from the inputs. Because a continuous surface is being created, the TIN or Terrain will use interpolation to continue the surface beneath the bridge where no LiDAR data was acquired. Locations where bridges were removed will generally contain less detail in the bare-earth surface because these areas are interpolated.

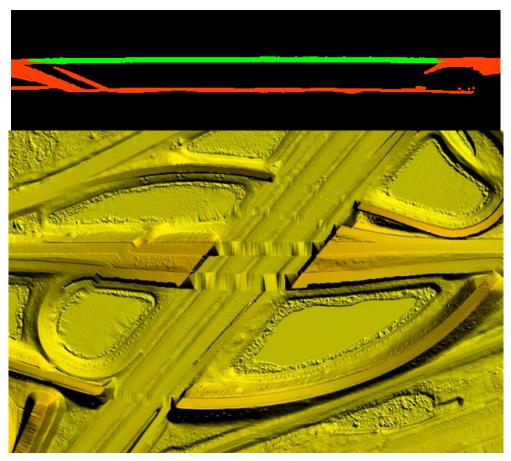


Figure 13 – Tile number LID2015_062863_E_A. The DEM in the bottom view shows an area where bridges have been removed from ground. The surface model must make a continuous model and in order to do so, points are connected through interpolation. This results in less detail where the surface must be interpolated. The profile in the top view shows the LiDAR points of this particular feature colored by class. All bridge points have been removed from ground (orange) and are classified as bridge deck (green).

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 25 of 122

Culverts and Bridges

Bridges have been removed from the bare earth surface while culverts remain in the bare earth surface. In instances where it is difficult to determine if the feature is a culvert or bridge, such as with some small bridges, Dewberry erred on assuming they would be culverts especially if they are on secondary or tertiary roads. Below is an example of a culvert that has been left in the ground surface.

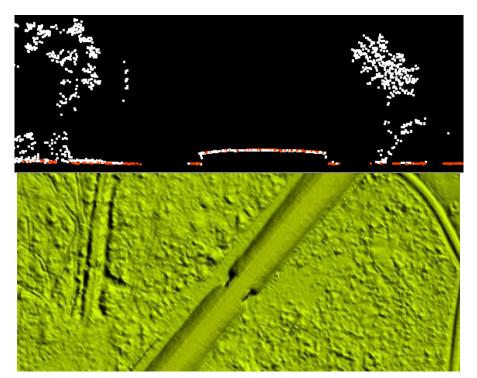


Figure 14– Tile number LID2015_064385_E_A. Profile with points colored by class (class 1=white, class 2=orange) is shown in the top view and the DEM is shown in the bottom view. This culvert remains in the bare earth surface. Bridges have been removed from the bare earth surface and classified to class 17.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 26 of 122

Figure 15– Tile LID2015_063158_E_B. Profile with points colored by class (class 1=white, class 2=orange) is shown in the top view, the DEM is shown in the middle and a google maps screenshot on the bottom. This area shows built up ground that resembles a bridge in the surface model. Only the actual bridge decks have been removed from the bare earth surface and classified to class 17.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 27 of 122

In Ground Structures

In ground structures exist within the project area. These types of structures occur mainly within the Disney World Parks and surrounding resort area. These features are correctly included in the ground classification.

Figure 16 – Tile LID2015_062562_E_C. Profile with the points colored by class (class 1-white, class 2orange) is shown in the top view and a DEM of the surface is shown in the bottom view. These features are correctly included in the ground classification.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 28 of 122

Divots

Irregularities in the natural ground exist and may be misinterpreted as artifacts that should be removed. Small divots are present throughout the project area. These features are correctly included in the ground.

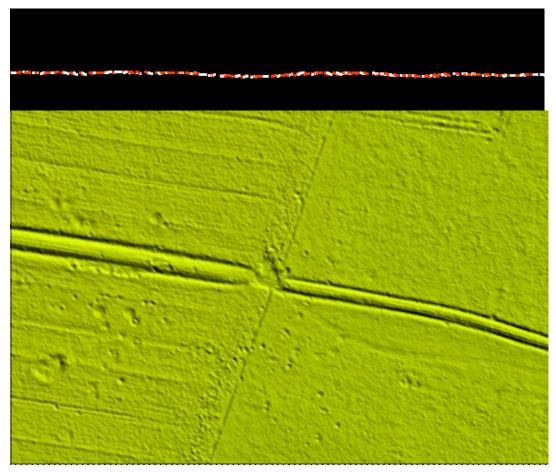


Figure 17 - Tile LID2015_075496_E_C. Profile with the points colored by class (class 1-white, class 2orange) is shown in the top view and a DEM of the surface is shown in the bottom view. These features are correctly included in the ground classification.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 29 of 122

Dense Vegetation/Marsh

It is sometimes difficult to determine true ground in very densely vegetated/marshy area; the lowest points available are used to represent ground. Marsh areas are present within the project area and were not collected with breaklines as they are not open bodies of water. As these areas are not included in the collected breaklines, marsh areas were not flattened in the final DEMs. While low points are used to determine ground in marsh areas, there is often greater variation within the low points due to wet soils that cause greater interpolation between points, and undulating or uneven ground. An example is shown below.

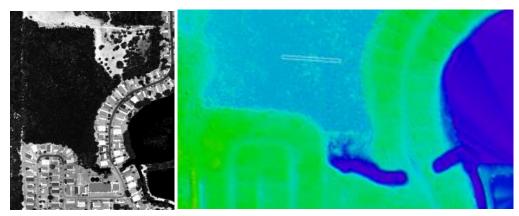


Figure 18 – Tile LID2015_062866_E_C. The intensity on the left shows a densely vegetated area that was not included in the collected breaklines. The same area is shown in the DEM on the right. Due to wet soils and broken terrain, the point density in marsh areas is sparser than surrounding areas and there is more variation in the low points representing ground.

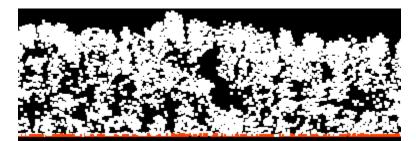


Figure 19- Tile LID2015_062866_E_C. This image shows a profile view of the Lidar points from the area above. This image shows the points colored by class (class 1=white, class 2=orange). Though the ground has variation, the Lidar is correctly portraying the ground surface.

Flight line Ridges

Ridges occur when there is a difference between the elevations of adjoining flight lines or swaths. Some flight line ridges are visible in the final DEMs but they do not exceed the project specifications and the overall relative accuracy requirements for the project area have been met. An example of a visible ridge that is within tolerance is shown below.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 30 of 122

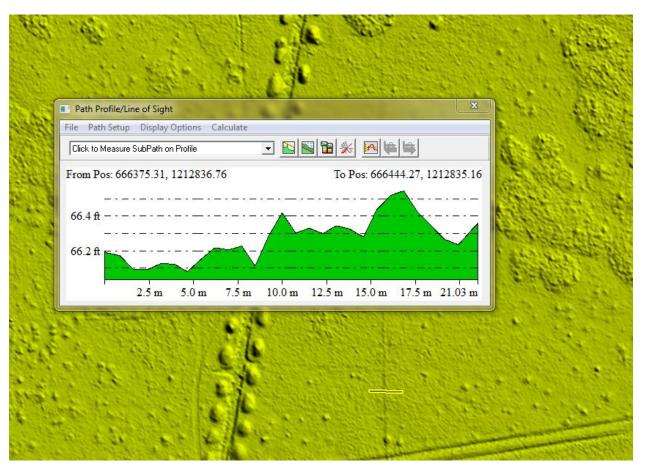


Figure 20– Tile LID2015_077300_E_A. The flight line ridge is less than 8 cm. Overall, the Osceola LiDAR data meets the project specifications for 8 cm RMSDz relative accuracy.

Temporal Differences

One flight line ridge exceeding specifications exists in Osceola County lidar project data due to temporal differences. Flightline 21211 is lower than its neighbors by approximately ½ foot to 1 foot in this area. This flightline and the adjacent flightlines cover a marshy area. Flightline 21211 was a re-flight/acquired on March 23, 2016 while the adjacent flightlines were acquired on February 12, 2016. The levels of water/moisture were different between the two time periods, which has had an impact on the level of lidar penetration. This difference, due to the difference in environmental conditions during the different acquisition dates, has resulted in this flight line ridge in this area. The flightline has been adjusted as much as possible for consistency with the adjacent flightlines.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 31 of 122

Figure 21– Tile DEM62606_A. This flightline ridge exceeds specifications but is the result of temporal changes in environmental conditions between two acquisition time periods.

FORMATTING

After the final QA/QC is performed and all corrections have been applied to the dataset, all LiDAR files are updated to the final format requirements and the final formatting, header information, point data records, and variable length records are verified using Dewberry proprietary tools. The table below lists some of the main LiDAR header fields that are updated and verified.

	Classified LiDAR Formatting						
Validation	Requirement	Pass/Fail					
LAS Version	1.4	Pass					
Point Data Format	Format 6	Pass					
Coordinate Reference System	NAD83(2011) StatePlane Florida East FIPS 0901 and NAVD88 (Geoid 12B), US Survey Feet in WKT Format	Pass					
Global Encoder Bit	Should be set to 17 for Adjusted GPS Time	Pass					
Time Stamp	Adjusted GPS Time (unique timestamps)	Pass					

System ID	Should be set to the processing system/software and is set to NIIRS10 for GeoCue software	Pass
Multiple Returns	The sensor shall be able to collect multiple returns per pulse and the return numbers are recorded	Pass
Intensity	16 bit intensity values are recorded for each pulse	Pass
Classification	Required Classes include: Class 1: Unclassified Class 2: Ground Class 7: Low Noise Class 9: Water Class 10: Ignored Ground Class 17: Bridge Decks Class 18: High Noise	Pass
Overlap and Withheld Points	Overlap (Overage) and Withheld points are set to the Overlap and Withheld bits	Pass
Scan Angle	Recorded for each pulse	Pass
XYZ Coordinates	Unique Easting, Northing, and Elevation coordinates are recorded for each pulse	Pass

Derivative LiDAR Products

USGS required several derivative LiDAR products to be created. Each type of derived product is described below.

LOW CONFIDENCE POLYGONS

Low confidence areas occur with LiDAR where heavy vegetation greatly diminishes penetration of the LiDAR pulse. Areas of low confidence, where conformance to VVA standards may not be met, were delineated according to the ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014).

As the Osceola project has a required NPD of 4 ppsm or a NPS of 0.5 m, a cell size and search radius of 1.5 m (3*NPS) was used to calculate the Nominal Ground Point Density (NGPD). All areas with a NGPD of 1 or less (less than or equal to 1/4 of the project NPD requirement) were identified as low confidence cells in our raster. The low confidence cells are exported to polygons and aggregated into larger shapes. Areas of expected low density in the ground, such as water or where buildings/structures have been removed, are deleted from the aggregated low

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 33 of 122

confidence polygons. The size of all polygons are then calculated. For this project, all low confidence polygons greater than or equal to 5 acres were exported as the final low confidence polygon layer.

1-FT CONTOURS

One-foot (1ft) contours have been created for the full project area. The contour attributes include labeling as either Index or Intermediate and an elevation value. The contours are also 3D, storing the elevation value within its internal geometry. Some smoothing has been applied to the contours to enhance their aesthetic quality. No manual edits have been made to the contours. The contours have been tiled, named according to the final project tile grid, and located within one file GDB.

LiDAR Positional Accuracy

BACKGROUND

Dewberry quantitatively tested the dataset by testing the vertical accuracy of the LiDAR. The vertical accuracy is tested by comparing the discreet measurement of the survey checkpoints to that of the interpolated value within the three closest LiDAR points that constitute the vertices of a three-dimensional triangular face of the TIN. Therefore, the end result is that only a small sample of the LiDAR data is actually tested. However there is an increased level of confidence with LiDAR data due to the relative accuracy. This relative accuracy in turn is based on how well one LiDAR point "fits" in comparison to the next contiguous LiDAR measurement, and is verified as part of the initial processing. If the relative accuracy of a dataset is within specifications and the dataset passes vertical accuracy requirements at the location of survey checkpoints, the vertical accuracy results can be applied to the whole dataset with high confidence due to the passing relative accuracy. Dewberry typically uses LP360 software to test the swath LiDAR vertical accuracy, Terrascan software to test the classified LiDAR vertical accuracy, and Esri ArcMap to test the DEM vertical accuracy so that three different software programs are used to validate the vertical accuracy for each project.

Dewberry also tests the horizontal accuracy of LiDAR datasets when checkpoints are photoidentifiable in the intensity imagery. Photo-identifiable checkpoints in intensity imagery typically include checkpoints located at the ends of paint stripes on concrete or asphalt surfaces or checkpoints located at 90 degree corners of different reflectivity, e.g. a sidewalk corner adjoining a grass surface. The XY coordinates of checkpoints, as defined in the intensity imagery, are compared to surveyed XY coordinates for each photo-identifiable checkpoint. These differences are used to compute the tested horizontal accuracy of the LiDAR. As not all projects contain photo-identifiable checkpoints, the horizontal accuracy of the LiDAR cannot always be tested.

SURVEY VERTICAL ACCURACY CHECKPOINTS

For the vertical accuracy assessment, one hundred sixty five (165) check points were surveyed for the project and are located within bare earth/open terrain, grass/weeds/crops, and forested/fully grown land cover categories. Please see appendix B to view the survey report which details and validates how the survey was completed for this project.

Checkpoints were evenly distributed throughout the project area so as to cover as many flight lines as possible using the "dispersed method" of placement.

All checkpoints surveyed for vertical accuracy testing purposes are listed in the following table.

Point ID	NAD83 (2011) Flo	NAVD88 (Geoid 12B)	
	Easting X (ft)	Northing Y (ft)	Elevation (ft)
NVA-01	565625.875	1426776.418	60.893
NVA-02	579330.214	1440994.188	78.979
NVA-03	580904.643	1459261.461	65.904
NVA-04	592213.745	1454084.174	74.37
NVA-05	581594.7885	1408943.436	71.882
NVA-06	598467.454	1424322.313	68.801
NVA-07	616905.552	1411173.529	72.494
NVA-08	680277.203	1458206.959	25.68
NVA-09	561863.587	1410057.983	73.245
NVA-10	560058.2535	1395918.311	69.167
NVA-11	546592.882	1411849.68	59.565
NVA-12	535074.6655	1405150.205	57.943
NVA-13	695832.6155	1366146.809	31.591
NVA-14	676234.735	1375728.254	51.593
NVA-15	689540.3355	1378938.4	50.503
NVA-16	629145.099	1381399.186	77.521
NVA-17	615284.547	1394069.206	75.873
NVA-18	641402.6085	1346758.725	67.203
NVA-19	655952.3705	1315830.771	59.815
NVA-20	682128.639	1426796.904	48.011
NVA-21	657491.3365	1300530.283	67.345
NVA-22	698328.515	1316040.228	38.465
NVA-23	692432.662	1348242.713	45.354
NVA-24	657499.425	1369469.061	55.481
NVA-25	676484.006	1361219.916	41.677
NVA-26	694693.508	1452992.737	14.201
NVA-27	522085.257	1443061.856	68.277
NVA-28	520681.603	1432771.431	61.516
NVA-29	515729.498	1422849.321	72.337
NVA-30	514358.051	1407837.663	70.349
NVA-31	583103.966	1388919.043	65.575
NVA-32	537140.612	1324361.607	54.296
NVA-33	575197.196	1338723.08	59.852
NVA-34	520814.726	1411998.048	61.07
NVA-35	698465.394	1268129.507	53.457
NVA-36	697937.786	1278664.008	48.414
NVA-37	676978.836	1280363.485	67.857
NVA-38	582923.719	1261947.171	55.381
NVA-39	607426.462	1256262.813	61.174

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 35 of 122

NVA-40	622714.472	1248094.582	65.61
NVA-41	508502.5335	1443236.958	76.963
NVA-42	524184.0045	1442117.045	63.163
NVA-43	539012.6725	1442156.82	70.917
NVA-44	550794.945	1443485.908	63.369
NVA-45	563616.429	1454137.853	75.846
NVA-46	545474.0685	1458870.857	82.048
NVA-47	504780.412	1458105.584	78.34
NVA-48	486615.226	1458408.447	88.93
NVA-49	466388.323	1458111.537	103.306
NVA-50	529685.335	1458719.529	83.649
NVA-51	445626.3035	1440753.617	140.08
NVA-52	530202.336	1384895.381	63.179
NVA-53	457199.649	1428683.554	126.294
NVA-54	506420.5635	1413568.098	74.231
NVA-55	466096.864	1442092.48	110.984
NVA-56	481064.3645	1442080.528	77.162
NVA-57	487711.142	1429032.22	70.086
NVA-58	505472.813	1425982.938	70.676
NVA-59	483617.6895	1415513.442	80.954
NVA-60	522397.991	1427635.232	58.59
NVA-61	499192.292	1396913.885	66.945
NVA-62	506972.824	1379598.758	63.631
NVA-63	514667.9265	1394884.673	74.372
NVA-64	470492.214	1489131.405	99.789
NVA-65	563248.1585	1379284.909	70.462
NVA-66	574467.193	1360744.562	63.77
NVA-67	597307.4855	1340812.641	78.836
NVA-68	612687.613	1331637.419	82.887
NVA-69	628955.0195	1313534.037	75.75
NVA-70	638519.767	1301928.177	72.662
NVA-71	655017.572	1268128.145	74.509
NVA-72	666636.1335	1251717.127	72.646
NVA-73	687923.8005	1223295.675	63.693
NVA-74	561780.82	1363535.858	59.92
NVA-75	620812.1875	1301209.082	69.836
NVA-76	642218.8725	1287855.762	71.905
NVA-77	660958.265	1285817.761	72.081
NVA-78	669585.975	1268738.621	75.227
NVA-79	680493.6115	1252539.825	63.744
NVA-80	696679.141	1202714.218	72.126
NVA-81	667316.1325	1231060.502	69.555
NVA-82	648549.1585	1235786.933	69.783
NVA-83	597747.756	1327127.568	73.868
NVA-84	593185.928	1317245.566	67.293
NVA-85	641411.6075	1278163.37	65.791

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 36 of 122

NVA-86	595102.265	1417968.1	70.783
NVA-87	653273.857	1380482.352	54.978
NVA-88	689079.578	1369571.53	48.589
NVA-89	680921.791	1435413.301	42.124
NVA-90	594959.849	1430319.164	70.748
NVA-91	514889.453	1388826.742	69.221
NVA-92	660094.227	1287734.408	70.951
VVA-01	543326.0335	1425707.697	64.333
VVA-02	581252.546	1425126.894	75.999
VVA-03	599294.972	1403963.199	76.005
VVA-04	598331.001	1411443.842	71.847
VVA-05	548563.6625	1400802.925	72.763
VVA-06	618620.792	1432971.276	70.18
VVA-07	641226.0005	1432616.081	75.784
VVA-08	657890.871	1430503.439	63.101
VVA-09	681840.6225	1442827.793	41.622
VVA-10	658314.138	1440702.752	54.508
VVA-11	646941.0495	1441659.775	71.223
VVA-12	603999.674	1442385.774	63.047
VVA-13	628343.362	1442353.535	75.266
VVA-14	625661.3265	1455936.039	72.324
VVA-15	647072.1225	1455012.577	68.697
VVA-16	657877.722	1457377.765	56.412
VVA-17	695603.4485	1438651.964	20.528
VVA-18	697486.584	1426945.715	16.593
VVA-19	696019.2945	1411629.635	17.269
VVA-20	685587.397	1407344.506	55.555
VVA-21	688659.291	1395428.951	35.381
VVA-22	677106.928	1397346.358	40.596
VVA-23	695781.0845	1400643.692	19.524
VVA-24	657543.5135	1379653.166	55.785
VVA-25	638656.494	1379389.604	67.345
VVA-26	633025.653	1408931.875	70.995
VVA-27	636173.3125	1399357.782	71.525
VVA-28	648197.2345	1411882.078	74.129
VVA-29	665173.3515	1406366.495	49.355
VVA-30	660244.734	1396894.809	62.779
VVA-31	633463.514	1362615.443	74.064
VVA-32	650062.3505	1331115.447	57.892
VVA-33	672635.59	1347677.308	55.624
VVA-34	665545.4295	1319636.502	47.784
VVA-35	676770.137	1299658.266	64.326
VVA-36	610688.671	1369377.81	81.419
VVA-37	447624.59	1452956.562	120.802
VVA-38	471771.3275	1428415.537	94.039
VVA-39	539046.9155	1382967.076	57.472

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 37 of 122

VVA-40	522220.9145	1365778.58	66.695
VVA-41	539629.635	1364856.993	55.063
VVA-42	473080.19	1470937.279	91.743
VVA-43	456734.308	1475254.645	105.157
VVA-44	584805.068	1348722.865	68.247
VVA-45	609810.7605	1316289.25	71.449
VVA-46	686274.317	1237097.447	58.328
VVA-47	675709.9405	1224032.945	65.751
VVA-48	584143.9475	1309732.693	55.112
VVA-49	610149.927	1295836.492	61.744
VVA-50	612462.319	1267891.513	60.859
VVA-51	648388.2945	1253168.11	67.266
VVA-52	613170.112	1285374.998	62.236
VVA-53	597176.447	1286265.027	51.827
VVA-54	561041.778	1348639.578	53.604
VVA-55	549406.096	1349168.662	55.113
VVA-56	557987.2095	1325094.298	53.9
VVA-57	544225.7855	1330862.393	62.675
VVA-58	525708.3585	1387129.728	68.789
VVA-59	637909.67	1268701.24	65.365
VVA-60	648753.259	1222007.138	62.581
VVA-61	648560.334	1207528.066	68.331
VVA-62	629363.122	1236125.572	67.05
VVA-63	615361.783	1236147.731	61.973
VVA-64	630542.693	1213924.531	60.639
VVA-65	617438.175	1210566.921	51.511
VVA-66	674929.437	1333605.899	42.7
VVA-67	653458.505	1352815.807	64.022
VVA-68	666680.437	1363256.799	66.487
VVA-69	692927.738	1299937.449	46.771
VVA-70	697741.349	1332998.684	32.698
VVA-71	616979.039	1374984.17	79.577
VVA-72	597452.297	1374945.635	67.514
VVA-73	619411.221	1363682.213	80.224

Table 5: Osceola County LiDAR surveyed accuracy checkpoints

One checkpoint (NVA-38) was removed from all vertical accuracy testing due to its location outside the project boundary. Figure 20, below, shows the location of the LiDAR point outside the project boundary.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 38 of 122

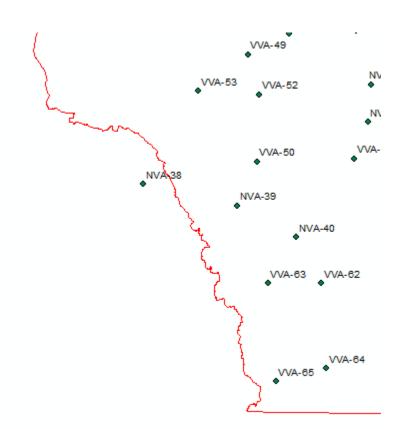
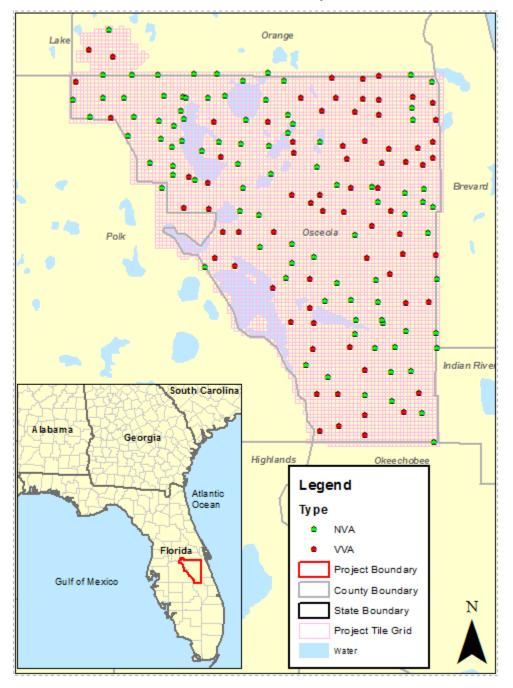



Figure 22 – Non- Vegetated checkpoint 38, shown outside the project boundary.

Dewberry

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 39 of 122

Osceola LiDAR Checkpoints

VERTICAL ACCURACY TEST PROCEDURES

NVA (Non-vegetated Vertical Accuracy) is determined with check points located only in non-vegetated terrain, including open terrain (grass, dirt, sand, and/or rocks) and urban areas, where

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 40 of 122

there is a very high probability that the LiDAR sensor will have detected the bare-earth ground surface and where random errors are expected to follow a normal error distribution. The NVA determines how well the calibrated LiDAR sensor performed. With a normal error distribution, the vertical accuracy at the 95% confidence level is computed as the vertical root mean square error (RMSE_z) of the checkpoints x 1.9600. For the Osceola LiDAR project, vertical accuracy must be 0.64ft (19.6 cm) or less based on an RMSE_z of 0.33ft (10 cm) x 1.9600.

VVA (Vegetated Vertical Accuracy) is determined with all checkpoints in vegetated land cover categories, including tall grass, weeds, crops, brush and low trees, and fully forested areas, where there is a possibility that the LiDAR sensor and post-processing may yield elevation errors that do not follow a normal error distribution. VVA at the 95% confidence level equals the 95th percentile error for all checkpoints in all vegetated land cover categories combined. The Osceola LiDAR Project VVA standard is 0.96 ft (29.4 cm) based on the 95th percentile. The VVA is accompanied by a listing of the 5% outliers that are larger than the 95th percentile used to compute the VVA; these are always the largest outliers that may depart from a normal error distribution. Here, Accuracy_z differs from VVA because Accuracy_z assumes elevation errors follow a normal error distribution in vegetated categories, making the RMSE process invalid.

The relevant testing criteria are summarized in Table 6.

Quantitative Criteria	Measure of Acceptability
Non-Vegetated Vertical Accuracy (NVA) in open terrain and urban land cover categories using ${ m RMSE}_z$ *1.9600	0.64 ft (based on RMSEz (0.33 ft) * 1.9600)
Vegetated Vertical Accuracy (VVA) in all vegetated land cover categories combined at the 95% confidence level	0.96 ft (based on combined 95 th percentile)

Table 6	- Acceptance	Criteria
---------	--------------	----------

The primary QA/QC vertical accuracy testing steps used by Dewberry are summarized as follows:

- 1. Dewberry's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications.
- 2. Next, Dewberry interpolated the bare-earth LiDAR DTM to provide the z-value for every checkpoint.
- 3. Dewberry then computed the associated z-value differences between the interpolated z-value from the LiDAR data and the ground truth survey checkpoints and computed NVA, VVA, and other statistics.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. The review process examined the various accuracy parameters as defined by the scope of work. The overall descriptive statistics of each dataset were computed to assess any trends or anomalies. This report provides tables, graphs and figures to summarize and illustrate data quality.

VERTICAL ACCURACY RESULTS

The table below summarizes the tested vertical accuracy resulting from a comparison of the surveyed checkpoints to the elevation values present within the fully classified LiDAR LAS files.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 41 of 122

Land Cover Category	# of Points	NVA – Non- vegetated Vertical Accuracy (RMSEz x 1.9600) Spec=0.64 ft	VVA – Vegetated Vertical Accuracy (95th Percentile) Spec=0.96 ft
NVA	91.00	0.27	
VVA	73.00		0.45

Table 7 – Tested NVA and VVA

This LiDAR dataset was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 0.33 ft (10 cm) RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be $RMSE_z = 0.14$ ft (4.26 cm), equating to +/- 0.27 ft (8.23 cm) at 95% confidence level. Actual VVA accuracy was found to be +/- 0.45 ft (13.7 cm) at the 95th percentile.

The figure below illustrates the magnitude of the differences between the QA/QC checkpoints and LiDAR data. This shows that the majority of LiDAR elevations were within +/- 0.20 ft of the checkpoints elevations, but there were some outliers where LiDAR and checkpoint elevations differed by up to +0.71 ft.

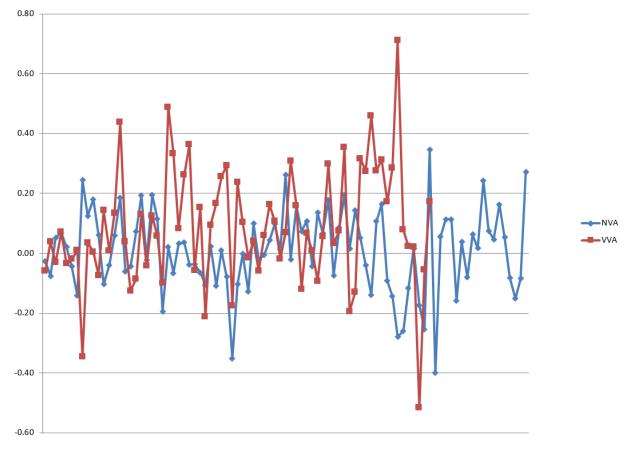


Figure 24 – Magnitude of elevation discrepancies per land cover category

Table 8 lists the 5% outliers	that are larger than the	VVA 95 th percentile.

Point ID		NAD83(2011) StatePlane Florida East FIPS 0901 NAVD88		LiDAR Z (ft)	Delta Z	AbsDeltaZ
	Easting X (ft)	Northing Y (ft)	Survey Z (ft)			
VVA-67	653458.505	1352815.807	64.022	64.734	-0.712	0.712
VVA-24	657543.514	1379653.165	55.785	56.273	-0.488	0.488
VVA-62	629363.122	1236125.572	67.05	67.508	-0.458	0.458
VVA-71	616979.039	1374984.17	79.577	79.06	0.517	0.517

Table 8 – 5% Outliers

Table 9 provides overall descriptive statistics.

100 % of Totals	# of Points	RMSEz (ft) NVA Spec=0.33 ft	Mean (ft)	Median (ft)	Skew	Std Dev (ft)	Kurtosis	Min (ft)	Max (ft)
NVA	91.00	0.14	0.01	0.02	-0.32	0.14	0.53	-0.40	0.35
VVA	73.00	N/A	0.09	0.07	0.19	0.20	1.45	-0.52	0.71

Table 9- Overall Descriptive Statistics

The figure below illustrates a histogram of the associated elevation discrepancies between the QA/QC checkpoints and elevations interpolated from the LiDAR triangulated irregular network (TIN). The frequency shows the number of discrepancies within each band of elevation differences. Although the discrepancies vary between a low of -0.52 feet and a high of +0.71 feet, the histogram shows that the majority of the discrepancies are skewed on the positive side. The vast majority of points are within the ranges of -0.15 feet to +0.35 feet.

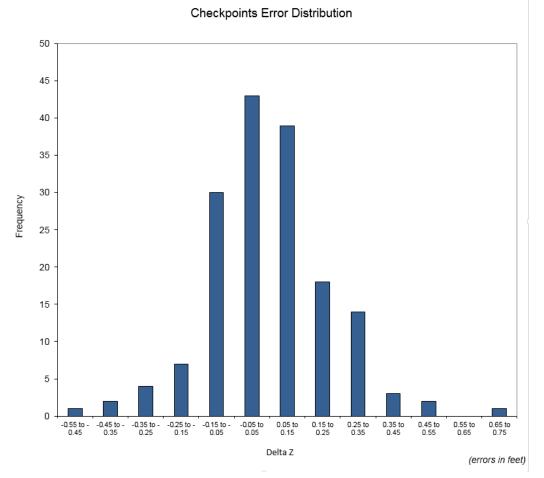


Figure 25 - Histogram of elevation discrepancies with errors in feet

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 44 of 122

Based on the vertical accuracy testing conducted by Dewberry, the LiDAR dataset for the USGS Osceola LiDAR Project satisfies the project's pre-defined vertical accuracy criteria.

HORIZONTAL ACCURACY TEST PROCEDURES

Horizontal accuracy testing requires well-defined checkpoints that can be identified in the dataset. Elevation datasets, including LiDAR datasets, do not always contain well-defined checkpoints suitable for horizontal accuracy assessment. However, the ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) recommends at least half of the NVA vertical check points should be located at the ends of paint stripes or other point features visible on the LiDAR intensity image, allowing them to double as horizontal check points.

Dewberry reviews all NVA checkpoints to determine which, if any, of these checkpoints are located on photo-identifiable features in the intensity imagery. This subset of checkpoints are then used for horizontal accuracy testing.

The primary QA/QC horizontal accuracy testing steps used by Dewberry are summarized as follows:

- 1. Dewberry's team surveyed QA/QC vertical checkpoints in accordance with the project's specifications and tried to locate half of the NVA checkpoints on features photo-identifiable in the intensity imagery.
- 2. Next, Dewberry identified the well-defined features in the intensity imagery.
- 3. Dewberry then computed the associated xy-value differences between the coordinates of the well-defined feature in the LiDAR intensity imagery and the ground truth survey checkpoints.
- 4. The data were analyzed by Dewberry to assess the accuracy of the data. Horizontal accuracy was assessed using NSSDA methodology where horizontal accuracy is calculated at the 95% confidence level. This report provides the results of the horizontal accuracy testing.

HORIZONTAL ACCURACY RESULTS

Twenty–eight (28) checkpoints were determined to be photo-identifiable in the intensity imagery and were used to test the horizontal accuracy of the LiDAR dataset.

Using NSSDA methodology (endorsed by the ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014)), horizontal accuracy at the 95% confidence level (called ACCURACYr) is computed by the formula RMSEr * 1.7308 or RMSExy * 2.448.

No horizontal accuracy requirements or thresholds were provided for this project. However, LiDAR datasets are generally calibrated by methods designed to ensure a horizontal accuracy of 1 meter (3.28 ft) or less at the 95% confidence level.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 45 of 122

# of Points	RMSE _x (Spec=1.34 ft)	RMSEy (Spec=1.34 ft)	RMSEr (Spec=1.9 ft)	ACCURACYr (RMSEr x 1.7308) Spec=3.28 ft
28	0.66	0.84	1.07	1.85

Table 10-Tested horizontal accuracy at the 95% confidence level

Actual positional accuracy of this dataset was found to be RMSEx = 0.66ft (20cm) and RMSEy = 0.84ft (25.6cm) which equates to +/- 1.85ft (56.3cm) at 95% confidence level.

Breakline Production & Qualitative Assessment Report

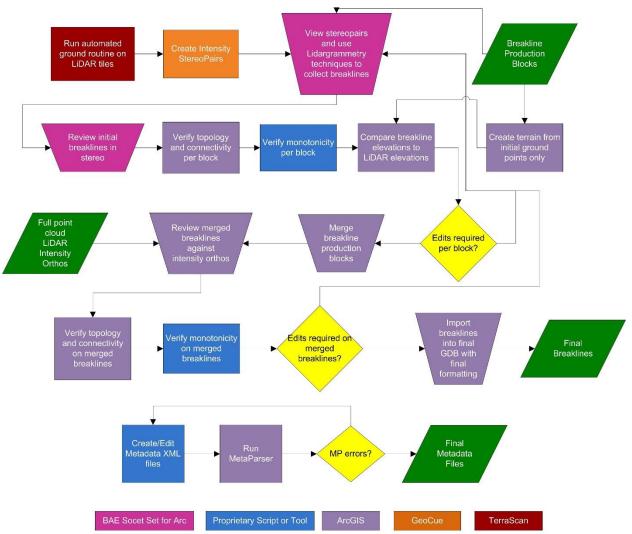
BREAKLINE PRODUCTION METHODOLOGY

Dewberry used GeoCue software to develop LiDAR stereo models of the USGS Osceola LiDAR Project area so the LiDAR derived data could be viewed in 3-D stereo using Socet Set softcopy photogrammetric software. Using LiDARgrammetry procedures with LiDAR intensity imagery, Dewberry used the stereo models developed by Dewberry to stereo-compile the two types of hard breaklines in accordance with the project's Data Dictionary.

All drainage breaklines are monotonically enforced to show downhill flow. Water bodies are reviewed in stereo and the lowest elevation is applied to the entire waterbody.

BREAKLINE QUALITATIVE ASSESSMENT

Dewberry completed breakline qualitative assessments according to a defined workflow. The following workflow diagram represents the steps taken by Dewberry to provide a thorough qualitative assessment of the breakline data.


Completeness and horizontal placement is verified through visual reviews against LiDAR intensity imagery. Automated checks are applied on all breakline features to validate topology, including the 3D connectivity of features, enforced monotonicity on linear hydrographic breaklines, and flatness on water bodies.

The next step is to compare the elevation of the breakline vertices against the ground elevation extracted from the ESRI Terrain built from the LiDAR ground points, keeping in mind that a discrepancy is expected because of the hydro-enforcement applied to the breaklines and because of the interpolated imagery used to acquire the breaklines. A given tolerance is used to validate if the elevations differ too much from the LiDAR.

After all corrections and edits to the breakline features, the breaklines are imported into the final GDB and verified for correct formatting.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 46 of 122

Elevation Data Processing-Breaklines

Figure 26-Breakline QA/QC workflow

BREAKLINE CHECKLIST

The following table represents a portion of the high-level steps in Dewberry's Production and QA/QC checklist that were performed for this project.

Pass/Fail	Validation Step
Pass	Use intensity imagery, stereo pairs, and terrains to collect breaklines according to project specifications.
Pass	In areas of heavy vegetation or where the exact shoreline is hard to delineate, it is better to err on placing the breakline <i>slightly</i> inside or seaward of the shoreline (breakline can be inside shoreline by 1x-2x NPS).

Pass	After each producer finishes breakline collection for a block, each producer must perform a completeness check, breakline variance check, and all automated checks on their block before calling that block complete and ready for the final merge and QC
Pass	After breaklines are completed for production blocks, all production blocks should be merged together and all checks-completeness, breakline variance, and automated checks-should be performed on the final, merged GDB. Ensure correct snapping-horizontal (x,y) and vertical (z)-between all production blocks.
Pass	Check entire dataset for missing features that were not captured, but should be to meet baseline specifications or for consistency. Features should be collected consistently across tile bounds. Check that the horizontal placement of breaklines is correct. Breaklines should be compared to full point cloud intensity imagery and terrains
Pass	Breaklines are correctly edge-matched to adjoining datasets in completion, coding, and horizontal placement.
Pass	Using a terrain created from LiDAR ground (all ground including 2, 8, and 10) and water points (class 9), compare breakline Z values to interpolated LiDAR elevations.
Pass	Perform all Topology and Data Integrity Checks
Pass	Perform hydro-flattening and hydro-enforcement checks including monotonicity and flatness from bank to bank on linear hydrographic features and flatness of water bodies. Tidal waters should preserve as much ground as possible and can include variations or be non-monotonic.

Table 11-A subset of the high-level steps from Dewberry's Production and QA/QC checklist performed for this project.

DATA DICTIONARY

The following data dictionary was used for this project.

Horizontal and Vertical Datum

The horizontal datum shall be North American Datum of 1983 (2011), Units in US Survey Feet. The vertical datum shall be referenced to the North American Vertical Datum of 1988 (NAVD 88), Units in US Survey Feet. Geoid12B shall be used to convert ellipsoidal heights to orthometric heights.

Coordinate System and Projection

All data shall be projected to NAD83 (2011) State Plane Florida East FIPS 0901

Inland Streams and Rivers

Feature Dataset: BREAKLINES Feature Type: Polygon Contains Z Values: Yes XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: STREAMS_AND_RIVERS Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

Description

This polygon feature class will depict linear hydrographic features with a width greater than 100 feet.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 48 of 122

Table Definition

Field Name	Data Type	Allow Null Values	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID						Assigned by Software
SHAPE	Geometry						Assigned by Software
SHAPE_LENGTH	Double	Yes		0	0		Calculated by Software
SHAPE_AREA	Double	Yes		0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
		Capture features showing dual line (one on each side of the feature). Average width shall be greater than 100 feet to show as a double line. Each vertex placed should maintain vertical integrity. Generally both banks shall be collected to show consistent downhill flow. There are exceptions to this rule where a small branch or offshoot of the stream or river is present.
	Linear hydrographic features such as streams, rivers, canals, etc. with an average width greater than 100 feet. In the case of embankments, if the feature	The banks of the stream must be captured at the same elevation to ensure flatness of the water feature. If the elevation of the banks appears to be different see the task manager or PM for further guidance.
Streams and		Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually.
Rivers	forms a natural dual line channel, then capture it consistent with the capture rules. Other natural or manmade embankments will not qualify for this project.	These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead adjacent to the dock or pier and it is evident that the waterline is most probably adjacent to the headwall or bulkhead, then the water line will follow the headwall or bulkhead at the elevation of the water where it can be directly measured. If there is no clear indication of the location of the water's edge beneath the dock or pier, then the edge of water will follow the outer edge of the dock or pier as it is adjacent to the water, at the measured elevation of the water.
		Every effort should be made to avoid breaking a stream or river into segments.

Dual line features shall break at road crossings (culverts). In areas where a bridge is present the dual line feature shall continue through the bridge.
Islands: The double line stream shall be captured around an island if the island is greater than 1 acre. In this case a segmented polygon shall be used around the island in order to allow for the island feature to remain as a "hole" in the feature.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 50 of 122

Inland Ponds and Lakes

Feature Dataset: BREAKLINES Feature Type: Polygon Contains Z Values: Yes XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: PONDS_AND_LAKES Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

Description

This polygon feature class will depict closed water body features that are at a constant elevation.

Table Definition

Field Name	Data Type	Allow Null Values	Voluo	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID							Assigned by Software
SHAPE	Geometry							Assigned by Software
SHAPE_LENGTH	Double	Yes			0	0		Calculated by Software
SHAPE_AREA	Double	Yes			0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
Ponds and Lakes	Land/Water boundaries of constant elevation water bodies such as lakes, reservoirs, ponds, etc. Features shall be defined as closed polygons and contain an elevation value that reflects the best estimate of the water elevation at the time of data capture. Water body features will be captured for features 2 acres in size or greater. "Donuts" will exist where there are islands within a closed water body feature.	 Water bodies shall be captured as closed polygons with the water feature to the right. The compiler shall take care to ensure that the z-value remains consistent for all vertices placed on the water body. Breaklines must be captured at or just below the elevations of the immediately surrounding terrain. Under no circumstances should a feature be elevated above the surrounding LiDAR points. Acceptable variance in the negative direction will be defined for each project individually. An Island within a Closed Water Body Feature that is 2 acre in size or greater will also have a "donut polygon" compiled. These instructions are only for docks or piers that follow the coastline or water's edge, not for docks or piers that extend perpendicular from the land into the water. If it can be reasonably determined where the edge of water most probably falls, beneath the dock or pier, then the edge of water will be collected at the elevation of the water where it can be directly measured. If there is a clearly-indicated headwall or bulkhead at the elevation of the water line will follow the headwall or bulkhead at the elevation of the

water where it can be directly measured. If the clear indication of the location of the water's edge the dock or pier, then the edge of water will for outer edge of the dock or pier as it is adjacent to the at the measured elevation of the water.
--

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 52 of 122

Beneath Bridge Breaklines Feature Dataset: BREAKLINES

Feature Dataset: BREAKLINES Feature Type: Polyline Contains Z Values: Yes XY Resolution: Accept Default Setting XY Tolerance: 0.003 Feature Class: Bridge_Breaklines Contains M Values: No Annotation Subclass: None Z Resolution: Accept Default Setting Z Tolerance: 0.001

Description

This polyline feature class is used to enforce terrain beneath bridge decks where ground data may not have been acquired. Enforcing the terrain beneath bridge decks prevents bridge saddles.

Table Definition

Field Name	Data Type	Allow Null Values	Default Value	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID							Assigned by Software
SHAPE	Geometry							Assigned by Software
SHAPE_LENGTH	Double	Yes			0	0		Calculated by Software

Feature Definition

Description	Definition	Capture Rules
Bridge Breaklines	Bridge Breaklines should be used where necessary to enforce terrain beneath bridge decks and to prevent bridge saddles in the bare earth DEMs.	Bridge breaklines should be collected beneath bridges where bridge saddles exist or are likely to exist in the bare earth DEMs.Bridge breaklines should be collected perpendicular to the bridge deck so that the endpoints are on either side of the bridge deck. Typically two bridge breaklines are collected per bridge deck, one at either end of the bridge deck to enforce the terrain under the full bridge deck.The endpoints of the bridge breaklines will match the elevation of the ground at their xy position to enforce the ground/bare earth elevations beneath the bridge deck and prevent bridge saddles from forming.

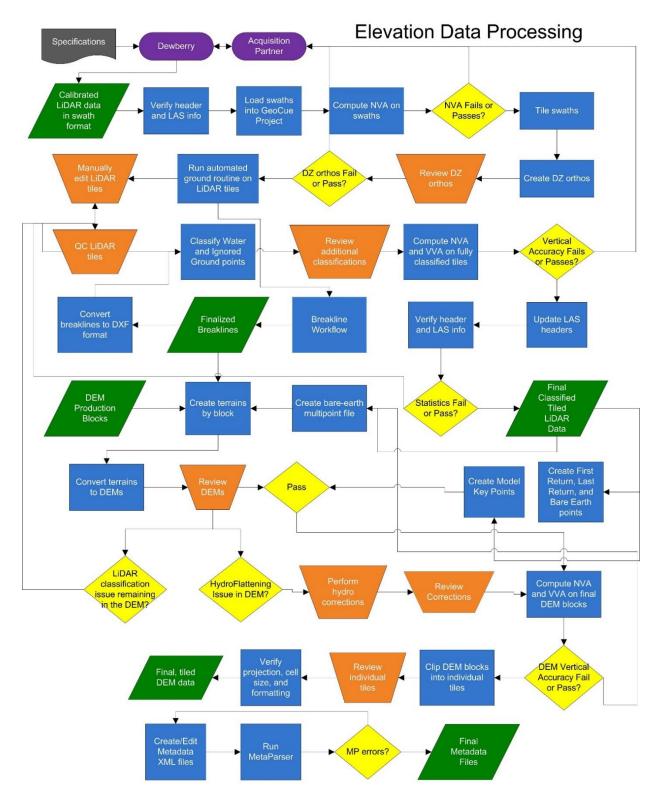
DEM Production & Qualitative Assessment

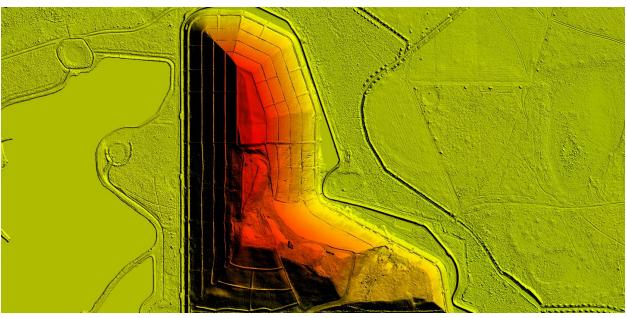
DEM PRODUCTION METHODOLOGY

Dewberry utilized ESRI software and Global Mapper for the DEM production and QC process. ArcGIS software is used to generate the products and the QC is performed in both ArcGIS and Global Mapper. The figure below shows the entire process necessary for bare earth DEM production, starting from the LiDAR swath processing.

The final bare-earth LiDAR points are used to create a terrain. The final 3D breaklines collected for the project are also enforced in the terrain. The terrain is then converted to raster format using linear interpolation. For most projects, a single terrain/DEM can be created for the whole project. For very large projects, multiple terrains/DEMs may be created. The DEM(s) is reviewed for any issues requiring corrections, including remaining LiDAR mis-classifications, erroneous breakline elevations, poor hydro-flattening or hydro-enforcement, and processing artifacts. After corrections are applied, the DEM(s) is then split into individual tiles following the project tiling scheme. The tiles are verified for final formatting and then loaded into Global Mapper to ensure no missing or corrupt tiles and to ensure seamlessness across tile boundaries.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 54 of 122




Figure 27-DEM Production Workflow

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 55 of 122

DEM QUALITATIVE ASSESSMENT

Dewberry performed a comprehensive qualitative assessment of the bare earth DEM deliverables to ensure that all tiled DEM products were delivered with the proper extents, were free of processing artifacts, and contained the proper referencing information. This process was performed in ArcGIS software with the use of a tool set Dewberry has developed to verify that the raster extents match those of the tile grid and contain the correct projection information. The DEM data was reviewed at a scale of 1:5000 to review for artifacts caused by the DEM generation process and to review the hydro-flattened features. To perform this review Dewberry creates HillShade models and overlays a partially transparent colorized elevation model to review for these issues. All corrections are completed using Dewberry's proprietary correction workflow. Upon completion of the corrections, the DEM data is loaded into Global Mapper for its second review and to verify corrections. Once the DEMs are tiled out, the final tiles are again loaded into Global Mapper to ensure coverage, extents, and that the final tiles are seamless.

The images below show an example of a bare earth DEM

Figure 28- Tile LID2015_068591_E_D. The bare earth DEM.

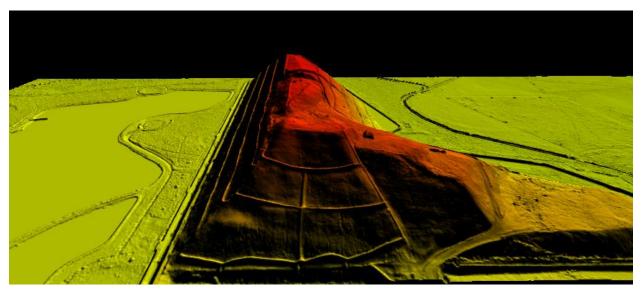


Figure 29-Tile LID2015_068591_E_D. 3D Profile view of the bare earth DEM

When some bridges are removed from the ground surface, the distance from bridge abutment to bridge abutment is small enough that the DEM interpolates across the entire bridge opening, forming 'bridge saddles.' Dewberry collected 3D bridge breaklines in locations where bridge saddles were present and enforced these breaklines in the final DEM creation to help mitigate the bridge saddle artifacts. The image below on the left shows a bridge saddle while the image below on the right shows the same bridge after bridge breaklines have been enforced.

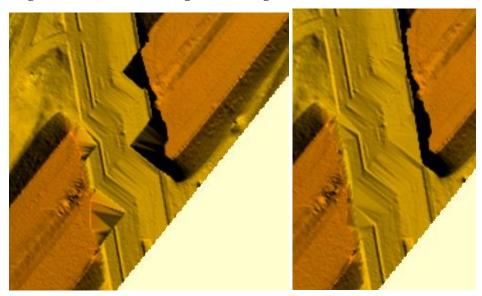


Figure 30- Tile LID2015_061665_E_D. The DEM on the left shows a bridge saddle artifact while the DEM on the right shows the same location after bridge breaklines have been enforced.

DEM VERTICAL ACCURACY RESULTS

The same 164 checkpoints that were used to test the vertical accuracy of the LiDAR were used to validate the vertical accuracy of the final DEM products as well. Accuracy results may vary

between the source LiDAR and final DEM deliverable. DEMs are created by averaging several LiDAR points within each pixel which may result in slightly different elevation values at each survey checkpoint when compared to the source LAS, which does not average several LiDAR points together but may interpolate (linearly) between two or three points to derive an elevation value. The vertical accuracy of the DEM is tested by extracting the elevation of the pixel that contains the x/y coordinates of the checkpoint and comparing these DEM elevations to the surveyed elevations. Dewberry typically uses LP360 software to test the swath LIDAR vertical accuracy, Terrascan software to test the classified LiDAR vertical accuracy, and Esri ArcMap to test the DEM vertical accuracy so that three different software programs are used to validate the vertical accuracy for each project.

Table 12 summarizes the tested vertical accuracy results from a comparison of the surveyed checkpoints to the elevation values present within the final DEM dataset.

Land Cover Category	# of Points	NVA – Non-vegetated Vertical Accuracy (RMSE _z x 1.9600) Spec=0.64 ft	VVA – Vegetated Vertical Accuracy (95th Percentile) Spec=0.96 ft
NVA	91.00	0.27	
VVA	73.00		0.45
	, 0		

Table 12 - DEM tested NVA and VVA

This DEM dataset was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 0.33 ft (10 cm) RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be $RMSE_z = 0.14$ ft (4.26 cm), equating to +/- 0.27 ft (8.23 cm) at 95% confidence level. Actual VVA accuracy was found to be +/- 0.45 ft (13.7 cm) at the 95th percentile.

Table 13 lists the 5% outliers that are larger than the VVA 95th percentile.

Point ID		atePlane Florida PS 0901	NAVD88 (Geoid 12B)	DEM Z	Delta Z	AbsDeltaZ
	Easting X (ft)	Northing Y (ft)	Survey Z (ft)	(ft)		AUSDERaz
VVA-71	616979.039	1374984.170	79.577	79.022	-0.555	0.555
VVA-62	629363.122	1236125.572	67.050	67.518	0.468	0.468
VVA-24	657543.514	1379653.166	55.785	56.275	0.490	0.490
VVA-67	653458.505	1352815.807	64.022	64.714	0.692	0.692

Table 13 - 5% Outliers

Table 14 provides overall descriptive statistics.

100 % of Totals	# of Points	RMSEz (m) NVA Spec=0.33 ft	Mean (ft)	Median (ft)	Skew	Std Dev (ft)	Kurtosis	Min (ft)	Max (ft)
NVA	91	0.14	0.01	0.01	-0.28	0.14	0.56	-0.40	0.37
VVA	73	N/A	0.10	0.09	-0.02	0.20	1.58	-0.56	0.69

 Table 14 - Overall Descriptive Statistics

Based on the vertical accuracy testing conducted by Dewberry, the DEM dataset for the Osceola LiDAR Project satisfies the project's pre-defined vertical accuracy criteria.

DEM CHECKLIST

The following table represents a portion of the high-level steps in Dewberry's bare earth DEM Production and QA/QC checklist that were performed for this project.

Pass/Fai l	Validation Step
Pass	Masspoints (LAS to multipoint) are created from ground points only (class 2 and class 8 if model key points created, but no class 10 ignored ground points or class 9 water points
Pass	Create a terrain for each production block using the final bare earth LiDAR points and final breaklines.
Pass	Convert terrains to rasters using project specifications for grid type, formatting, and cell size
Pass	Create hillshades for all DEMs
Pass	Manually review bare-earth DEMs in ArcMap with hillshades to check for issues
Pass	DEMs should be hydro-flattened or hydro-enforced as required by project specifications
Pass	DEMs should be seamless across tile boundaries
Pass	Water should be flowing downhill without excessive water artifacts present
Pass	Water features should NOT be floating above surrounding
Pass	Bridges should NOT be present in bare-earth DEMs.
Pass	Any remaining bridge saddles where below bridge breaklines were not used need to be fixed by adding below bridge breaklines and re-processing.
Pass	All qualitative issues present in the DEMs as a result of LiDAR processing and editing issues must be marked for corrections in the LiDAR These DEMs will need to be recreated after the LiDAR has been corrected.
Pass	Calculate DEM Vertical Accuracy including NVA, VVA, and other statistics
Pass	Split the DEMs into tiles according to the project tiling scheme
Pass	Verify all properties of the tiled DEMs, including coordinate reference system information, cell size, cell extents, and that compression has not been applied to the tiled DEMs
Pass	Load all tiled DEMs into Global Mapper to verify complete coverage to the (buffered) project boundary and that no tiles are corrupt.

Table 15-A subset of the high-level steps from Dewberry's bare earth DEM Production and QA/QC checklist performed for this project.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 59 of 122

EDGE-TIE ANALYSIS

Under the scope of work, Dewberry was tasked to evaluate how well the newly produced Osceola data ties spacially to preexisting data produced for Polk County, Florida. We received 673 Polk County tiles from the South Florida Water Management District for this task. There are 582 Osceola County tiles that overlap with the 673 Polk County tiles.

The Polk County data was first re-sampled to match the 2.5 ft DEM size specified for Osceola County so that the data were consistent. Dewberry then used the bare-earth DEMs for each dataset and created a difference raster by subtracting Polk County data from Osceola County data. This difference raster, along with the Osceola County and Polk County project boundaries, is shown on Figure 29 below.

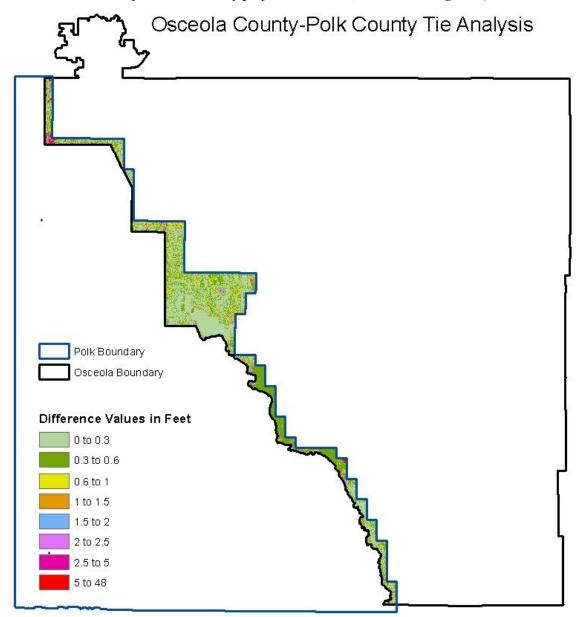


Figure 31-Difference raster created to analyze the edge-match/edge-tie area between Osceola County and previously collected Polk County.

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 60 of 122

Per the specifications, the Osceola County data must meet 0.64 ft vertical accuracy at the 95% confidence level based on RMSEz (0.33 ft) x 1.9600 in Non-vegetated areas (NVA). After accuracy assessment testing using surveyed check points, the Osceola data achieved a 0.27 ft vertical accuracy at the 95% confidence level based on RMSEz (0.14 ft) x 1.9600. The Polk County metadata contained a statement that the data met 0.3 ft Fundamental Vertical Accuracy (FVA). This equates to a RMSEz of 0.15 ft. Statistically, these tested values should be regarded as a best case scenario applicable to well-defined locations and smooth, bare surfaces. Adjacent datasets should typically match within the combined tested RMSEz values for low slope, open terrain areas. For Osceola-Polk overlap, this would translate to 0.29 ft of allowable elevation differences between the two datasets in flat, open terrain. Dewberry rounded this value to 0.3 ft for visualization purposes in the difference raster.

When looking at all overlap areas consisting of all slopes and all land cover types, 48% of the Osceola-Polk overlap area matches within 0.3 feet of each other. As the Polk County FVA value of 0.3 feet was stated as best case scenario and a 0.3 ft FVA is very stringent, it is quite possible the Polk County data actually met 0.6 ft FVA based on RMSEz (0.3 ft) x 1.9600. This accuracy requirement would be very similar to the vertical accuracy requirement for Osceola County to meet USGS QL2 specifications. Consequently, Dewberry doubled the difference in elevation values threshold to 0.6 ft (0.3 ft required RMSEz for each dataset). While this threshold still only applies to flat, open areas 81% of all Osceola-Polk overlap areas (all slopes and land cover types) match within 0.6 feet of each other. Furthermore, 89% of all Osceola-Polk overlap areas (all slopes and land cover types) match within 1 foot of each other.

The areas of larger vertical differences between these two datasets occur due to temporal changes. There are clearly changes in the level of water in water bodies and streams, along shorelines, and within floodplains. And there are cultural or man-made changes including new housing developments. The figures below show a few examples of these temporal changes.

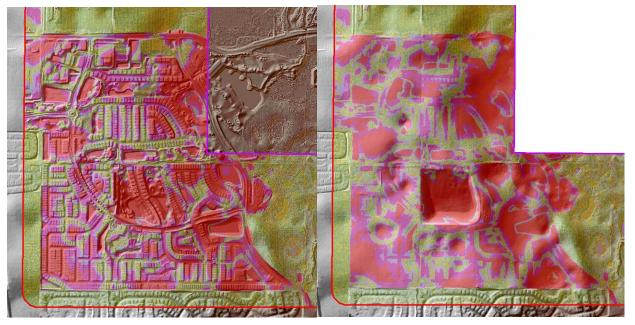


Figure 32-The image on the left shows the Osceola County bare earth DEM overlaid with the difference raster (partially transparent). The image on the right shows the Polk County bare earth DEM overlaid with the difference raster (partially transparent). The light and dark purple areas are between 2-5 feet different in elevation between the two datasets and the red areas are anywhere between 5-48 feet different in elevation. Most of the red areas in these images are between 5-20 feet

different in elevation. These significant elevation differences occur because a housing development

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 61 of 122

exists in the Osceola County dataset (left image) but was not present when the Polk County data was previously acquired (right image).

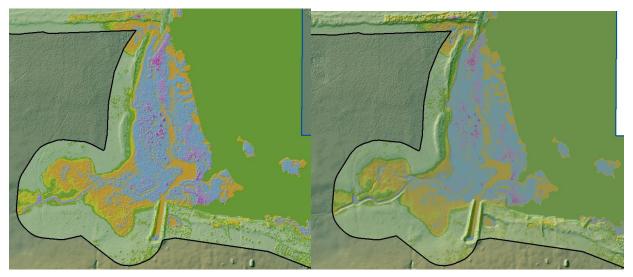


Figure 33 -The image on the left shows the Osceola County bare earth DEM overlaid with the difference raster (partially transparent). The image on the right shows the Polk County bare earth DEM overlaid with the difference raster (partially transparent). Areas of yellow and orange are 0.6 – 1.5 feet different in elevation. Areas of blue are 1.5 – 2 feet different in elevation. These changes in elevation occur because the shoreline has completely changed between the previously acquired Polk County dataset and the recently acquired Osceola dataset. Whereas open water existed in the Polk County dataset and was hydro-flattened (right image), this area is now bare earth in the Osceola County dataset and the shoreline has shifted east (left image).

Based on our analysis, the areas of significant vertical elevation change occur due to temporal differences. They include varying levels of water in hydrographic features, shoreline changes, changes in floodplains, and cultural or man-made changes. The Osceola County and Polk County datasets match quite well and match within the expected or allowable offset tolerances. No additional adjustments were applied to the Osceola County dataset for edge-matching purposes as none were needed.

Appendix A: Ground Control Point Survey Report

GROUND CONTROL SURVEY REPORT

ACA recovered 16 NAD83(2011) published NGS monuments throughout the project area to be used as set control locations during each lift. Before the collection started we covered the NGS points and shot them with a RTK unit to verify the published coordinate values. During each lift we set 2 Leica GS14 base stations within 25 miles of the lift recording 1 second static. The 16 NGS point values were used as the coordinates values for the base stations during the trajectory processing. After each mission was calibrated we then checked the mission to mission adjustment comparing horizontal and vertical offsets. Once all the mission to mission adjustments were finished we used the points Dewberry supplied to verify the vertical offset between the point cloud and the ground points. A final vertical adjustment was applied to overall point cloud after this assessment.

	ACA Osceola Control Points SPS: Osceola	GThomais 1-12-16 M157/2 J.McDanold 1-13-16
	GIS 146 RESET ORADGE CO. GODETIC INFORMATION Disso disc. OPEN System	Not found searched for AK7298, AK7336, AF7663,
AK 7298	Not found	AU6687 Behind Locked gates off of Huy 523; Boy Scout Camp Rd
4K7111 AB 5503	FIR in box marked KOBI 1991 OPEN FMON 626 GPS 95-064 brossdisc	DJ8307 FIR in box L687 2007
AB 5498	DPEN PMON CPS 95-051 OPEN	· AE 6134 FMON RAIZ W/ brass disc US COAST & GEODETIC SURVEY Gramped COON 1936
DL6642	FIR IN box Q733 2009 OPEN	AF6121 PMON of brass disc us const i GEODETIC SURVEY stopped 5197 1960 (coning slightly BENCHMARIK
AB 5482	pmon 3/4" rod bent over	OPEN
AK6933	FIR in box FLGPS 44 AZ MK 1999	AF7643 FIR in box K113 1991 OPEN
		sender and the second
AK 6935	FIR IN box marked FLGPS 53 AZ MK 1989	
AB 5478	PMON w/ bross disc stamped 95-061A	
CW 6769	PMON BRICK 1960 AZ MARK US LOAST GOODETIL SURVEY leaning westwordly	
AF 7103	PMON w/ bress disc FLORIDA DEPT NATURAL PESCURCES OPEN 0541 1983	
AF 6097	PMON ulbrow disc. U.S. Courts devodetic Survey Jackson 1936 OPEN	r

Figure 1: Ground Control Field Notes

Appendix B: Checkpoint Survey Report

OSCEOLA FL QL2 LIDAR 2016 INDEPENDENT CHECK POINTS

SUBCONTRACT AGREEMENT NO. S/C-USGS-G10PC00013-PRI

Reference:

Client: USGS Contract 3: G10PC00013 Task Order No.: G15PD00887 Task Name: Osceola FL QL2 Lidar

Prepared For:

Dewberry Consultants LLC 10003 Derekwood Lane, Suite 204 Lanham, Maryland, 20706 Phone (301)364-1855 Fax (301)731-0188

Prepared By:

Preble-Rish, Inc. 203 Aberdeen Parkway Panama City, FL 32405

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 64 of 122

1. INTRODUCTION

1.1 Project Summary

Preble-Rish, Inc. is under subcontract to Dewberry Consultants, LLC, to provide a minimum of 65 Non-vegetated Vertical Accuracy (NVA – total number actually surveyed = 92), and 52 Vegetated Vertical Accuracy (VVA – total number actually surveyed = 73) check points for USGS in the State of Florida. A minimum of half (33) of the NVA points shall also be horizontal accuracy check points (total number actually surveyed = 35). Under the above referenced USGS Task Order, Preble-Rish is tasked to complete the quality assurance of high resolution LiDAR-derived elevation products. As part of this work, Preble-Rish, Inc. staff will complete checkpoint surveys that will be used to evaluate vertical accuracy on the bare-earth terrain derived from the LiDAR.

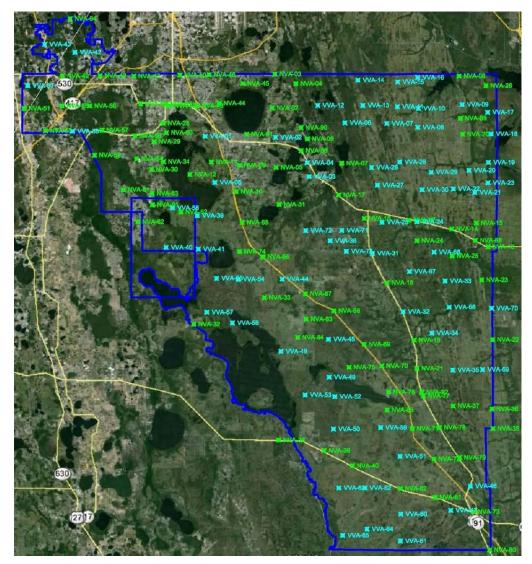
Existing NGS Control Points were recovered and surveyed to verify the accuracy of the RTK/GPS survey equipment with the results shown in Section 2.4 and Appendix 1 of this report.

As an internal QA/QC procedure, and to verify that the LiDAR check points meet the 95% confidence level, 68 of the NVA check points, and 53 of the VVA check points were resurveyed and are shown in Section 5 of this report. For check points that were surveyed twice, an average of the two observations was computed to generate final coordinates and elevations.

Final horizontal coordinates are referenced to the Florida State Plane Coordinate System, NAD83, East Zone, U.S. survey feet. Final vertical elevations are referenced to NAVD88 in feet using Geoid model 2012B (Geoid12B).

1.2 Points of Contact

Questions regarding the technical aspects of this report should be addressed to: **Preble-Rish, Inc.**


Frederick C. Rankin, P.S.M. Professional Surveyor & Mapper 203 Aberdeen Parkway Panama City, Florida 32405 (850) 522-0644 office

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 65 of 122

(850) 522-1011 fax

1.3 Project Area

OSCEOLA FL QL2 LIDAR 2016 - ICP LOCATIONS

Osceola Lidar Project TO# G15PD00887 October 21, 2016 Page 66 of 122

2. PROJECT DETAILS

2.1 SURVEY EQUIPMENT

In performing the GPS observations, Spectra Precision Epoch 80 GNSS RTK GPS receiver/antenna attached to a 6.56 foot (2 meter) fixed height pole was used, together with a Spectra Precision Ranger Data Collector equipped with SurveyPro Software (version 5.5.2), to collect GPS raw data for the field surveys.

2.2 SURVEY POINT DETAIL

92 Non-vegetated Check Points, and 73 Vegetated Check Points were distributed throughout the project area.

A sketch was made for each location and a nail was set at the point where possible, unless said point was already located at a photo identifiable point. The LiDAR Check Point locations are detailed on the "Ground Control Point Documentation Report", which is delivered via electronic transfer, see appendix 5a on sheet 2.

2.3 NETWORK DESIGN

The GPS survey performed by Preble-Rish, Inc. was tied to the Florida Permanent Reference Network (FPRN), a Real Time Network (RTN) managed by the Florida Department of Transportation. The FPRN consists of a series of approximately 100 continuously operating dual-frequency reference stations (CORS) located throughout Florida, which are tied to the National Geodetic Survey's National CORS network. Each CORS site provides Global Positioning System (GPS) carrier phase and code range measurements in support of 3dimensional positioning activities through Florida and surrounding states. All of the reference stations have been linked together, creating a Virtual Reference Station System (VRS).

2.4 FIELD SURVEY PROCEDURES AND ANALYSIS

Preble-Rish, Inc. field surveyors used Spectra Precision Epoch 80 GNSS RTK GPS systems, which is a geodetic quality dual frequency GPS receiver, to collect data at each check point location.

Nineteen (19) existing NGS monuments were located as an additional QA/QC procedure, for the purpose of verifying the accuracy of the VRS network. All NGS monuments used are published in the NSRS database, and represent the primary project control for this survey. Field GPS observations are detailed in the "Project Network Control Monument Report", see appendix 1 on sheets 7-8.

A total of 68 of the NVA check point locations, and 53 of the VVA check point locations were occupied twice. All re-observations matched the initially derived station positions within the allowable tolerance of \pm 5cm or within the 95% confidence level. Each occupation utilized the VRS network, was occupied for approximately three (3) minutes in duration, and measured to 180 epochs. Field GPS observations are detailed in the "Ground Control Point Documentation Report", and delivered via electronic transfer, see appendix 5a on sheet 2.

2.5 ADJUSTMENT

The survey data was collected using Virtual Reference Stations (VRS) methodology within a Virtual Reference System (VRS).

The system is designed to provide a true Network RTK performance, the RTK software enables high-accuracy positioning in real time across a geographic region. The RTK software package uses real-time data streams from the GPS system user and generates correction models for high-accuracy RTK GPS corrections throughout the network. Therefore, corrections were applied to the points as they were being collected, thus negating the need for a post process adjustment.

2.6 DATA PROCESSING PROCEDURES

After field data is collected the information is downloaded from the data collectors into the office software. Text files are created that show the point number, northing, easting, elevation, and description (PNEZD format) for each point surveyed. Points are then entered into a Microsoft Excell spreadsheet, which contains formulas for calculating differences between published and field survey data, as well as, comparing differences between points surveyed multiple times. This data is used to confirm point accuracy and precision.

After review of the point data, an "ASCII" or "txt" file (PNEZD format) is created, which is the industry standard. Point files are loaded into our CADD program (AutoCAD Civil 3D) to make a visual check of the point data (Pt. #, Coordinates, Elev. and Description). For check points that were surveyed twice, an average of the two observations was computed to generate final northings, eastings, and elevations. The data can now be imported into the final product.

Table 1:

	PIU	ject Network Co										_
				95 061A (AB5478)-HV							
Date	Field Su	rvey Data (F)		Publishe	ed Data (F)		Differer	nces (F)		RMS	E	
	Northing	Easting E	levation	Northing	Easting Ele	evation	Delta N D	elta E De	ta Z			
3/16/2016 3/16/2016	1374800.6940 1374800.7300	631573.4030 631573.4750	75.129 75.14	1374800.6600 1374800.6600	631573.4700 7 631573.4700 7		-0.03 0.07 - 0.01		0.06 rmse 0.05 rmse		0.055 0.073	
							0.01		Hrm: Vrm:		0.056	į
				OSC 1 FLDN	IR (B2 AK710)3)-HV			•	50		
Date	Field S	Survey Data (F)	\	Publi	shed Data (F)		Diff	erences (F)		1	RMSE	
Juio					.,			.,				
	Northing	Easting	Elevation	Northing	Easting	Elevation	Delta N	Delta E	Delta Z			
3/13/2016	1330578.438	599246.504	75.43	1330578.4200	599246.5000	75.4100	-0.02	0.0	0 -0.02	2 rmse _N		
3/13/2016	1330578.411	599246.506		1330578.4200	599246.5000			-		rmse _E		(
3/12/2016	1330578.44	599246.503		1330578.4200	599246.5000			-0.02				•
3/10/2016	1330578.437	599246.567		1330578.4200	599246.5000			.00 -0.02 -	-0.03	Vrmse		(
3/14/2016 3/15/2016	1330578.418 1330578.436	599246.428 599246.503		1330578.4200 1330578.4200	599246.5000 599246.5000		0.07	0.00 .07) 0.13 0.1(
				16.4.40			-0.02	0.0	0			
				K 113 ((B3 AF7643)-	н						
Date	Field S	Survey Data (F))	Publi	shed Data (F)		Diff	erences (F)			RMSE	
	Northing	Easting	Elevation	Northing	Easting	Elevation	Delta N	Delta E	Delta Z			
3/13/2016	1262168.927	570148.143	61.923	1262168.9200	570148.1500		-0.01	0.0	1 -61.9	2 rmse _N		
3/16/2016	1262168.9560	570148.1010		1262168.9200	570148.1500		-0.04	0.0				,
				Q 733 (I	B4 DL6642)-H	IV				Hillise,		
							5.4	(=)				
Date	Field S	Survey Data (F))	Publi	shed Data (F)		Ditt	erences (F)			RMSE	
	Northing	Easting	Elevation	Northing	Easting	Elevation	Delta N	Delta E	Delta Z			
3/7/2016	1440218.9888	515785.2659	76.821	1440218.9700	515785.2200	76.8200	0 -0.02	-0.0	5 0.00	rmse _N		
3/7/2016	1440218.9760	515785.2550	76.799	1440218.9700	515785.2200	76.8200	-0.01	-0.0	4 0.02	rmse _E		
3/8/2016	1440218.9960	515785.2280	76.784	1440218.9700	515785.2200	76.8200	-0.03	-0.0	1 0.04	Hrmser		(
3/11/2016	1440218.9990	515785.2530	76.858	1440218.9700	515785.2200	76.8200	-0.03	-0.03 -0.05	0.04	Vrmse		(
3/16/2016 3/16/2016	1440219.0240 1440219.0110	515785.2630 515785.2780		1440218.9700 1440218.9700	515785.2200 515785.2200			0.04	0.08	_		
3/16/2016	1440219.0110	515785.2780	76.7510	FLGPS 44 AZ				-0.0	6 0.07	·		
	=:						5.4					
Date	Field S	Survey Data (F)		Publis	shed Data (F)		Diff	erences (F)			RMSE	
	Northing	Easting	Elevation	Northing	Easting	Elevation	Delta N	Delta E	Delta Z			
3/9/2016	1432707.6550	655130.0730	66.008	1432707.6800	655130.0800	65.9900	0.02	0.0	1 -0.02	rmse _N		
3/10/2016	1432707.642	655130.085	65.979	1432707.6800	655130.0800		0.04	-0.0	1 0.01	rmse _E		(
3/10/2016	1432707.669	655130.119	66.052	1432707.6800	655130.0800		0.01	-0.0	4 -0.06	Hrmser		(
3/11/2016	1432707.649	655130.069		1432707.6800	655130.0800		0.0	3 0.01 0.01	0.07	Vrmse		(
3/12/2016	1432707.672	655130.064		1432707.6800	655130.0800			0.02	-0.12			
3/13/2016	1432707.678	655130.099	65.99	1432707.6800 95 056A	655130.0800 (B7 AB5482)		0.00	-0.0	2 0.00			
Det								·				
Date	Field S	Survey Data (F))	Publi	shed Data (F)		Diff	erences (F)			RMSE	
	Northing	Easting	Elevation	Northing	Easting	Elevation	Delta N	Delta E	Delta Z			

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 69 of 122

3/7/2016 3/9/2016	1433053.737 1433053.75 6	604549.89 04549.99	3 69.592 69.567		.7800 604549.95 .7800 604549.95		0.04 0.0 0.04	6 0.03 -		rmse _N I rmse _E Hrmse _r Vrmse		0.03 0.04 0.06 0.30
				95 064 (B8 AB5503)	н						
Date	Field Survey Data (F)			Published Data (F)			Differences (F)			RMSE		
	Northing	Easting	Elevation	Northing	Easting	Elevation	Delta N	Delta E	Delta Z			
3/7/2016 3/7/2016	1405986.015 1405986.021	505940.911 505940.913		1405985.9800 1405985.9800	505940.8900 505940.8900		-0.03	-0.02 N.A0. -0.02 N.A.	04	rmse _N rmse _E Hrmse _r Vrmse	N.A.	0.0 0.0 0.0
				FLGPS 53 AZ	MK (B9 AK	6935)-HV				The	11.70	
Date	Field Survey Data (F)			Published Data (F)			Differences (F)			RMSE		
	Northing	Easting	Elevation	Northing	Easting	Elevation	Delta N	Delta E	Delta Z			
3/11/2016	1375220.924	678778.547	50.142	1375220.8300	678778.5200	50.1400	-0.09	-0.03	0.00	rmse _N		0.0
3/12/2016	1375220.936	678778.582	50.098	1375220.8300	678778.5200	50.1400	-0.11	-0.06	0.04	rmse _E		0.0
3/13/2016	1375220.866	678778.586	50.162	1375220.8300	678778.5200	50.1400	-0.04 -	-0.07 -	-0.02	Hrmser		0.
3/15/2016	1375220.886	678778.581	50.137	1375220.8300	678778.5200	50.1400	0.06 -0.09	0.06	0.00	Vrmse		0.
3/15/2016	1375220.923	678778.559	50.008	1375220.8300	678778.5200	50.1400	-0.11 -	-0.04	0.13			
3/14/2016	1375220.937	678778.522	50.159	1375220.8300	678778.5200	50.1400	0.11	0.00 -	-0.02			
3/16/2016	1375220.9390	678778.5330		1375220.8300	678778.5200		-0.09	0.01	0.01			
3/16/2016	1375220.9250	678778.5780	50.198	1375220.8300	678778.5200			-0.06	0.00			
				95 058/	A (AB5489)-I	Н						
Date	Field Survey Data (F))	Published Data (F)			Differences (F)				RMSE	
	Northing	Easting	Elevation	Northing	Easting	Elevation	Delta N	Delta E	Delta Z			
3/7/2016	1409017.102	577659.624	76.725	1409017.0300	577659.5900		-0.07	-0.03 N	A.	rmse _N		0.0
										rmse _E Hrmse _r		0. 0.
										Vrmse	N.A.	

Project Network Control Monument Report (Cont.)

Date	JACKSON (AF6097)-HV Field Survey Data (F)	Published Data (F)	Differences (F)	DMCE	
Date	rield Sulvey Data (r)	Published Data (r.)	Differences (F)	RMSE	
3/12/2016	Northing Easting Elevation	Northing Easting Elevation	Delta N Delta E Delta Z	rmse _N 0.02	
3/12/2016	1311079.552 614001.222 68.881	1311079.5900 614001.2300 68.8500		rmse _E 0.02	
3/12/2010	1311079.591 614001.275 68.861	1311079.5900 614001.2300 68.8500	0.00 -0.05 -0.01	rmse _E 0.03.	
			0.00 0.00 0.00	nillise,	
				Vrmse 0.02	
	BREVARD GPS1051 (AF7746)-H				
Date	Field Survey Data (F)	Published Data (F)	Differences (F)	RMSE	
3/13/2016	Northing Easting Elevation	Northing Easting Elevation	Delta N Delta E Delta Z	rmse _N 0.044	
3/16/2016	1268022.72 698733.451 51.868		0.02 0.02 N.A0.06 -0.01 N.A.	rmse _E 0.014	
	1268022.7990 698733.4760 51.656	1268022.7400 698733.4700		Hrmser 0.040	
				Vrmse _{N.A.}	
	COON (AF6134)-HV				
Date Field Survey Data (F)		Published Data (F)	Differences (F)	RMSE	
Date					

Dewberry

3/16/2016 3/16/2016	Northing 1243075.8490 1243075.8600	Easting 631895.4220 631895.4260	Elevation 69.541 69.544	Northing 1243075.8200 1243075.8200	631895.4400	levation 69.6600 69.6600	Delta N -0.03 -0.04	Delta E 0.02 0.01	Delta Z 0.12 0.12	rmse _N rmse _E Hrmse _r Vrmse	0.03 0.0 ⁴ 0.03 0.14
	L 512	(DF6696)-V								VIIIISE	
Date	Field	Survey Data (F)	Pub	lished Data (F)		Diff	erences (F)		RMS	SE
3/7/2016 3/8/2016	Northing 1439418.2830 1439418.275 52	Easting 528917.681 8917.652	Elevation 0 57.999 58.065	Northing	Easting	Elevation 58.0900 58.0900	Delta N N.A. N.A.	Delta E N.A. N.A.	Delta Z 0.09 0.03	rmse _N N.A rmse _E N.A Hrmse _r N.A Vrmse	۸.
1	F 512	(DF6691)-V					1				0.00
Date	Field	Survey Data (F)	Pub	lished Data (F)		Diff	erences (F)		RMS	BE
3/7/2016 3/8/2016	Northing 1425023.0350 1425023.0200	Easting 550821.7920 550821.8070	Elevation 61.245 61.209	Northing	Easting	Elevation 61.3000 61.3000	Delta N N.A. N.A.	Delta E N.A. N.A.	Delta Z 0.05 0.09	rmse _N N.A rmse _E N.A Hrmse _r N.A Vrmse	۱.
	P 59 RES	SET (AK2011)-	HV								
Date	Field	Survey Data (F)	Publ	shed Data (F)		Diffe	erences (F)		RMS	E
3/8/2016 3/8/2016 3/9/2016 3/14/2016 3/15/2016 3/15/2016 3/17/2016	Northing 1422295.1640 1422295.1510 1422295.169 1422295.169 1422295.169 1422295.177 1422295.2020 1422295.2020	Easting 561801.3390 561801.3430 561801.345 561801.345 561801.322 561801.322 561801.3270 561801.3410	Elevation 75.146 75.145 75.191 75.153 75.233 75.383 75.3890 75.2070	Northing 1422295.1400 1422295.1400 1422295.1400 1422295.1400 1422295.1400 1422295.1400 1422295.1400 1422295.1400	Easting 561801.3400 561801.3400 561801.3400 561801.3400 561801.3400 561801.3400 561801.3400	E evation 75.2300 75.2300 75.2300 75.2300 75.2300 75.2300 75.2300 75.2300 75.2300	Delta N -0.02 -0.01 -0.0 -0.03 -0.03 -0.04 -0.0 -0.03	-0.01 0.00	Delta Z 0.08 0.09 0.04 0.08 0.00 0.00 -0.15 0.14 0.02	rmse _N rmse _E Hrmse, Vrmse	0.0 0.0 0.0 0.0
		(AK7111)-HV									
Date	Field	Survey Data (F))	Pub	lished Data (F)		Diffe	erences (F)		RMS	E
3/9/2016 3/9/2016	Northing 1427522.1930 1427522.186 47	Easting 477009.295 7009.304	Elevation 0 86.421 86.459	Northing 1427522.1900 1427522.1900		Elevation 86.4500 86.4500	Delta N 0.00 0.00	Delta E -0.02 -0.03	Delta Z 0.03 -0.01	rmse _N rmse _E Hrmse _r Vrmse	0.0 0.0 0.0 0.0
	95 05	1 (AB5498)-H	v								
Date	Field	Survey Data (F))	Publi	shed Data (F)		Diffe	erences (F)		RMS	E
3/9/2016 3/10/2016	Northing 1426446.7460 1426446.741 50	Easting 508908.755 8908.745	Elevation 0 79.068 79.13		Easting E 6.7100 508908.74 6.7100 508908.74		Delta N -0.04	Delta E -0.02 -0.03 - 0.01	Delta Z 0.07 0.01	rmse _N rmse _E Hrmse₁ Vrmse	0.0 0.0 0.0 0.0
	L 687	(DJ8307)-HV									
Date	Field	Survey Data (F)	Pub	lished Data (F)		Diffe	erences (F)		RMS	E
3/11/2016 3/12/2016 3/12/2016	Northing 1217516.464 1217516.444 1217516.492	Easting 697553.604 697553.648 697553.609	Elevation 53.974 54.02 53.932	Northing 1217516.4100 1217516.4100 1217516.4100	Easting 697553.5600 697553.5600 697553.5600	Elevation 53.9500 53.9500 53.9500	Delta N -0.05 -0.03 -0.08	Delta E -0.04 -0.09 -0.05	Delta Z -0.02 - 0.07 0.02	rmse _N rmse _E Hrmse, Vrmse	0.0 0.0 0.0 0.0
		8(DF6726)-HV									
Date	Field	Survey Data (F))	Pub	lished Data (F)		Diffe	erences (F)		RMS	E
3/14/2016 3/14/2016	Northing 1363436.403 1363436.394	Easting 566567.497 566567.504	Elevation 62.575 62.54	Northing 1363436.32 1363436.32	Easting 566567.51 566567.51	Elevation 62.6500 62.6500	Delta N -0.08 -0.07	Delta E 0.01 0.01	Delta Z 0.07 0.11	rmse _N mse _E Hrmse _r Vrmse	0.0 0.0 0.0 0.0

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 71 of 122

Table 3:

Final Check	ola FL QL2 LiD			AR	POINTS	2016
POINT #					EASTING (F)	ELEV. (F)
NVA-01	1426776.418				565625.875	60.893
NVA-02	1440994.188				579330.214	78.979
NVA-03		61.461			580904.643	65.904
NVA-04	1459261.461				592213.745	74.370
NVA-05		43.436			581594.789	71.882
NVA-06		22.313			598467.454	68.801
NVA-07	-	73.529			616905.552	72.494
NVA-08		06.959			680277.203	25.680
NVA-09	14100	57.983			561863.587	73.245
NVA-10		18.311			560058.254	69.167
NVA-11		49.680			546592.882	59.565
NVA-12	14051	50.205			535074.666	57.943
NVA-13		46.809			695832.616	31.591
NVA-14	13757	28.254			676234.735	51.593
NVA-15	1378938.400				689540.336	50.503
NVA-16	1381399.186			629145.099		77.521
NVA-17	13940	69.206			615284.547	75.873
NVA-18	1346758.725				641402.609	67.203
NVA-19	13158	30.771			655952.371	59.815
NVA-20	14267	96.904			682128.639	48.011
NVA-21	13005	30.283			657491.337	67.345
NVA-22	13160	40.228			698328.515	38.465
NVA-23	13482	42.713			692432.662	45.354
NVA-24	13694	69.061			657499.425	55.481
NVA-25	13612	19.916			676484.006	41.677
NVA-26	14529	92.737			694693.508	14.201
NVA-27	1443061.856				522085.257	68.277
NVA-28	1432771.431				520681.603	61.516
NVA-29	1422849.321				515729.498	72.337
NVA-30	1407837.663				514358.051	70.349
NVA-31	1388919.043				583103.966	65.575
NVA-32	1324361.607				537140.612	54.296
NVA-33	1338723.080				575197.196	59.852
NVA-34	1411998.048				520814.726	61.070
NVA-35	1268129.507				698465.394	53.457
NVA-36	12786	64.008			697937.786	48.414
NVA-37	12803	63.485			676978.836	67.857

Final Check Point Coordinates

Dewberry

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 72 of 122

NVA-38	1261947.171	582923.719	55.381
NVA-39	1256262.813	607426.462	61.174
NVA-40	1248094.582	622714.472	65.610
NVA-41	1443236.958	508502.534	76.963
NVA-42	1442117.045	524184.005	63.163
NVA-43	1442156.820	539012.673	70.917
NVA-44	1443485.908	550794.945	63.369
NVA-45	1454137.853	563616.429	75.846
NVA-46	1458870.857	545474.069	82.048
NVA-47	1458105.584	504780.412	78.340
NVA-48	1458408.447	486615.226	88.930
NVA-49	1458111.537	466388.323	103.306
NVA-50	1458719.529	529685.335	83.649

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 73 of 122

Osceo	la FL (QL2 LiD	AR POINTS	2016
POINT #	NORTHING	6 (F)	EASTING (F)	ELEV. (F)
NVA-51	1440753.0	617	445626.304	140.080
NVA-52	1384895.3	381	530202.336	63.179
NVA-53	1428683.	554	457199.649	126.294
NVA-54	1413568.0	098	506420.564	74.231
NVA-55	1442092.4	480	466096.864	110.984
NVA-56	1442080.	528	481064.365	77.162
NVA-57	1429032.2	220	487711.142	70.086
NVA-58	1425982.9	938	505472.813	70.676
NVA-59	1415513.4	442	483617.690	80.954
NVA-60	1427635.2	232	522397.991	58.590
NVA-61	1396913.8	885	499192.292	66.945
NVA-62	1379598.7	758	506972.824	63.631
NVA-63	1394884.0	573	514667.927	74.372
NVA-64	1489131.4	405	470492.214	99.789
NVA-65	1379284.9	909	563248.159	70.462
NVA-66	1360744.	562	574467.193	63.770
NVA-67	1340812.0	541	597307.486	78.836
NVA-68	1331637.4	419	612687.613	82.887
NVA-69	1313534.0	037	628955.020	75.750
NVA-70	1301928.:	177	638519.767	72.662
NVA-71	1268128.3	145	655017.572	74.509
NVA-72	1251717.:	127	666636.134	72.646
NVA-73	1223295.0	675	687923.801	63.693
NVA-74	1363535.8	358	561780.820	59.920
NVA-75	1301209.0	082	620812.188	69.836
NVA-76	1287855.7	762	642218.873	71.905
NVA-77	1285817.7	761	660958.265	72.081
NVA-78	1268738.0	521	669585.975	75.227
NVA-79	1252539.8	325	680493.612	63.744
NVA-80	1202714.2	218	696679.141	72.126
NVA-81	1231060.	502	667316.133	69.555
NVA-82	1235786.9	933	648549.159	69.783
NVA-83	1327127.	568	597747.756	73.868
NVA-84	1317245.	566	593185.928	67.293
NVA-85	1278163.3	370	641411.608	65.791
NVA-86	1417968.3	100	595102.265	70.783
NVA-87	1380482.3	352	653273.857	54.978
NVA-88	1369571.	530	689079.578	48.589
NVA-89	1435413.3	301	680921.791	42.124
NVA-90	1430319.3	164	594959.849	70.748
NVA-91	1388826.7	742	514889.453	69.221
NVA-92	1287734.4	408	660094.227	70.951

Final Check Point Coordinates (Cont.)

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 74 of 122

Final Check Point Coordinates ((Cont.)	
---------------------------------	---------	--

Osceo		QL2	LiD	AR	POINTS	2016
POINT #	NORTH	ING (F)			EASTING (F)	ELEV. (F)
VVA-01	14257	07.697			543326.034	64.333
VVA-02	14251	26.894			581252.546	75.999
VVA-03	14039	63.199			599294.972	76.005
VVA-04	14114	43.842			598331.001	71.847
VVA-05	14008	02.925			548563.663	72.763
VVA-06	14329	71.276			618620.792	70.180
VVA-07	14326	16.081			641226.001	75.784
VVA-08	14305	03.439			657890.871	63.101
VVA-09	14428	27.793			681840.623	41.622
VVA-10	14407	02.752			658314.138	54.508
VVA-11	14416	59.775			646941.050	71.223
VVA-12	14423	85.774			603999.674	63.047
VVA-13	14423	53.535			628343.362	75.266
VVA-14	145593	36.039			625661.327	72.324
VVA-15	14550	12.577			647072.123	68.697
VVA-16	14573	77.765			657877.722	56.412
VVA-17	14386	51.964			695603.449	20.528
VVA-18	142694	45.715			697486.584	16.593
VVA-19	14116	29.635			696019.295	17.269
VVA-20	14073	44.506			685587.397	55.555
VVA-21	139543	28.951			688659.291	35.381
VVA-22	13973	46.358			677106.928	40.596
VVA-23	14006	43.692			695781.085	19.524
VVA-24	13796	53.166			657543.514	55.785
VVA-25	13793	89.604			638656.494	67.345
VVA-26	14089	31.875			633025.653	70.995
VVA-27	13993	57.782			636173.313	71.525
VVA-28	14118	82.078			648197.235	74.129
VVA-29	14063	66.495			665173.352	49.355
VVA-30	13968	94.809			660244.734	62.779
VVA-31	13626	15.443			633463.514	74.064
VVA-32	13311	15.447			650062.351	57.892
VVA-33	13476	77.308			672635.590	55.624
VVA-34	13196	36.502			665545.430	47.784
VVA-35	12996	58.266			676770.137	64.326
VVA-36	13693	77.810			610688.671	81.419
VVA-37	14529	56.562			447624.590	120.802

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 75 of 122

VVA-38	1428415.537	471771.328	94.039
VVA-39	1382967.076	539046.916	57.472
VVA-40	1365778.580	522220.915	66.695
VVA-41	1364856.993	539629.635	55.063
VVA-42	1470937.279	473080.190	91.743
VVA-43	1475254.645	456734.308	105.157
VVA-44	1348722.865	584805.068	68.247
VVA-45	1316289.250	609810.761	71.449
VVA-46	1237097.447	686274.317	58.328
VVA-47	1224032.945	675709.941	65.751
VVA-48	1309732.693	584143.948	55.112
VVA-49	1295836.492	610149.927	61.744
VVA-50	1267891.513	612462.319	60.859

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 76 of 122

	Osceola FL QL2	LIDAR POINTS	
	•	016	
POINT #	NORTHING (F)	EASTING (F)	ELEV. (F)
VVA-51	1253168.110	648388.295	67.266
VVA-52	1285374.998	613170.112	62.236
VVA-53	1286265.027	597176.447	51.827
VVA-54	1348639.578	561041.778	53.604
VVA-55	1349168.662	549406.096	55.113
VVA-56	1325094.298	557987.210	53.900
VVA-57	1330862.393	544225.786	62.675
VVA-58	1387129.728	525708.359	68.789
VVA-59	1268701.240	637909.670	65.365
VVA-60	1222007.138	648753.259	62.581
VVA-61	1207528.066	648560.334	68.331
VVA-62	1236125.572	629363.122	67.050
VVA-63	1236147.731	615361.783	61.973
VVA-64	1213924.531	630542.693	60.639
VVA-65	1210566.921	617438.175	51.511
VVA-66	1333605.899	674929.437	42.700
VVA-67	1352815.807	653458.505	64.022
VVA-68	1363256.799	666680.437	66.487
VVA-69	1299937.449	692927.738	46.771
VVA-70	1332998.684	697741.349	32.698
VVA-71	1374984.170	616979.039	79.577
VVA-72	1374945.635	597452.297	67.514
VVA-73	1363682.213	619411.221	80.224

Final Check Point Coordinates (Cont.)

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 77 of 122

	Osceola F	L QL2 Li	DAR PO	DINTS 2016	
POINT #	SURVEY DATE	JULIAN DATE	TIME	RE-SURVEY DATE	RE-SURVEY TIME
NVA-01	3/7/2016	67	14:14	3/8/2016	7:36
NVA-02	3/7/2016	67	15:15	3/8/2016	6:03
NVA-03	3/7/2016	67	15:45	3/8/2016	9:33
NVA-04	3/7/2016	67	16:11	3/8/2016	9:49
NVA-05	3/7/2016	67	16:51	3/8/2016	10:14
NVA-06	3/8/2016	68	11:57	3/9/2016	10:56
NVA-07	3/8/2016	68	13:00	3/9/2016	9:51
NVA-08	3/9/2016	69	14:40	3/10/2016	9:47
NVA-09	3/8/2016	68	14:37	3/9/2016	8:34
NVA-10	3/8/2016	68	15:02	3/9/2016	8:52
NVA-11	3/8/2016	68	15:40	3/9/2016	7:30
NVA-12	3/8/2016	68	16:46	3/9/2016	7:50
NVA-13	3/12/2016	72	13:23	3/13/2016	10:47
NVA-14	3/12/2016	72	13:58	3/13/2016	11:03
NVA-15	3/12/2016	72	14:22	3/13/2016	10:35
NVA-16	3/13/2016	73	13:07	3/14/2016	8:29
NVA-17	3/13/2016	73	13:27	3/14/2016	7:55
NVA-18	3/14/2016	74	13:44	3/15/2016	9:16
NVA-19	3/14/2016	74	14:50	3/15/2016	10:00
NVA-20	3/11/2016	71	14:12	3/12/2016	9:20
NVA-21	3/14/2016	74	15:38	3/15/2016	10:19
NVA-22	3/15/2016	75	14:07	N/A	N/A
NVA-23	3/15/2016	75	13:37	N/A	N/A
NVA-24	3/15/2016	75	12:43	N/A	N/A
NVA-25	3/15/2016	75	17:55	N/A	N/A
NVA-26	3/12/2016	72	8:08	3/13/2016	8:44
NVA-27	3/17/2016	77	8:17	N/A	N/A
NVA-28	3/17/2016	77	8:37	N/A	N/A
NVA-29	3/17/2016	77	8:52	N/A	N/A
NVA-30	3/17/2016	77	9:03	N/A	N/A
NVA-31	3/16/2016	76	9:06	N/A	N/A
NVA-32	3/14/2016	74	12:54	3/14/2016	17:00
NVA-33	3/15/2016	75	9:57	N/A	N/A
NVA-34	3/9/2016	69	12:56	3/10/2016	12:45
NVA-35	3/13/2016	73	18:15	N/A	N/A
NVA-36	3/13/2016	73	17:53	N/A	N/A

Table 4: GPS Observation & Re-Observation Schedule

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 78 of 122

NVA-37	3/13/2016	73	17:45	N/A	N/A
NVA-38	3/13/2016	73	14:23	N/A	N/A
NVA-39	3/13/2016	73	13:33	N/A	N/A
NVA-40	3/13/2016	73	13:25	N/A	N/A
NVA-41	3/7/2016	67	9:53	3/8/2016	7:20
NVA-42	3/7/2016	67	10:35	3/8/2016	7:52
NVA-43	3/7/2016	67	11:16	3/8/2016	8:10
NVA-44	3/7/2016	67	11:38	3/8/2016	8:25
NVA-45	3/7/2016	67	12:01	3/8/2016	8:46
NVA-46	3/7/2016	67	12:35	3/8/2016	8:59
NVA-47	3/7/2016	67	14:25	3/8/2016	10:05
NVA-48	3/7/2016	67	14:10	3/8/2016	9:15
NVA-49	3/7/2016	67	15:40	3/8/2016	10:34
NVA-50	3/7/2016	67	13:46	3/8/2016	9:30

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 79 of 122

	Osceola F	L QL2 Li	DAR P	OINTS 2016	
POINT #	SURVEY DATE	JULIAN DATE	TIME	RE-SURVEY DATE	RE-SURVEY
					TIME
NVA-51	3/8/2016	68	11:22	3/9/2016	7:40
NVA-52	3/17/2016	77	9:50	N/A	N/A
NVA-53	3/8/2016	68	12:30	3/9/2016	8:51
NVA-54	3/9/2016	69	13:20	3/10/2016	11:28
NVA-55	3/8/2016	68	14:14	3/9/2016	9:38
NVA-56	3/8/2016	68	14:48	3/9/2016	10:00
NVA-57	3/8/2016	68	15:44	3/9/2016	10:30
NVA-58	3/8/2016	68	16:13	3/9/2016	11:43
NVA-59	3/9/2016	69	14:00	3/10/2016	13:40
NVA-60	3/8/2016	68	16:57	3/9/2016	11:09
NVA-61	3/9/2016	69	15:00	3/10/2016	8:39
NVA-62	3/9/2016	69	15:41	3/10/2016	8:08
NVA-63	3/9/2016	69	16:11	3/10/2016	12:13
NVA-64	3/11/2016	71	10:16	3/11/2016	14:17
NVA-65	3/11/2016	71	16:05	3/12/2016	13:40
NVA-66	3/11/2016	71	16:35	3/12/2016	13:24
NVA-67	3/11/2016	71	16:50	3/12/2016	13:14
NVA-68	3/11/2016	71	17:05	3/12/2016	13:08
NVA-69	3/11/2016	71	17:19	3/12/2016	12:59
NVA-70	3/11/2016	71	17:29	3/12/2016	12:53
NVA-71	3/11/2016	71	17:41	3/12/2016	12:45
NVA-72	3/11/2016	71	17:52	3/12/2016	13:36
NVA-73	3/11/2016	71	18:15	3/12/2016	11:58
NVA-74	3/12/2016	72	8:14	3/12/2016	14:17
NVA-75	3/12/2016	72	9:32	3/12/2016	15:11
NVA-76	3/12/2016	72	9:45	3/12/2016	15:25
NVA-77	3/12/2016	72	10:07	3/12/2016	15:43
NVA-78	3/12/2016	72	10:19	3/12/2016	15:52
NVA-79	3/12/2016	72	10:35	3/12/2016	16:00
NVA-80	3/12/2016	72	11:40	3/12/2016	16:30
NVA-81	3/12/2016	72	16:55	3/13/2016	16:53
NVA-82	3/12/2016	72	17:14	3/13/2016	16:47
NVA-83	3/13/2016	73	9:38	3/13/2016	7:35
NVA-84	3/13/2016	73	10:46	3/13/2016	7:29
NVA-85	3/13/2016	73	12:49	3/15/2016	11:10
NVA-86	3/17/2016	77	7:58	N/A	N/A
NVA-87	3/17/2016	77	8:30	N/A	N/A
NVA-88	3/17/2016	77	8:47	N/A	N/A
NVA-89	3/17/2016	77	9:46	N/A	N/A
NVA-90	3/17/2016	77	10:21	N/A	N/A
NVA-91	3/17/2016	77	9:20	N/A	N/A
NVA-92	3/16/2016	76	15:36	N/A	N/A

GPS Observation & Re-Observation Schedule (Cont.)

Dewberry

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 80 of 122

	Osceola I	L QL2 L	iDAR P	OINTS 2016	5
POINT #	SURVEY DATE	JULIAN DATE	TIME	RE-SURVEY DATE	RE-SURVEY TIME
VVA-01	3/7/2016	67	13:25	3/8/2016	7:01
VVA-02	3/7/2016	67	14:45	3/8/2016	8:45
VVA-03	3/8/2016	68	10:51	3/9/2016	9:11
VVA-04	3/8/2016	68	12:30	3/9/2016	9:35
VVA-05	3/8/2016	68	16:15	3/9/2016	8:05
VVA-06	3/9/2016	69	11:45	3/10/2016	8:07
VVA-07	3/9/2016	69	12:23	3/10/2016	8:28
VVA-08	3/9/2016	69	13:25	3/10/2016	9:00
VVA-09	3/9/2016	69	14:00	3/10/2016	9:37
VVA-10	3/9/2016	69	13:40	3/10/2016	10:42
VVA-11	3/9/2016	69	16:35	3/10/2016	16:15
VVA-12	3/9/2016	69	12:23	3/11/2016	7:55
VVA-13	3/10/2016	70	13:40	3/11/2016	8:58
VVA-14	3/10/2016	70	14:45	3/11/2016	9:16
VVA-15	3/10/2016	70	15:45	3/11/2016	10:06
VVA-16	3/10/2016	70	16:00	3/11/2016	10:40
VVA-17	3/11/2016	71	12:36	3/12/2016	8:45
VVA-18	3/11/2016	71	15:00	3/12/2016	9:55
VVA-19	3/11/2016	71	16:29	3/12/2016	11:17
VVA-20	3/11/2016	71	17:13	3/12/2016	11:46
VVA-21	3/12/2016	72	14:45	3/13/2016	10:26
VVA-22	3/12/2016	72	15:24	3/13/2016	9:30
VVA-23	3/12/2016	72	17:04	3/13/2016	10:12
VVA-24	3/13/2016	73	12:07	3/14/2016	8:57
VVA-25	3/13/2016	73	12:50	3/14/2016	8:21
VVA-26	3/13/2016	73	15:03	3/14/2016	12:00
VVA-27	3/13/2016	73	16:00	3/14/2016	11:30
VVA-28	3/13/2016	73	17:14	3/14/2016	10:55
VVA-29	3/13/2016	73	17:36	3/14/2016	10:35
VVA-30	3/13/2016	73	18:03	3/14/2016	10:01
VVA-31	3/14/2016	74	13:20	3/15/2016	8:55
VVA-32	3/14/2016	74	14:30	3/15/2016	9:49
VVA-33	3/16/2016	76	10:03	N/A	N/A
VVA-34	3/14/2016	74	16:13	3/15/2016	11:35
VVA-35	3/14/2016	74	17:08	3/15/2016	12:10
VVA-36	3/16/2016	76	13:33	N/A	N/A

GPS Observation & Re-Observation Schedule (Cont.)

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 81 of 122

VVA-37	3/7/2016	67	16:38	3/8/2016	10:55
VVA-38	3/8/2016	68	12:57	3/9/2016	9:10
VVA-39	3/9/2016	69	16:58	3/10/2016	11:37
VVA-40	3/10/2016	70	9:40	3/10/2016	14:20
VVA-41	3/10/2016	70	11:10	3/10/2016	15:15
VVA-42	3/11/2016	71	9:23	3/11/2016	13:25
VVA-43	3/11/2016	71	9:50	3/11/2016	13:15
VVA-44	3/12/2016	72	8:33	3/12/2016	14:29
VVA-45	3/12/2016	72	9:05	3/12/2016	14:54
VVA-46	3/12/2016	72	11:04	3/12/2016	16:11
VVA-47	3/12/2016	72	17:42	3/13/2016	16:22
VVA-48	3/13/2016	73	10:11	3/13/2016	19:21
VVA-49	3/13/2016	73	10:45	3/15/2016	10:39
VVA-50	3/13/2016	73	14:45	N/A	N/A

	Osceola	FL QL	2 LiDAR	POINTS	
		·	2016		
POINT #	SURVEY DATE	JULIAN DATE	TIME	RE-SURVEY DATE	RE-SURVEY TIME
VVA-51	3/13/2016	73	12:30	3/15/2016	12:50
VVA-52	3/13/2016	73	15:08	N/A	N/A
VVA-53	3/13/2016	73	14:36	N/A	N/A
VVA-54	3/14/2016	74	9:25	3/14/2016	14:38
VVA-55	3/14/2016	74	10:05	3/14/2016	14:23
VVA-56	3/14/2016	74	10:35	3/14/2016	15:19
VVA-57	3/14/2016	74	11:16	3/14/2016	15:49
VVA-58	3/9/2016	69	16:33	3/10/2016	11:48
VVA-59	3/15/2016	75	12:05	N/A	N/A
VVA-60	3/15/2016	75	13:55	N/A	N/A
VVA-61	3/15/2016	75	14:09	N/A	N/A
VVA-62	3/15/2016	75	14:50	N/A	N/A
VVA-63	3/15/2016	75	14:29	N/A	N/A
VVA-64	3/15/2016	75	16:11	N/A	N/A
VVA-65	3/15/2016	75	16:46	N/A	N/A
VVA-66	3/16/2016	76	10:35	N/A	N/A
VVA-67	3/16/2016	76	13:42	N/A	N/A
VVA-68	3/15/2016	75	15:23	N/A	N/A
VVA-69	3/15/2016	75	13:26	N/A	N/A
VVA-70	3/15/2016	75	15:10	N/A	N/A
VVA-71	3/16/2016	76	9:45	N/A	N/A
VVA-72	3/16/2016	76	11:50	N/A	N/A
VVA-73	3/16/2016	76	12:55	N/A	N/A

GPS Observation & Re-Observation Schedule (Cont.)

Dewberry

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 83 of 122

	Osceola FL	QL2 LiDAR	POINTS	2016
POINT ID	POINT CHK	DELTA N (F)	DELTA E (F)	VERT DIFF (F)
NVA-01	NVA-01CHK	0.025	0.040	0.122
NVA-02	NVA-02CHK	0.000	0.014	0.094
NVA-03	NVA-03CHK	0.028	0.026	0.105
NVA-04	NVA-04CHK	0.005	0.036	0.032
NVA-05	NVA-05CHK	0.004	0.001	0.074
NVA-06	NVA-06CHK	0.019	0.030	0.000
NVA-07	NVA-07CHK	0.011	0.008	0.119
NVA-08	NVA-08CHK	0.019	0.028	0.027
NVA-09	NVA-09CHK	0.031	0.002	0.080
NVA-10	NVA-10CHK	0.068	0.019	0.083
NVA-11	NVA-11CHK	0.029	0.004	0.077
NVA-12	NVA-12CHK	0.008	0.017	0.054
NVA-13	NVA-13CHK	0.003	0.035	0.103
NVA-14	NVA-14CHK	0.017	0.024	0.026
NVA-15	NVA-15CHK	0.026	0.003	0.004
NVA-16	NVA-16CHK	0.001	0.008	0.047
NVA-17	NVA-17CHK	0.023	0.034	0.084
NVA-18	NVA-18CHK	0.104	0.029	0.101
NVA-19	NVA-19CHK	0.002	0.001	0.091
NVA-20	NVA-20CHK	0.018	0.058	0.102
NVA-21	NVA-21CHK	0.066	0.029	0.119
NVA-26	NVA-26CHK	0.023	0.044	0.118
NVA-32	NVA-32CHK	0.024	0.036	0.034
NVA-34	NVA-34CHK	0.025	0.040	0.080
NVA-41	NVA-41CHK	0.006	0.037	0.003
NVA-42	NVA-42CHK	0.059	0.009	0.026
NVA-43	NVA-43CHK	0.001	0.037	0.048
NVA-44	NVA-44CHK	0.029	0.002	0.026
NVA-45	NVA-45CHK	0.018	0.034	0.020
NVA-46	NVA-46CHK	0.019	0.059	0.057
NVA-47	NVA-47CHK	0.010	0.004	0.028
NVA-48	NVA-48CHK	0.001	0.038	0.038
NVA-49	NVA-49CHK	0.035	0.028	0.086
NVA-50	NVA-50CHK	0.021	0.032	0.020

Table 5:

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 84 of 122

NVA-53	NVA-53CHK	0.012	0.022	0.008
NVA-54	NVA-54CHK	0.035	0.007	0.034
NVA-55	NVA-55CHK	0.002	0.006	0.138
NVA-56	NVA-56CHK	0.041	0.029	0.051
NVA-57	NVA-57CHK	0.036	0.044	0.043
NVA-58	NVA-58CHK	0.003	0.014	0.031
NVA-59	NVA-59CHK	0.060	0.049	0.119
NVA-60	NVA-60CHK	0.042	0.066	0.025
NVA-61	NVA-61CHK	0.004	0.014	0.103
NVA-62	NVA-62CHK	0.025	0.052	0.038
NVA-63	NVA-63CHK	0.055	0.033	0.111
NVA-64	NVA-64CHK	0.030	0.058	0.095
NVA-65	NVA-65CHK	0.079	0.035	0.067
NVA-66	NVA-66CHK	0.019	0.010	0.121
NVA-67	NVA-67CHK	0.050	0.015	0.026

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 85 of 122

	Osceola FL	,	R POINTS			
	2016					
POINT ID	POINT CHK	DELTA N (F)	DELTA E (F)	VERT DIFF (F)		
NVA-68	NVA-68CHK	0.055	0.004	0.049		
NVA-69	NVA-69CHK	0.035	0.033	0.140		
NVA-70	NVA-70CHK	0.020	0.002	0.038		
NVA-71	NVA-71CHK	0.026	0.010	0.066		
NVA-72	NVA-72CHK	0.065	0.011	0.010		
NVA-73	NVA-73CHK	0.021	0.019	0.053		
NVA-74	NVA-74CHK	0.018	0.022	0.022		
NVA-75	NVA-75CHK	0.023	0.061	0.001		
NVA-76	NVA-76CHK	0.047	0.055	0.132		
NVA-77	NVA-77CHK	0.023	0.038	0.023		
NVA-78	NVA-78CHK	0.022	0.008	0.038		
NVA-79	NVA-79CHK	0.002	0.011	0.152		
NVA-80	NVA-80CHK	0.028	0.014	0.155		
NVA-81	NVA-81CHK	0.055	0.027	0.063		
NVA-82	NVA-82CHK	0.057	0.031	0.133		
NVA-83	NVA-83CHK	0.029	0.032	0.144		
NVA-84	NVA-84CHK	0.008	0.016	0.080		
NVA-85	NVA-85CHK	0.041	0.033	0.006		

Point Comparison Report (Cont.)

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 86 of 122

Point Comparison Report (Cont.)

	Osceola FL	QL2 LiDAR	POINTS 201	.6
POINT ID	POINT CHK	DELTA N (F)	DELTA E (F)	VERT DIFF (F)
VVA-01	VVA-01CHK	0.028	0.089	0.147
VVA-02	VVA-02CHK	0.007	0.054	0.047
VVA-03	VVA-03CHK	0.022	0.016	0.088
VVA-04	VVA-04CHK	0.077	0.006	0.018
VVA-05	VVA-05CHK	0.002	0.015	0.114
VVA-06	VVA-06CHK	0.048	0.002	0.110
VVA-07	VVA-07CHK	0.025	0.013	0.015
VVA-08	VVA-08CHK	0.082	0.114	0.126
VVA-09	VVA-09CHK	0.116	0.047	0.007
VVA-10	VVA-10CHK	0.036	0.052	0.013
VVA-11	VVA-11CHK	0.000	0.041	0.127
VVA-12	VVA-12CHK	0.014	0.008	0.075
VVA-13	VVA-13CHK	0.040	0.046	0.051
VVA-14	VVA-14CHK	0.050	0.095	0.132
VVA-15	VVA-15CHK	0.024	0.013	0.025
VVA-16	VVA-16CHK	0.135	0.082	0.037
VVA-17	VVA-17CHK	0.030	0.037	0.115
VVA-18	VVA-18CHK	0.052	0.012	0.013
VVA-19	VVA-19CHK	0.043	0.043	0.027
VVA-20	VVA-20CHK	0.023	0.046	0.152
VVA-21	VVA-21CHK	0.069	0.026	0.130
VVA-22	VVA-22CHK	0.014	0.000	0.048
VVA-23	VVA-23CHK	0.008	0.025	0.158
VVA-24	VVA-24CHK	0.041	0.031	0.048
VVA-25	VVA-25CHK	0.047	0.018	0.042
VVA-26	VVA-26CHK	0.028	0.076	0.044
VVA-27	VVA-27CHK	0.041	0.049	0.061
VVA-28	VVA-28CHK	0.061	0.049	0.103
VVA-29	VVA-29CHK	0.116	0.009	0.086
VVA-30	VVA-30CHK	0.072	0.022	0.090
VVA-31	VVA-31CHK	0.035	0.002	0.005
VVA-32	VVA-32CHK	0.023	0.013	0.152
VVA-34	VVA-34CHK	0.077	0.111	0.035
VVA-35	VVA-35CHK	0.003	0.016	0.128
VVA-37	VVA-37CHK	0.042	0.012	0.077
VVA-38	VVA-38CHK	0.015	0.041	0.049
VVA-39	VVA-39CHK	0.014	0.007	0.110
VVA-40	VVA-40CHK	0.082	0.023	0.114
VVA-41	VVA-41CHK	0.045	0.114	0.021
VVA-42	VVA-42CHK	0.014	0.056	0.004
VVA-43	VVA-43CHK	0.048	0.056	0.048

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 87 of 122

VVA-44	VVA-44CHK	0.012	0.050	0.015
VVA-45	VVA-45CHK	0.034	0.019	0.143
VVA-46	VVA-46CHK	0.049	0.008	0.059
VVA-47	VVA-47CHK	0.096	0.109	0.123
VVA-48	VVA-48CHK	0.060	0.071	0.043
VVA-49	VVA-49CHK	0.016	0.014	0.018
VVA-51	VVA-51CHK	0.049	0.091	0.133
VVA-54	VVA-54CHK	0.034	0.048	0.094
VVA-55	VVA-55CHK	0.072	0.052	0.128
VVA-56	VVA-56CHK	0.109	0.019	0.025
VVA-57	VVA-57CHK	0.020	0.015	0.020
VVA-58	VVA-58CHK	0.015	0.149	0.022

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 88 of 122

Appendix C: Complete List of Delivered Tiles

LID2015_060460_E_D	LID2015_061063_E_B	LID2015_061661_E_B	LID2015_062258_E_B
LID2015_060461_E_C	LID2015_061063_E_C	LID2015_061661_E_C	LID2015_062258_E_D
LID2015_060462_E_D	LID2015_061063_E_D	LID2015_061661_E_D	LID2015_062259_E_A
LID2015_060757_E_C	LID2015_061357_E_B	LID2015_061662_E_A	LID2015_062259_E_B
LID2015_060757_E_D	LID2015_061357_E_D	LID2015_061662_E_B	LID2015_062259_E_C
LID2015_060758_E_C	LID2015_061358_E_A	LID2015_061662_E_C	LID2015_062259_E_D
LID2015_060758_E_D	LID2015_061358_E_B	LID2015_061662_E_D	LID2015_062260_E_A
LID2015_060759_E_A	LID2015_061358_E_C	LID2015_061663_E_A	LID2015_062260_E_B
LID2015_060759_E_B	LID2015_061358_E_D	LID2015_061663_E_B	LID2015_062260_E_C
LID2015_060759_E_C	LID2015_061359_E_A	LID2015_061663_E_C	LID2015_062260_E_D
LID2015_060759_E_D	LID2015_061359_E_B	LID2015_061663_E_D	LID2015_062261_E_A
LID2015_060760_E_A	LID2015_061359_E_C	LID2015_061664_E_A	LID2015_062261_E_B
LID2015_060760_E_B	LID2015_061359_E_D	LID2015_061664_E_B	LID2015_062261_E_C
LID2015_060760_E_C	LID2015_061360_E_A	LID2015_061664_E_C	LID2015_062261_E_D
LID2015_060760_E_D	LID2015_061360_E_B	LID2015_061664_E_D	LID2015_062262_E_A
LID2015_060761_E_A	LID2015_061360_E_C	LID2015_061665_E_B	LID2015_062262_E_B
LID2015_060761_E_B	LID2015_061360_E_D	LID2015_061665_E_C	LID2015_062262_E_C
LID2015_060761_E_C	LID2015_061361_E_A	LID2015_061665_E_D	LID2015_062262_E_D
LID2015_060761_E_D	LID2015_061361_E_B	LID2015_061666_E_C	LID2015_062263_E_A
LID2015_060762_E_A	LID2015_061361_E_C	LID2015_061956_E_B	LID2015_062263_E_B
LID2015_060762_E_B	LID2015_061361_E_D	LID2015_061957_E_A	LID2015_062263_E_C
LID2015_060762_E_C	LID2015_061362_E_A	LID2015_061957_E_B	LID2015_062263_E_D
LID2015_060762_E_D	LID2015_061362_E_B	LID2015_061958_E_A	LID2015_062264_E_A
LID2015_060763_E_A	LID2015_061362_E_C	LID2015_061958_E_B	LID2015_062264_E_B
LID2015_060763_E_B	LID2015_061362_E_D	LID2015_061958_E_D	LID2015_062555_E_B
LID2015_060763_E_C	LID2015_061363_E_A	LID2015_061959_E_A	LID2015_062555_E_D
LID2015_060763_E_D	LID2015_061363_E_B	LID2015_061959_E_B	LID2015_062556_E_A
LID2015_061057_E_A	LID2015_061363_E_C	LID2015_061959_E_C	LID2015_062556_E_B
LID2015_061057_E_B	LID2015_061363_E_D	LID2015_061959_E_D	LID2015_062556_E_C
LID2015_061057_E_C	LID2015_061364_E_A	LID2015_061960_E_A	LID2015_062556_E_D
LID2015_061057_E_D	LID2015_061364_E_B	LID2015_061960_E_B	LID2015_062557_E_A
LID2015_061058_E_A	LID2015_061364_E_C	LID2015_061960_E_C	LID2015_062557_E_B
LID2015_061058_E_B	LID2015_061364_E_D	LID2015_061960_E_D	LID2015_062557_E_C
LID2015_061058_E_C	LID2015_061656_E_B	LID2015_061961_E_A	LID2015_062557_E_D
LID2015_061058_E_D	LID2015_061656_E_D	LID2015_061961_E_B	LID2015_062558_E_A
LID2015_061059_E_A	LID2015_061657_E_A	LID2015_061961_E_C	LID2015_062558_E_B
LID2015_061059_E_B	LID2015_061657_E_B	LID2015_061961_E_D	LID2015_062558_E_C
LID2015_061059_E_C	LID2015_061657_E_C	LID2015_061962_E_A	LID2015_062558_E_D
LID2015_061059_E_D	LID2015_061657_E_D	LID2015_061962_E_B	LID2015_062559_E_A
LID2015_061060_E_A	LID2015_061658_E_A	LID2015_061962_E_C	LID2015_062559_E_B
LID2015_061060_E_B	LID2015_061658_E_B	LID2015_061962_E_D	LID2015_062559_E_C
LID2015_061060_E_C	LID2015_061658_E_C	LID2015_061963_E_A	LID2015_062559_E_D
LID2015_061060_E_D	LID2015_061658_E_D	LID2015_061963_E_B	LID2015_062560_E_A
LID2015_061061_E_A	LID2015_061659_E_A	LID2015_061963_E_C	LID2015_062560_E_B
LID2015_061061_E_B	LID2015_061659_E_B	LID2015_061963_E_D	LID2015_062560_E_C
LID2015_061061_E_C	LID2015_061659_E_C	LID2015_061964_E_A	LID2015_062560_E_D
LID2015_061061_E_D	LID2015_061659_E_D	LID2015_061964_E_B	LID2015_062561_E_A
LID2015_061062_E_A	LID2015_061660_E_A	LID2015_061964_E_C	LID2015_062561_E_B
LID2015_061062_E_B	LID2015_061660_E_B	LID2015_061964_E_D	LID2015_062561_E_C
LID2015_061062_E_C	LID2015_061660_E_C	LID2015_061965_E_A	LID2015_062561_E_D
LID2015_061062_E_D	LID2015_061660_E_D	LID2015_061965_E_B	LID2015_062562_E_A
LID2015_061063_E_A	LID2015_061661_E_A	LID2015_061965_E_C	LID2015_062562_E_B

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 89 of 122

0 2			
LID2015_062562_E_C	LID2015_062576_E_A	LID2015_062589_E_C	LID2015_062603_E_A
LID2015_062562_E_D	LID2015_062576_E_B	LID2015_062589_E_D	LID2015_062603_E_B
LID2015_062563_E_A	LID2015_062576_E_C	LID2015_062590_E_A	LID2015_062603_E_C
LID2015_062563_E_B	LID2015_062576_E_D	LID2015_062590_E_B	LID2015_062603_E_D
LID2015_062563_E_C	LID2015_062577_E_A	LID2015_062590_E_C	LID2015_062604_E_A
LID2015_062563_E_D	LID2015_062577_E_B	LID2015_062590_E_D	LID2015_062604_E_B
LID2015_062564_E_A	LID2015_062577_E_C	LID2015_062591_E_A	LID2015_062604_E_C
LID2015_062564_E_B	LID2015_062577_E_D	LID2015_062591_E_B	LID2015_062604_E_D
LID2015_062564_E_C	LID2015_062578_E_A	LID2015_062591_E_C	LID2015_062605_E_A
LID2015_062564_E_D	LID2015_062578_E_B	LID2015_062591_E_D	LID2015_062605_E_B
LID2015_062565_E_A	LID2015_062578_E_C	LID2015_062592_E_A	LID2015_062605_E_C
LID2015_062565_E_B	LID2015_062578_E_D	LID2015_062592_E_B	LID2015_062605_E_D
LID2015_062565_E_C	LID2015_062579_E_A	LID2015_062592_E_C	LID2015_062606_E_A
LID2015_062565_E_D	LID2015_062579_E_B	LID2015_062592_E_D	LID2015_062606_E_B
LID2015_062566_E_A	LID2015_062579_E_C	LID2015_062593_E_A	LID2015_062606_E_C
LID2015_062566_E_B	LID2015_062579_E_D	LID2015_062593_E_B	LID2015_062606_E_D
LID2015_062566_E_C	LID2015_062580_E_A	LID2015_062593_E_C	LID2015_062607_E_A
LID2015_062566_E_D	LID2015_062580_E_B	LID2015_062593_E_D	LID2015_062607_E_C
LID2015_062567_E_A	LID2015_062580_E_C	LID2015_062594_E_A	LID2015_062855_E_B
LID2015_062567_E_B	LID2015_062580_E_D	LID2015_062594_E_B	LID2015_062855_E_D
LID2015_062567_E_C	LID2015_062581_E_A	LID2015_062594_E_C	LID2015_062856_E_A
LID2015_062567_E_D	LID2015_062581_E_B	LID2015_062594_E_D	LID2015_062856_E_B
LID2015_062568_E_A	LID2015_062581_E_C	LID2015_062595_E_A	LID2015_062856_E_C
LID2015_062568_E_B	LID2015_062581_E_D	LID2015_062595_E_B	LID2015_062856_E_D
LID2015_062568_E_C	LID2015_062582_E_A	LID2015_062595_E_C	LID2015_062857_E_A
LID2015_062568_E_D	LID2015_062582_E_B	LID2015_062595_E_D	LID2015_062857_E_B
LID2015_062569_E_A	LID2015_062582_E_C	LID2015_062596_E_A	LID2015_062857_E_C
LID2015_062569_E_B	LID2015_062582_E_D	LID2015_062596_E_B	LID2015_062857_E_D
LID2015_062569_E_C	LID2015_062583_E_A	LID2015_062596_E_C	LID2015_062858_E_A
LID2015_062569_E_D	LID2015_062583_E_B	LID2015_062596_E_D	LID2015_062858_E_B
LID2015_062570_E_A	LID2015_062583_E_C	LID2015_062597_E_A	LID2015_062858_E_C
LID2015_062570_E_B	LID2015_062583_E_D	LID2015_062597_E_B	LID2015_062858_E_D
LID2015_062570_E_C	LID2015_062584_E_A	LID2015_062597_E_C	LID2015_062859_E_A
LID2015_062570_E_D	LID2015_062584_E_B	LID2015_062597_E_D	LID2015_062859_E_B
LID2015_062571_E_A	LID2015_062584_E_C	LID2015_062598_E_A	LID2015_062859_E_C
LID2015_062571_E_B	LID2015_062584_E_D	LID2015_062598_E_B	LID2015_062859_E_D
LID2015_062571_E_C	LID2015_062585_E_A	LID2015_062598_E_C	LID2015_062860_E_A
LID2015_062571_E_D	LID2015_062585_E_B	LID2015_062598_E_D	LID2015_062860_E_B
LID2015_062572_E_A	LID2015_062585_E_C	LID2015_062599_E_A	LID2015_062860_E_C
LID2015_062572_E_B	LID2015_062585_E_D	LID2015_062599_E_B	LID2015_062860_E_D
LID2015_062572_E_C	LID2015_062586_E_A	LID2015_062599_E_C	LID2015_062861_E_A
LID2015_062572_E_D	LID2015_062586_E_B	LID2015_062599_E_D	LID2015_062861_E_B
LID2015_062573_E_A	LID2015_062586_E_C	LID2015_062600_E_A	LID2015_062861_E_C
LID2015_062573_E_B	LID2015_062586_E_D	LID2015_062600_E_B	LID2015_062861_E_D
LID2015_062573_E_C	LID2015_062587_E_A	LID2015_062600_E_C	LID2015_062862_E_A
LID2015_062573_E_D	LID2015_062587_E_B	LID2015_062600_E_D	LID2015_062862_E_B
LID2015_062574_E_A	LID2015_062587_E_C	LID2015_062601_E_A	LID2015_062862_E_C
LID2015_062574_E_B	LID2015_062587_E_D	LID2015_062601_E_B	LID2015_062862_E_D
LID2015_062574_E_C	LID2015_062588_E_A	LID2015_062601_E_C	LID2015_062863_E_A
LID2015_062574_E_D	LID2015_062588_E_B	LID2015_062601_E_D	LID2015_062863_E_B
LID2015_062575_E_A	LID2015_062588_E_C	LID2015_062602_E_A	LID2015_062863_E_C
LID2015_062575_E_B	LID2015_062588_E_D	LID2015_062602_E_B	LID2015_062863_E_D
LID2015_062575_E_C	LID2015_062589_E_A	LID2015_062602_E_C	LID2015_062864_E_A
LIDOO15 OGO575 E D	IIDaar- ara-Oa E D	LIDOOLE OFOFOE E D	LID2015_062864_E_B
LID2015_062575_E_D	LID2015_062589_E_B	LID2015_062602_E_D	LID2015_002804_E_D

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 90 of 122

0 2			
LID2015_062864_E_C	LID2015_062878_E_A	LID2015_062891_E_C	LID2015_062905_E_A
LID2015_062864_E_D	LID2015_062878_E_B	LID2015_062891_E_D	LID2015_062905_E_B
LID2015_062865_E_A	LID2015_062878_E_C	LID2015_062892_E_A	LID2015_062905_E_C
LID2015_062865_E_B	LID2015_062878_E_D	LID2015_062892_E_B	LID2015_062905_E_D
LID2015_062865_E_C	LID2015 062879 E A	LID2015_062892_E_C	LID2015_062906_E_A
LID2015_062865_E_D	LID2015_062879_E_B	LID2015_062892_E_D	LID2015_062906_E_B
LID2015_062866_E_A	LID2015_062879_E_C	LID2015_062893_E_A	LID2015_062906_E_C
LID2015_062866_E_B	LID2015_062879_E_D	LID2015_062893_E_B	LID2015_062906_E_D
LID2015_062866_E_C	LID2015_062880_E_A	LID2015_062893_E_C	LID2015_062907_E_A
LID2015_062866_E_D	LID2015_062880_E_B	LID2015_062893_E_D	LID2015_062907_E_C
LID2015_062867_E_A	LID2015_062880_E_C	LID2015_062894_E_A	LID2015_063155_E_B
LID2015_062867_E_B	LID2015_062880_E_D	LID2015_062894_E_B	LID2015_063155_E_D
LID2015_062867_E_C	LID2015_062881_E_A	LID2015_062894_E_C	LID2015_063156_E_A
LID2015_062867_E_D	LID2015_062881_E_B	LID2015_062894_E_D	LID2015_063156_E_B
LID2015_062868_E_A	LID2015_062881_E_C	LID2015_062895_E_A	LID2015_063156_E_C
LID2015_062868_E_B	LID2015_062881_E_D	LID2015_062895_E_B	LID2015_063156_E_D
LID2015_062868_E_C	LID2015_062882_E_A	LID2015_062895_E_C	LID2015_063157_E_A
LID2015_062868_E_D	LID2015_062882_E_B	LID2015_062895_E_D	LID2015_063157_E_B
LID2015_062869_E_A	LID2015_062882_E_C	LID2015_062896_E_A	LID2015_063157_E_C
LID2015_062869_E_B	LID2015_062882_E_D	LID2015_062896_E_B	LID2015_063157_E_D
LID2015_062869_E_C	LID2015_062883_E_A	LID2015_062896_E_C	LID2015_063158_E_A
LID2015_062869_E_D	LID2015_062883_E_B	LID2015_062896_E_D	LID2015_063158_E_B
LID2015_062870_E_A	LID2015_062883_E_C	LID2015_062897_E_A	LID2015_063158_E_C
LID2015_062870_E_B	LID2015_062883_E_D	LID2015_062897_E_B	LID2015_063158_E_D
LID2015_062870_E_C	LID2015_062884_E_A	LID2015_062897_E_C	LID2015_063159_E_A
LID2015_062870_E_D	LID2015_062884_E_B	LID2015_062897_E_D	LID2015_063159_E_B
LID2015_062871_E_A	LID2015_062884_E_C	LID2015_062898_E_A	LID2015_063159_E_C
LID2015_062871_E_B	LID2015_062884_E_D	LID2015_062898_E_B	LID2015_063159_E_D
LID2015_062871_E_C	LID2015_062885_E_A	LID2015_062898_E_C	LID2015_063160_E_A
LID2015_062871_E_D	LID2015_062885_E_B	LID2015_062898_E_D	LID2015_063160_E_B
LID2015_062872_E_A	LID2015_062885_E_C	LID2015_062899_E_A	LID2015_063160_E_C
LID2015_062872_E_B	LID2015_062885_E_D	LID2015_062899_E_B	LID2015_063160_E_D
LID2015_062872_E_C	LID2015_062886_E_A	LID2015_062899_E_C	LID2015_063161_E_A
LID2015_062872_E_D	LID2015_062886_E_B	LID2015_062899_E_D	LID2015_063161_E_B
LID2015_062873_E_A	LID2015_062886_E_C	LID2015_062900_E_A	LID2015_063161_E_C
LID2015_062873_E_B	LID2015_062886_E_D	LID2015_062900_E_B	LID2015_063161_E_D
LID2015_062873_E_C	LID2015_062887_E_A	LID2015_062900_E_C	LID2015_063162_E_A
LID2015_062873_E_D	LID2015_062887_E_B	LID2015_062900_E_D	LID2015_063162_E_B
LID2015_062874_E_A	LID2015_062887_E_C	LID2015_062901_E_A	LID2015_063162_E_C
LID2015_062874_E_B	LID2015_062887_E_D	LID2015_062901_E_B	LID2015_063162_E_D
LID2015_062874_E_C	LID2015_062888_E_A	LID2015_062901_E_C	LID2015_063163_E_A
LID2015_062874_E_D	LID2015_062888_E_B	LID2015_062901_E_D	LID2015_063163_E_B
LID2015_062875_E_A	LID2015_062888_E_C	LID2015_062902_E_A	LID2015_063163_E_C
LID2015_062875_E_B	LID2015_062888_E_D	LID2015_062902_E_B	LID2015_063163_E_D
LID2015_062875_E_C	LID2015_062889_E_A	LID2015_062902_E_C	LID2015_063164_E_A
LID2015_062875_E_D	LID2015_062889_E_B	LID2015_062902_E_D	LID2015_063164_E_B
LID2015_062876_E_A	LID2015_062889_E_C	LID2015_062903_E_A	LID2015_063164_E_C
LID2015_062876_E_B	LID2015_062889_E_D	LID2015_062903_E_B	LID2015_063164_E_D
LID2015_062876_E_C	LID2015_062890_E_A	LID2015_062903_E_C	LID2015_063165_E_A
LID2015_062876_E_D	LID2015_062890_E_B	LID2015_062903_E_D	LID2015_063165_E_B
LID2015_062877_E_A	LID2015_062890_E_C	LID2015_062904_E_A	LID2015_063165_E_C
LID2015_062877_E_B	LID2015_062890_E_D	LID2015_062904_E_B	LID2015_063165_E_D
LID2015_062877_E_C	LID2015_062891_E_A	LID2015_062904_E_C	LID2015_063166_E_A
LID2015_062877_E_D	LID2015_062891_E_B	LID2015_062904_E_D	LID2015_063166_E_B

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 91 of 122

0 2			
LID2015_063166_E_C	LID2015_063180_E_A	LID2015_063193_E_C	LID2015_063207_E_A
LID2015_063166_E_D	LID2015_063180_E_B	LID2015_063193_E_D	LID2015_063207_E_C
LID2015_063167_E_A	LID2015_063180_E_C	LID2015_063194_E_A	LID2015_063455_E_B
LID2015_063167_E_B	LID2015_063180_E_D	LID2015_063194_E_B	LID2015_063455_E_D
LID2015_063167_E_C	LID2015_063181_E_A	LID2015_063194_E_C	LID2015_063456_E_A
LID2015_063167_E_D	LID2015_063181_E_B	LID2015_063194_E_D	LID2015_063456_E_B
LID2015_063168_E_A	LID2015_063181_E_C	LID2015_063195_E_A	LID2015_063456_E_C
LID2015_063168_E_B	LID2015_063181_E_D	LID2015_063195_E_B	LID2015_063456_E_D
LID2015_063168_E_C	LID2015_063182_E_A	LID2015_063195_E_C	LID2015_063457_E_A
LID2015_063168_E_D	LID2015_063182_E_B	LID2015_063195_E_D	LID2015_063457_E_B
LID2015_063169_E_A	LID2015_063182_E_C	LID2015_063196_E_A	LID2015_063457_E_C
LID2015_063169_E_B	LID2015_063182_E_D	LID2015_063196_E_B	LID2015_063457_E_D
LID2015_063169_E_C	LID2015_063183_E_A	LID2015_063196_E_C	LID2015_063458_E_A
LID2015_063169_E_D	LID2015_063183_E_B	LID2015_063196_E_D	LID2015_063458_E_B
LID2015_063170_E_A	LID2015_063183_E_C	LID2015_063197_E_A	LID2015_063458_E_C
LID2015_063170_E_B	LID2015_063183_E_D	LID2015_063197_E_B	LID2015_063458_E_D
LID2015_063170_E_C	LID2015_063184_E_A	LID2015_063197_E_C	LID2015_063459_E_A
LID2015_063170_E_D	LID2015_063184_E_B	LID2015_063197_E_D	LID2015_063459_E_B
LID2015_063171_E_A	LID2015_063184_E_C	LID2015_063198_E_A	LID2015_063459_E_C
LID2015_063171_E_B	LID2015_063184_E_D	LID2015_063198_E_B	LID2015_063459_E_D
LID2015_063171_E_C	LID2015_063185_E_A	LID2015_063198_E_C	LID2015_063460_E_A
LID2015_063171_E_D	LID2015_063185_E_B	LID2015_063198_E_D	LID2015_063460_E_B
LID2015_063172_E_A	LID2015_063185_E_C	LID2015_063199_E_A	LID2015_063460_E_C
LID2015_063172_E_B	LID2015_063185_E_D	LID2015_063199_E_B	LID2015_063460_E_D
LID2015_063172_E_C	LID2015_063186_E_A	LID2015_063199_E_C	LID2015_063461_E_A
LID2015_063172_E_D	LID2015_063186_E_B	LID2015_063199_E_D	LID2015_063461_E_B
LID2015_063173_E_A	LID2015_063186_E_C	LID2015_063200_E_A	LID2015_063461_E_C
LID2015_063173_E_B	LID2015_063186_E_D	LID2015_063200_E_B	LID2015_063461_E_D
LID2015_063173_E_C	LID2015_063187_E_A	LID2015_063200_E_C	LID2015_063462_E_A
LID2015_063173_E_D	LID2015_063187_E_B	LID2015_063200_E_D	LID2015_063462_E_B
LID2015_063174_E_A	LID2015_063187_E_C	LID2015_063201_E_A	LID2015_063462_E_C
LID2015_063174_E_B	LID2015_063187_E_D	LID2015_063201_E_B	LID2015_063462_E_D
LID2015_063174_E_C	LID2015_063188_E_A	LID2015_063201_E_C	LID2015_063463_E_A
LID2015_063174_E_D	LID2015_063188_E_B	LID2015_063201_E_D	LID2015_063463_E_B
LID2015_063175_E_A	LID2015_063188_E_C	LID2015_063202_E_A	LID2015_063463_E_C
LID2015_063175_E_B	LID2015_063188_E_D	LID2015_063202_E_B	LID2015_063463_E_D
LID2015_063175_E_C	LID2015_063189_E_A	LID2015_063202_E_C	LID2015_063464_E_A
LID2015_063175_E_D	LID2015_063189_E_B	LID2015_063202_E_D	LID2015_063464_E_B
LID2015_063176_E_A	LID2015_063189_E_C	LID2015_063203_E_A	LID2015_063464_E_C
LID2015_063176_E_B	LID2015_063189_E_D	LID2015_063203_E_B	LID2015_063464_E_D
LID2015_063176_E_C	LID2015_063190_E_A	LID2015_063203_E_C	LID2015_063465_E_A
LID2015_063176_E_D	LID2015_063190_E_B	LID2015_063203_E_D	LID2015_063465_E_B
LID2015_063177_E_A	LID2015_063190_E_C	LID2015_063204_E_A	LID2015_063465_E_C
LID2015_063177_E_B	LID2015_063190_E_D	LID2015_063204_E_B	LID2015_063465_E_D
LID2015_063177_E_C	LID2015_063191_E_A	LID2015_063204_E_C	LID2015_063466_E_A
LID2015_063177_E_D	LID2015_063191_E_B	LID2015_063204_E_D	LID2015_063466_E_B
LID2015_063178_E_A	LID2015_063191_E_C	LID2015_063205_E_A	LID2015_063466_E_C
LID2015_063178_E_B	LID2015_063191_E_D	LID2015_063205_E_B	LID2015_063466_E_D
LID2015_063178_E_C	LID2015_063192_E_A	LID2015_063205_E_C	LID2015_063467_E_A
LID2015_063178_E_D	LID2015_063192_E_B	LID2015_063205_E_D LID2015_063206_E_A	LID2015_063467_E_B
LID2015_063179_E_A	LID2015_063192_E_C		LID2015_063467_E_C
LID2015_063179_E_B LID2015_063179_E_C	LID2015_063192_E_D LID2015_063193_E_A	LID2015_063206_E_B LID2015_063206_E_C	LID2015_063467_E_D LID2015_063468_E_A
LID2015_063179_E_C LID2015_063179_E_D	LID2015_063193_E_A LID2015_063193_E_B	LID2015_063206_E_C LID2015_063206_E_D	LID2015_063468_E_B
LID2013_0031/9_E_D	EID2013_003193_E_D	LID2013_003200_E_D	LID2013_003400_E_D

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 92 of 122

0 2			
LID2015_063468_E_C	LID2015_063482_E_A	LID2015_063495_E_C	LID2015_063757_E_A
LID2015_063468_E_D	LID2015_063482_E_B	LID2015_063495_E_D	LID2015_063757_E_B
LID2015_063469_E_A	LID2015_063482_E_C	LID2015_063496_E_A	LID2015_063757_E_C
LID2015_063469_E_B	LID2015_063482_E_D	LID2015_063496_E_B	LID2015_063757_E_D
LID2015_063469_E_C	LID2015_063483_E_A	LID2015_063496_E_C	LID2015_063758_E_A
LID2015_063469_E_D	LID2015_063483_E_B	LID2015_063496_E_D	LID2015_063758_E_B
LID2015_063470_E_A	LID2015_063483_E_C	LID2015_063497_E_A	LID2015_063758_E_C
LID2015_063470_E_B	LID2015_063483_E_D	LID2015_063497_E_B	LID2015_063758_E_D
LID2015_063470_E_C	LID2015_063484_E_A	LID2015_063497_E_C	LID2015_063759_E_A
LID2015_063470_E_D	LID2015_063484_E_B	LID2015_063497_E_D	LID2015_063759_E_B
LID2015_063471_E_A	LID2015_063484_E_C	LID2015_063498_E_A	LID2015_063759_E_C
LID2015_063471_E_B	LID2015_063484_E_D	LID2015_063498_E_B	LID2015_063759_E_D
LID2015_063471_E_C	LID2015_063485_E_A	LID2015_063498_E_C	LID2015_063760_E_A
LID2015_063471_E_D	LID2015_063485_E_B	LID2015_063498_E_D	LID2015_063760_E_B
LID2015_063472_E_A	LID2015_063485_E_C	LID2015_063499_E_A	LID2015_063760_E_C
LID2015_063472_E_B	LID2015_063485_E_D	LID2015_063499_E_B	LID2015_063760_E_D
LID2015_063472_E_C	LID2015_063486_E_A	LID2015_063499_E_C	LID2015_063761_E_A
LID2015_063472_E_D	LID2015_063486_E_B	LID2015_063499_E_D	LID2015_063761_E_B
LID2015_063473_E_A	LID2015_063486_E_C	LID2015_063500_E_A	LID2015_063761_E_C
LID2015_063473_E_B	LID2015_063486_E_D	LID2015_063500_E_B	LID2015_063761_E_D
LID2015_063473_E_C	LID2015_063487_E_A	LID2015_063500_E_C	LID2015_063762_E_A
LID2015_063473_E_D	LID2015_063487_E_B	LID2015_063500_E_D	LID2015_063762_E_B
LID2015_063474_E_A	LID2015_063487_E_C	LID2015_063501_E_A	LID2015_063762_E_C
LID2015_063474_E_B	LID2015_063487_E_D	LID2015_063501_E_B	LID2015_063762_E_D
LID2015_063474_E_C	LID2015_063488_E_A	LID2015_063501_E_C	LID2015_063763_E_A
LID2015_063474_E_D	LID2015_063488_E_B	LID2015_063501_E_D	LID2015_063763_E_B
LID2015_063475_E_A	LID2015_063488_E_C	LID2015_063502_E_A	LID2015_063763_E_C
LID2015_063475_E_B	LID2015_063488_E_D	LID2015_063502_E_B	LID2015_063763_E_D
LID2015_063475_E_C	LID2015_063489_E_A	LID2015_063502_E_C	LID2015_063764_E_A
LID2015_063475_E_D	LID2015_063489_E_B	LID2015_063502_E_D	LID2015_063764_E_B
LID2015_063476_E_A	LID2015_063489_E_C	LID2015_063503_E_A	LID2015_063764_E_C
LID2015_063476_E_B	LID2015_063489_E_D	LID2015_063503_E_B	LID2015_063764_E_D
LID2015_063476_E_C	LID2015_063490_E_A	LID2015_063503_E_C	LID2015_063765_E_A
LID2015_063476_E_D	LID2015_063490_E_B	LID2015_063503_E_D	LID2015_063765_E_B
LID2015_063477_E_A	LID2015_063490_E_C	LID2015_063504_E_A	LID2015_063765_E_C
LID2015_063477_E_B	LID2015_063490_E_D	LID2015_063504_E_B	LID2015_063765_E_D
LID2015_063477_E_C	LID2015_063491_E_A	LID2015_063504_E_C	LID2015_063766_E_A
LID2015_063477_E_D	LID2015_063491_E_B	LID2015_063504_E_D	LID2015_063766_E_B
LID2015_063478_E_A	LID2015_063491_E_C	LID2015_063505_E_A	LID2015_063766_E_C
LID2015_063478_E_B	LID2015_063491_E_D	LID2015_063505_E_B	LID2015_063766_E_D
LID2015_063478_E_C	LID2015_063492_E_A	LID2015_063505_E_C	LID2015_063767_E_A
LID2015_063478_E_D	LID2015_063492_E_B	LID2015_063505_E_D	LID2015_063767_E_B
LID2015_063479_E_A	LID2015_063492_E_C	LID2015_063506_E_A	LID2015_063767_E_C
LID2015_063479_E_B	LID2015_063492_E_D	LID2015_063506_E_B	LID2015_063767_E_D
LID2015_063479_E_C	LID2015_063493_E_A	LID2015_063506_E_C	LID2015_063768_E_A
LID2015_063479_E_D	LID2015_063493_E_B	LID2015_063506_E_D	LID2015_063768_E_B
LID2015_063480_E_A	LID2015_063493_E_C	LID2015_063507_E_A	LID2015_063768_E_C
LID2015_063480_E_B	LID2015_063493_E_D	LID2015_063507_E_C	LID2015_063768_E_D
LID2015_063480_E_C	LID2015_063494_E_A	LID2015_063755_E_B	LID2015_063769_E_A
LID2015_063480_E_D	LID2015_063494_E_B	LID2015_063755_E_D	LID2015_063769_E_B
LID2015_063481_E_A	LID2015_063494_E_C	LID2015_063756_E_A	LID2015_063769_E_C
LID2015_063481_E_B	LID2015_063494_E_D	LID2015_063756_E_B	LID2015_063769_E_D
LID2015_063481_E_C	LID2015_063495_E_A	LID2015_063756_E_C	LID2015_063770_E_A
LID2015_063481_E_D	LID2015_063495_E_B	LID2015_063756_E_D	LID2015_063770_E_B

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 93 of 122

5 70			
LID2015_063770_E_C	LID2015_063784_E_A	LID2015_063797_E_C	LID2015_064059_E_A
LID2015_063770_E_D	LID2015_063784_E_B	LID2015_063797_E_D	LID2015_064059_E_B
LID2015_063771_E_A	LID2015_063784_E_C	LID2015_063798_E_A	LID2015_064059_E_C
LID2015_063771_E_B	LID2015_063784_E_D	LID2015_063798_E_B	LID2015_064059_E_D
LID2015_063771_E_C	LID2015_063785_E_A	LID2015_063798_E_C	LID2015_064060_E_A
LID2015_063771_E_D	LID2015_063785_E_B	LID2015_063798_E_D	LID2015_064060_E_B
LID2015_063772_E_A	LID2015_063785_E_C	LID2015_063799_E_A	LID2015_064060_E_C
LID2015_063772_E_B	LID2015_063785_E_D	LID2015_063799_E_B	LID2015_064060_E_D
LID2015_063772_E_C	LID2015_063786_E_A	LID2015_063799_E_C	LID2015_064061_E_A
LID2015_063772_E_D	LID2015_063786_E_B	LID2015_063799_E_D	LID2015_064061_E_B
LID2015_063773_E_A	LID2015_063786_E_C	LID2015_063800_E_A	LID2015_064061_E_C
LID2015_063773_E_B	LID2015_063786_E_D	LID2015_063800_E_B	LID2015_064061_E_D
LID2015_063773_E_C	LID2015_063787_E_A	LID2015_063800_E_C	LID2015_064062_E_A
LID2015_063773_E_D	LID2015_063787_E_B	LID2015_063800_E_D	LID2015_064062_E_B
LID2015_063774_E_A	LID2015_063787_E_C	LID2015_063801_E_A	LID2015_064062_E_C
LID2015_063774_E_B	LID2015_063787_E_D	LID2015_063801_E_B	LID2015_064062_E_D
LID2015_063774_E_C	LID2015_063788_E_A	LID2015_063801_E_C	LID2015_064063_E_A
LID2015_063774_E_D	LID2015_063788_E_B	LID2015_063801_E_D	LID2015_064063_E_B
LID2015_063775_E_A	LID2015_063788_E_C	LID2015_063802_E_A	LID2015_064063_E_C
LID2015_063775_E_B	LID2015_063788_E_D	LID2015_063802_E_B	LID2015_064063_E_D
LID2015_063775_E_C	LID2015_063789_E_A	LID2015_063802_E_C	LID2015_064064_E_A
LID2015_063775_E_D	LID2015_063789_E_B	LID2015_063802_E_D	LID2015_064064_E_B
LID2015_063776_E_A	LID2015_063789_E_C	LID2015_063803_E_A	LID2015_064064_E_C
LID2015_063776_E_B	LID2015_063789_E_D	LID2015_063803_E_B	LID2015_064064_E_D
LID2015_063776_E_C	LID2015_063790_E_A	LID2015_063803_E_C	LID2015_064065_E_A
LID2015_063776_E_D	LID2015_063790_E_B	LID2015_063803_E_D	LID2015_064065_E_B
LID2015_063777_E_A	LID2015_063790_E_C	LID2015_063804_E_A	LID2015_064065_E_C
LID2015_063777_E_B	LID2015_063790_E_D	LID2015_063804_E_B	LID2015_064065_E_D
LID2015_063777_E_C	LID2015_063791_E_A	LID2015_063804_E_C	LID2015_064066_E_A
LID2015_063777_E_D	LID2015_063791_E_B	LID2015_063804_E_D	LID2015_064066_E_B
LID2015_063778_E_A	LID2015_063791_E_C	LID2015_063805_E_A	LID2015_064066_E_C
LID2015_063778_E_B	LID2015_063791_E_D	LID2015_063805_E_B	LID2015_064066_E_D
LID2015_063778_E_C	LID2015_063792_E_A	LID2015_063805_E_C	LID2015_064067_E_A
LID2015_063778_E_D	LID2015_063792_E_B	LID2015_063805_E_D	LID2015_064067_E_B
LID2015_063779_E_A	LID2015_063792_E_C	LID2015_063806_E_A	LID2015_064067_E_C
LID2015_063779_E_B	LID2015_063792_E_D	LID2015_063806_E_B	LID2015_064067_E_D
LID2015_063779_E_C	LID2015_063793_E_A	LID2015_063806_E_C	LID2015_064068_E_A
LID2015_063779_E_D	LID2015_063793_E_B	LID2015_063806_E_D	LID2015_064068_E_B
LID2015_063780_E_A	LID2015_063793_E_C	LID2015_063807_E_A	LID2015_064068_E_C
LID2015_063780_E_B	LID2015_063793_E_D	LID2015_063807_E_C	LID2015_064068_E_D
LID2015_063780_E_C	LID2015_063794_E_A	LID2015_064055_E_B	LID2015_064069_E_A
LID2015_063780_E_D	LID2015_063794_E_B	LID2015_064055_E_D	LID2015_064069_E_B
LID2015_063781_E_A	LID2015_063794_E_C	LID2015_064056_E_A	LID2015_064069_E_C
LID2015_063781_E_B LID2015_063781_E_C	LID2015_063794_E_D	LID2015_064056_E_B	LID2015_064069_E_D
	LID2015_063795_E_A	LID2015_064056_E_C LID2015_064056_E_D	LID2015_064070_E_A
LID2015_063781_E_D	LID2015_063795_E_B		LID2015_064070_E_B LID2015_064070_E_C
LID2015_063782_E_A	LID2015_063795_E_C	LID2015_064057_E_A	
LID2015_063782_E_B LID2015_063782_E_C	LID2015_063795_E_D LID2015_063796_E_A	LID2015_064057_E_B LID2015_064057_E_C	LID2015_064070_E_D LID2015_064071_E_A
LID2015_063782_E_C LID2015_063782_E_D	LID2015_063796_E_B	LID2015_064057_E_D	LID2015_064071_E_A LID2015_064071_E_B
LID2015_063783_E_A	LID2015_063796_E_C	LID2015_064057_E_D	LID2015_064071_E_B LID2015_064071_E_C
LID2015_063783_E_A	LID2015_003/90_E_C LID2015_063796_E_D	LID2015_064058_E_B	LID2015_004071_E_C LID2015_064071_E_D
LID2015_063783_E_C	LID2015_003/90_E_D LID2015_063797_E_A	LID2015_064058_E_C	LID2015_064071_E_D LID2015_064072_E_A
LID2015_063783_E_D	LID2015_063797_E_B	LID2015_064058_E_D	LID2015_004072_E_A LID2015_064072_E_B
003/03_E_D	003/9/_E_D	<u></u>	<u></u> 0040/2D

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 94 of 122

0 71			
LID2015_064072_E_C	LID2015_064086_E_A	LID2015 064099 E C	LID2015_064361_E_A
LID2015_064072_E_D	LID2015_064086_E_B	LID2015_064099_E_D	LID2015_064361_E_B
LID2015_064073_E_A	LID2015_064086_E_C	LID2015_064100_E_A	LID2015_064361_E_C
LID2015_064073_E_B	LID2015_064086_E_D	LID2015_064100_E_B	LID2015_064361_E_D
LID2015_064073_E_C	LID2015_064087_E_A	LID2015_064100_E_C	LID2015_064362_E_A
LID2015_064073_E_D	LID2015_064087_E_B	LID2015_064100_E_D	LID2015_064362_E_B
LID2015_064074_E_A	LID2015_064087_E_C	LID2015_064101_E_A	LID2015_064362_E_C
LID2015_064074_E_B	LID2015_064087_E_D	LID2015_064101_E_B	LID2015_064362_E_D
LID2015_064074_E_C	LID2015_064088_E_A	LID2015_064101_E_C	LID2015_064363_E_A
LID2015_064074_E_D	LID2015_064088_E_B	LID2015_064101_E_D	LID2015_064363_E_B
LID2015_064075_E_A	LID2015_064088_E_C	LID2015_064102_E_A	LID2015_064363_E_C
LID2015_064075_E_B	LID2015_064088_E_D	LID2015_064102_E_B	LID2015_064363_E_D
LID2015_064075_E_C	LID2015_064089_E_A	LID2015_064102_E_C	LID2015_064364_E_A
LID2015_064075_E_D	LID2015_064089_E_B	LID2015_064102_E_D	LID2015_064364_E_B
LID2015_064076_E_A	LID2015_064089_E_C	LID2015_064103_E_A	LID2015_064364_E_C
LID2015_064076_E_B	LID2015_064089_E_D	LID2015_064103_E_B	LID2015_064364_E_D
LID2015_064076_E_C	LID2015_064090_E_A	LID2015_064103_E_C	LID2015_064365_E_A
LID2015_064076_E_D	LID2015_064090_E_B	LID2015_064103_E_D	LID2015_064365_E_B
LID2015_064077_E_A	LID2015_064090_E_C	LID2015_064104_E_A	LID2015_064365_E_C
LID2015_064077_E_B	LID2015_064090_E_D	LID2015_064104_E_B	LID2015_064365_E_D
LID2015_064077_E_C	LID2015_064091_E_A	LID2015_064104_E_C	LID2015_064366_E_A
LID2015_064077_E_D	LID2015_064091_E_B	LID2015_064104_E_D	LID2015_064366_E_B
LID2015_064078_E_A	LID2015_064091_E_C	LID2015_064105_E_A	LID2015_064366_E_C
LID2015_064078_E_B	LID2015_064091_E_D	LID2015_064105_E_B	LID2015_064366_E_D
LID2015_064078_E_C	LID2015_064092_E_A	LID2015_064105_E_C	LID2015_064367_E_A
LID2015_064078_E_D	LID2015_064092_E_B	LID2015_064105_E_D	LID2015_064367_E_B
LID2015_064079_E_A	LID2015_064092_E_C	LID2015_064106_E_A	LID2015_064367_E_C
LID2015_064079_E_B	LID2015_064092_E_D	LID2015_064106_E_B	LID2015_064367_E_D
LID2015_064079_E_C	LID2015_064093_E_A	LID2015_064106_E_C	LID2015_064368_E_A
LID2015_064079_E_D	LID2015_064093_E_B	LID2015_064106_E_D	LID2015_064368_E_B
LID2015_064080_E_A	LID2015_064093_E_C	LID2015_064107_E_A	LID2015_064368_E_C
LID2015_064080_E_B	LID2015_064093_E_D	LID2015_064107_E_C	LID2015_064368_E_D
LID2015_064080_E_C	LID2015_064094_E_A	LID2015_064355_E_B	LID2015_064369_E_A
LID2015_064080_E_D	LID2015_064094_E_B	LID2015_064355_E_D	LID2015_064369_E_B
LID2015_064081_E_A	LID2015_064094_E_C	LID2015_064356_E_A	LID2015_064369_E_C
LID2015_064081_E_B	LID2015_064094_E_D	LID2015_064356_E_B	LID2015_064369_E_D
LID2015_064081_E_C	LID2015_064095_E_A	LID2015_064356_E_C	LID2015_064370_E_A
LID2015_064081_E_D	LID2015_064095_E_B	LID2015_064356_E_D	LID2015_064370_E_B
LID2015_064082_E_A	LID2015_064095_E_C	LID2015_064357_E_A	LID2015_064370_E_C
LID2015_064082_E_B	LID2015_064095_E_D	LID2015_064357_E_B	LID2015_064370_E_D
LID2015_064082_E_C	LID2015_064096_E_A	LID2015_064357_E_C	LID2015_064371_E_A
LID2015_064082_E_D	LID2015_064096_E_B	LID2015_064357_E_D	LID2015_064371_E_B
LID2015_064083_E_A	LID2015_064096_E_C	LID2015_064358_E_A	LID2015_064371_E_C
LID2015_064083_E_B	LID2015_064096_E_D	LID2015_064358_E_B	LID2015_064371_E_D
LID2015_064083_E_C	LID2015_064097_E_A	LID2015_064358_E_C	LID2015_064372_E_A
LID2015_064083_E_D	LID2015_064097_E_B	LID2015_064358_E_D	LID2015_064372_E_B
LID2015_064084_E_A	LID2015_064097_E_C	LID2015_064359_E_A	LID2015_064372_E_C
LID2015_064084_E_B	LID2015_064097_E_D	LID2015_064359_E_B	LID2015_064372_E_D
LID2015_064084_E_C	LID2015_064098_E_A	LID2015_064359_E_C	LID2015_064373_E_A
LID2015_064084_E_D	LID2015_064098_E_B	LID2015_064359_E_D	LID2015_064373_E_B
LID2015_064085_E_A	LID2015_064098_E_C	LID2015_064360_E_A	LID2015_064373_E_C
LID2015_064085_E_B	LID2015_064098_E_D	LID2015_064360_E_B	LID2015_064373_E_D
LID2015_064085_E_C	LID2015_064099_E_A	LID2015_064360_E_C	LID2015_064374_E_A
LID2015_064085_E_D	LID2015_064099_E_B	LID2015_064360_E_D	LID2015_064374_E_B

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 95 of 122

LID2015_064374_E_C	LID2015_064388_E_A	LID2015_064401_E_C	LID2015_064670_E_A
LID2015_064374_E_D	LID2015_064388_E_B	LID2015_064401_E_D	LID2015_064670_E_B
LID2015_064375_E_A	LID2015_064388_E_C	LID2015_064402_E_A	LID2015_064670_E_C
LID2015_064375_E_B	LID2015_064388_E_D	LID2015_064402_E_B	LID2015_064670_E_D
LID2015_064375_E_C	LID2015_064389_E_A	LID2015_064402_E_C	LID2015_064671_E_A
LID2015_064375_E_D	LID2015_064389_E_B	LID2015_064402_E_D	LID2015_064671_E_B
LID2015_064376_E_A	LID2015_064389_E_C	LID2015_064403_E_A	LID2015_064671_E_C
LID2015_064376_E_B	LID2015_064389_E_D	LID2015_064403_E_B	LID2015_064671_E_D
LID2015_064376_E_C	LID2015_064390_E_A	LID2015_064403_E_C	LID2015_064672_E_A
LID2015_064376_E_D	LID2015_064390_E_B	LID2015_064403_E_D	LID2015_064672_E_B
LID2015_064377_E_A	LID2015_064390_E_C	LID2015_064404_E_A	LID2015_064672_E_C
LID2015_064377_E_B	LID2015_064390_E_D	LID2015_064404_E_B	LID2015_064672_E_D
LID2015_064377_E_C	LID2015_064391_E_A	LID2015_064404_E_C	LID2015_064673_E_A
LID2015_064377_E_D	LID2015_064391_E_B	LID2015_064404_E_D	LID2015_064673_E_B
LID2015_064378_E_A	LID2015_064391_E_C	LID2015_064405_E_A	LID2015_064673_E_C
LID2015_064378_E_B	LID2015_064391_E_D	LID2015_064405_E_B	LID2015_064673_E_D
LID2015_064378_E_C	LID2015_064392_E_A	LID2015_064405_E_C	LID2015_064674_E_A
LID2015_064378_E_D	LID2015_064392_E_B	LID2015_064405_E_D	LID2015_064674_E_B
LID2015_064379_E_A	LID2015_064392_E_C	LID2015_064406_E_A	LID2015_064674_E_C
LID2015_064379_E_B	LID2015_064392_E_D	LID2015_064406_E_B	LID2015_064674_E_D
LID2015_064379_E_C	LID2015_064393_E_A	LID2015_064406_E_C	LID2015_064675_E_A
LID2015_064379_E_D	LID2015_064393_E_B	LID2015_064406_E_C	LID2015_064675_E_B
LID2015_064380_E_A	LID2015_064393_E_C	LID2015_064407_E_A	LID2015_064675_E_C
LID2015_064380_E_B	LID2015_064393_E_D	LID2015_064407_E_C	LID2015_064675_E_D
LID2015_064380_E_C	LID2015_064393_E_D	LID2015_064662_E_B	LID2015_064676_E_A
			• • • • = =
LID2015_064380_E_D	LID2015_064394_E_B	LID2015_064662_E_D	LID2015_064676_E_B
LID2015_064381_E_A	LID2015_064394_E_C	LID2015_064663_E_A	LID2015_064676_E_C
LID2015_064381_E_B	LID2015_064394_E_D	LID2015_064663_E_B	LID2015_064676_E_D
LID2015_064381_E_C	LID2015_064395_E_A	LID2015_064663_E_C	LID2015_064677_E_A
LID2015_064381_E_D	LID2015_064395_E_B	LID2015_064663_E_D	LID2015_064677_E_B
LID2015_064382_E_A	LID2015_064395_E_C	LID2015_064664_E_A	LID2015_064677_E_C
LID2015_064382_E_B	LID2015_064395_E_D	LID2015_064664_E_B	LID2015_064677_E_D
LID2015_064382_E_C	LID2015_064396_E_A	LID2015_064664_E_C	LID2015_064678_E_A
LID2015_064382_E_D	LID2015_064396_E_B	LID2015_064664_E_D	LID2015_064678_E_B
LID2015_064383_E_A	LID2015_064396_E_C	LID2015_064665_E_A	LID2015_064678_E_C
LID2015_064383_E_B	LID2015_064396_E_D	LID2015_064665_E_B	LID2015_064678_E_D
LID2015_064383_E_C	LID2015_064397_E_A	LID2015_064665_E_C	LID2015_064679_E_A
LID2015_064383_E_D	LID2015_064397_E_B	LID2015_064665_E_D	LID2015_064679_E_B
LID2015_064384_E_A	LID2015_064397_E_C	LID2015_064666_E_A	LID2015_064679_E_C
LID2015_064384_E_B	LID2015_064397_E_D	LID2015_064666_E_B	LID2015_064679_E_D
LID2015_064384_E_C	LID2015_064398_E_A	LID2015_064666_E_C	LID2015_064680_E_A
LID2015_064384_E_D	LID2015_064398_E_B	LID2015_064666_E_D	LID2015_064680_E_B
LID2015_064385_E_A	LID2015_064398_E_C	LID2015_064667_E_A	LID2015_064680_E_C
LID2015_064385_E_B	LID2015_064398_E_D	LID2015_064667_E_B	LID2015_064680_E_D
LID2015_064385_E_C	LID2015_064399_E_A	LID2015_064667_E_C	LID2015_064681_E_A
LID2015_064385_E_D	LID2015_064399_E_B	LID2015_064667_E_D	LID2015_064681_E_B
LID2015_064386_E_A	LID2015_064399_E_C	LID2015_064668_E_A	LID2015_064681_E_C
LID2015_064386_E_B	LID2015_064399_E_D	LID2015_064668_E_B	LID2015_064681_E_D
LID2015_064386_E_C	LID2015_064400_E_A	LID2015_064668_E_C	LID2015_064682_E_A
LID2015_064386_E_D	LID2015_064400_E_B	LID2015_064668_E_D	LID2015_064682_E_B
LID2015_064387_E_A	LID2015_064400_E_C	LID2015_064669_E_A	LID2015_064682_E_C
LID2015_064387_E_B	LID2015_064400_E_D	LID2015_064669_E_B	LID2015_064682_E_D
LID2015_064387_E_C	LID2015_064401_E_A	LID2015_064669_E_C	LID2015_064683_E_A
LID2015_064387_E_D	LID2015_064401_E_B	LID2015_064669_E_D	LID2015_064683_E_B
	· · · —	—	

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 96 of 122

0 >			
LID2015_064683_E_C	LID2015_064697_E_A	LID2015_064966_E_A	LID2015_064979_E_C
LID2015_064683_E_D	LID2015_064697_E_B	LID2015_064966_E_B	LID2015_064979_E_D
LID2015_064684_E_A	LID2015_064697_E_C	LID2015_064966_E_C	LID2015_064980_E_A
LID2015_064684_E_B	LID2015_064697_E_D	LID2015_064966_E_D	LID2015_064980_E_B
LID2015_064684_E_C	LID2015_064698_E_A	LID2015_064967_E_A	LID2015_064980_E_C
LID2015_064684_E_D	LID2015_064698_E_B	LID2015_064967_E_B	LID2015_064980_E_D
LID2015_064685_E_A	LID2015_064698_E_C	LID2015_064967_E_C	LID2015_064981_E_A
LID2015_064685_E_B	LID2015_064698_E_D	LID2015_064967_E_D	LID2015_064981_E_B
LID2015_064685_E_C	LID2015_064699_E_A	LID2015_064968_E_A	LID2015_064981_E_C
LID2015_064685_E_D	LID2015_064699_E_B	LID2015_064968_E_B	LID2015_064981_E_D
LID2015_064686_E_A	LID2015_064699_E_C	LID2015_064968_E_C	LID2015_064982_E_A
LID2015_064686_E_B	LID2015_064699_E_D	LID2015_064968_E_D	LID2015_064982_E_B
LID2015_064686_E_C	LID2015_064700_E_A	LID2015_064969_E_A	LID2015_064982_E_C
LID2015_064686_E_D	LID2015_064700_E_B	LID2015_064969_E_B	LID2015_064982_E_D
LID2015_064687_E_A	LID2015_064700_E_C	LID2015_064969_E_C	LID2015_064983_E_A
LID2015_064687_E_B	LID2015_064700_E_D	LID2015_064969_E_D	LID2015_064983_E_B
LID2015_064687_E_C	LID2015_064701_E_A	LID2015_064970_E_A	LID2015_064983_E_C
LID2015_064687_E_D	LID2015_064701_E_B	LID2015_064970_E_B	LID2015_064983_E_D
LID2015_064688_E_A	LID2015_064701_E_C	LID2015_064970_E_C	LID2015_064984_E_A
LID2015_064688_E_B	LID2015_064701_E_D	LID2015_064970_E_D	LID2015_064984_E_B
LID2015_064688_E_C	LID2015_064702_E_A	LID2015_064971_E_A	LID2015_064984_E_C
LID2015_064688_E_D	LID2015_064702_E_B	LID2015_064971_E_B	LID2015_064984_E_D
LID2015_064689_E_A	LID2015_064702_E_C	LID2015_064971_E_C	LID2015_064985_E_A
LID2015_064689_E_B	LID2015_064702_E_D	LID2015_064971_E_D	LID2015_064985_E_B
LID2015_064689_E_C	LID2015_064703_E_A	LID2015_064972_E_A	LID2015_064985_E_C
LID2015_064689_E_D	LID2015_064703_E_B	LID2015_064972_E_B	LID2015_064985_E_D
LID2015_064690_E_A	LID2015_064703_E_C	LID2015_064972_E_C	LID2015_064986_E_A
LID2015_064690_E_B	LID2015_064703_E_D	LID2015_064972_E_D	LID2015_064986_E_B
LID2015_064690_E_C	LID2015_064704_E_A	LID2015_064973_E_A	LID2015_064986_E_C
LID2015_064690_E_D	LID2015_064704_E_B	LID2015_064973_E_B	LID2015_064986_E_D
LID2015_064691_E_A	LID2015_064704_E_C	LID2015_064973_E_C	LID2015_064987_E_A
LID2015_064691_E_B	LID2015_064704_E_D	LID2015_064973_E_D	LID2015_064987_E_B
LID2015_064691_E_C	LID2015_064705_E_A	LID2015_064974_E_A	LID2015_064987_E_C
LID2015_064691_E_D	LID2015_064705_E_B	LID2015_064974_E_B	LID2015_064987_E_D
LID2015_064692_E_A	LID2015_064705_E_C	LID2015_064974_E_C	LID2015_064988_E_A
LID2015_064692_E_B	LID2015_064705_E_D	LID2015_064974_E_D	LID2015_064988_E_B
LID2015_064692_E_C	LID2015_064706_E_A	LID2015_064975_E_A	LID2015_064988_E_C
LID2015_064692_E_D	LID2015_064706_E_B	LID2015_064975_E_B	LID2015_064988_E_D
LID2015_064693_E_A	LID2015_064706_E_C	LID2015_064975_E_C	LID2015_064989_E_A
LID2015_064693_E_B	LID2015_064706_E_D	LID2015_064975_E_D	LID2015_064989_E_B
LID2015_064693_E_C	LID2015_064707_E_A	LID2015_064976_E_A	LID2015_064989_E_C
LID2015_064693_E_D	LID2015_064707_E_C	LID2015_064976_E_B	LID2015_064989_E_D
LID2015_064694_E_A	LID2015_064963_E_A	LID2015_064976_E_C	LID2015_064990_E_A
LID2015_064694_E_B	LID2015_064963_E_B	LID2015_064976_E_D	LID2015_064990_E_B
LID2015_064694_E_C	LID2015_064963_E_C	LID2015_064977_E_A	LID2015_064990_E_C
LID2015_064694_E_D	LID2015_064963_E_D	LID2015_064977_E_B	LID2015_064990_E_D
LID2015_064695_E_A	LID2015_064964_E_A	LID2015_064977_E_C	LID2015_064991_E_A
LID2015_064695_E_B	LID2015_064964_E_B	LID2015_064977_E_D	LID2015_064991_E_B
LID2015_064695_E_C	LID2015_064964_E_C	LID2015_064978_E_A	LID2015_064991_E_C
LID2015_064695_E_D	LID2015_064964_E_D	LID2015_064978_E_B	LID2015_064991_E_D
LID2015_064696_E_A	LID2015_064965_E_A	LID2015_064978_E_C	LID2015_064992_E_A
LID2015_064696_E_B	LID2015_064965_E_B	LID2015_064978_E_D	LID2015_064992_E_B
LID2015_064696_E_C	LID2015_064965_E_C	LID2015_064979_E_A	LID2015_064992_E_C
LID2015_064696_E_D	LID2015_064965_E_D	LID2015_064979_E_B	LID2015_064992_E_D

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 97 of 122

LID2015_064993_E_A	LID2015_065006_E_C	LID2015_065276_E_A	LID2015_065289_E_C
LID2015_064993_E_B	LID2015_065006_E_D	LID2015_065276_E_B	LID2015_065289_E_D
LID2015_064993_E_C	LID2015_065007_E_A	LID2015_065276_E_C	LID2015_065290_E_A
LID2015_064993_E_D	LID2015_065007_E_C	LID2015_065276_E_D	LID2015_065290_E_B
LID2015_064994_E_A	LID2015_065263_E_B	LID2015_065277_E_A	LID2015_065290_E_C
LID2015_064994_E_B	LID2015_065263_E_D	LID2015_065277_E_B	LID2015_065290_E_D
LID2015_064994_E_C	LID2015_065264_E_A	LID2015_065277_E_C	LID2015_065291_E_A
LID2015_064994_E_D	LID2015_065264_E_B	LID2015_065277_E_D	LID2015_065291_E_B
		LID2015_065278_E_A	LID2015_005291_E_B LID2015_065291_E_C
LID2015_064995_E_A	LID2015_065264_E_C		LID2015_005291_E_C LID2015_065291_E_D
LID2015_064995_E_B	LID2015_065264_E_D	LID2015_065278_E_B	
LID2015_064995_E_C	LID2015_065265_E_A	LID2015_065278_E_C	LID2015_065292_E_A
LID2015_064995_E_D	LID2015_065265_E_B	LID2015_065278_E_D	LID2015_065292_E_B
LID2015_064996_E_A	LID2015_065265_E_C	LID2015_065279_E_A	LID2015_065292_E_C
LID2015_064996_E_B	LID2015_065265_E_D	LID2015_065279_E_B	LID2015_065292_E_D
LID2015_064996_E_C	LID2015_065266_E_A	LID2015_065279_E_C	LID2015_065293_E_A
LID2015_064996_E_D	LID2015_065266_E_B	LID2015_065279_E_D	LID2015_065293_E_B
LID2015_064997_E_A	LID2015_065266_E_C	LID2015_065280_E_A	LID2015_065293_E_C
LID2015_064997_E_B	LID2015_065266_E_D	LID2015_065280_E_B	LID2015_065293_E_D
LID2015_064997_E_C	LID2015_065267_E_A	LID2015_065280_E_C	LID2015_065294_E_A
LID2015_064997_E_D	LID2015_065267_E_B	LID2015_065280_E_D	LID2015_065294_E_B
LID2015_064998_E_A	LID2015_065267_E_C	LID2015_065281_E_A	LID2015_065294_E_C
LID2015_064998_E_B	LID2015_065267_E_D	LID2015 065281 E B	LID2015_065294_E_D
LID2015_064998_E_C	LID2015_065268_E_A	LID2015_065281_E_C	LID2015_065295_E_A
LID2015_064998_E_D	LID2015_065268_E_B	LID2015_065281_E_D	LID2015_065295_E_B
LID2015_064999_E_A	LID2015_065268_E_C	LID2015_065282_E_A	LID2015_065295_E_C
LID2015_064999_E_B	LID2015_065268_E_D	LID2015_065282_E_B	LID2015_065295_E_D
LID2015_064999_E_C	LID2015_065269_E_A	LID2015_065282_E_C	LID2015_065296_E_A
LID2015_064999_E_D	LID2015_065269_E_B	LID2015_065282_E_D	LID2015_065296_E_B
LID2015_065000_E_A	LID2015_065269_E_C	LID2015_065283_E_A	LID2015_065296_E_C
LID2015_065000_E_B	LID2015_065269_E_D	LID2015_065283_E_B	LID2015_065296_E_D
LID2015_065000_E_C	LID2015_065270_E_A	LID2015_065283_E_C	LID2015_065297_E_A
LID2015_065000_E_D	LID2015_065270_E_B	LID2015_065283_E_D	LID2015_065297_E_B
LID2015_065001_E_A	LID2015_065270_E_C	LID2015_065284_E_A	LID2015_065297_E_C
LID2015_065001_E_B	LID2015_065270_E_D	LID2015_065284_E_B	LID2015_065297_E_D
LID2015_065001_E_C	LID2015_065271_E_A	LID2015_065284_E_C	LID2015_065298_E_A
LID2015_065001_E_D	LID2015_065271_E_B	LID2015_065284_E_D	LID2015_065298_E_B
LID2015 065002 E A	LID2015_065271_E_C	LID2015_065285_E_A	LID2015_065298_E_C
LID2015_065002_E_B	LID2015_065271_E_D	LID2015_065285_E_B	LID2015_065298_E_D
LID2015_065002_E_C	LID2015_065272_E_A	LID2015_065285_E_C	LID2015_065299_E_A
LID2015_065002_E_D	LID2015_065272_E_B	LID2015_065285_E_D	LID2015_065299_E_B
LID2015_065003_E_A	LID2015_065272_E_C	LID2015_065286_E_A	LID2015_065299_E_C
LID2015_005003_E_B	LID2015_065272_E_C LID2015_065272_E_D	LID2015_065286_E_B	LID2015_065299_E_C LID2015_065299_E_D
		LID2015_005280_E_D	
LID2015_065003_E_C	LID2015_065273_E_A	<u> </u>	LID2015_065300_E_A
LID2015_065003_E_D	LID2015_065273_E_B	LID2015_065286_E_D	LID2015_065300_E_B
LID2015_065004_E_A	LID2015_065273_E_C	LID2015_065287_E_A	LID2015_065300_E_C
LID2015_065004_E_B	LID2015_065273_E_D	LID2015_065287_E_B	LID2015_065300_E_D
LID2015_065004_E_C	LID2015_065274_E_A	LID2015_065287_E_C	LID2015_065301_E_A
LID2015_065004_E_D	LID2015_065274_E_B	LID2015_065287_E_D	LID2015_065301_E_B
LID2015_065005_E_A	LID2015_065274_E_C	LID2015_065288_E_A	LID2015_065301_E_C
LID2015_065005_E_B	LID2015_065274_E_D	LID2015_065288_E_B	LID2015_065301_E_D
LID2015_065005_E_C	LID2015_065275_E_A	LID2015_065288_E_C	LID2015_065302_E_A
LID2015_065005_E_D	LID2015_065275_E_B	LID2015_065288_E_D	LID2015_065302_E_B
LID2015_065006_E_A	LID2015_065275_E_C	LID2015_065289_E_A	LID2015_065302_E_C
LID2015_065006_E_B	LID2015_065275_E_D	LID2015_065289_E_B	LID2015_065302_E_D
0	0_ 0 /0		

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 98 of 122

0 2			
LID2015_065303_E_A	LID2015_065573_E_A	LID2015_065586_E_C	LID2015_065600_E_A
LID2015_065303_E_B	LID2015_065573_E_B	LID2015_065586_E_D	LID2015_065600_E_B
LID2015_065303_E_C	LID2015_065573_E_C	LID2015_065587_E_A	LID2015_065600_E_C
LID2015_065303_E_D	LID2015_065573_E_D	LID2015_065587_E_B	LID2015_065600_E_D
LID2015_065304_E_A	LID2015_065574_E_A	LID2015_065587_E_C	LID2015_065601_E_A
LID2015_065304_E_B	LID2015_065574_E_B	LID2015_065587_E_D	LID2015_065601_E_B
LID2015_065304_E_C	LID2015_065574_E_C	LID2015_065588_E_A	LID2015_065601_E_C
LID2015_065304_E_D	LID2015_065574_E_D	LID2015_065588_E_B	LID2015_065601_E_D
LID2015_065305_E_A	LID2015_065575_E_A	LID2015_065588_E_C	LID2015_065602_E_A
LID2015_065305_E_B	LID2015_065575_E_B	LID2015_065588_E_D	LID2015_065602_E_B
LID2015_065305_E_C	LID2015_065575_E_C	LID2015_065589_E_A	LID2015_065602_E_C
LID2015_065305_E_D	LID2015_065575_E_D	LID2015_065589_E_B	LID2015_065602_E_D
LID2015_065306_E_A	LID2015_065576_E_A	LID2015_065589_E_C	LID2015_065603_E_A
LID2015_065306_E_B	LID2015_065576_E_B	LID2015_065589_E_D	LID2015_065603_E_B
LID2015_065306_E_C	LID2015_065576_E_C	LID2015_065590_E_A	LID2015_065603_E_C
LID2015_065306_E_D	LID2015_065576_E_D	LID2015_065590_E_B	LID2015_065603_E_D
LID2015_065307_E_A	LID2015_065577_E_A	LID2015_065590_E_C	LID2015_065604_E_A
LID2015_065307_E_C	LID2015_065577_E_B	LID2015_065590_E_D	LID2015_065604_E_B
LID2015_065564_E_A	LID2015_065577_E_C	LID2015_065591_E_A	LID2015_065604_E_C
LID2015_065564_E_B	LID2015_065577_E_D	LID2015_065591_E_B	LID2015_065604_E_D
LID2015_065564_E_C	LID2015_065578_E_A	LID2015_065591_E_C	LID2015_065605_E_A
LID2015_065564_E_D	LID2015_065578_E_B	LID2015_065591_E_D	LID2015_065605_E_B
LID2015_065565_E_A	LID2015_065578_E_C	LID2015_065592_E_A	LID2015_065605_E_C
LID2015_065565_E_B	LID2015_065578_E_D	LID2015_065592_E_B	LID2015_065605_E_D
LID2015_065565_E_C	LID2015_065579_E_A	LID2015_065592_E_C	LID2015_065606_E_A
LID2015_065565_E_D	LID2015_065579_E_B	LID2015_065592_E_D	LID2015_065606_E_B
LID2015_065566_E_A	LID2015_065579_E_C	LID2015_065593_E_A	LID2015_065606_E_C
LID2015_065566_E_B	LID2015_065579_E_D	LID2015_065593_E_B	LID2015_065606_E_D
LID2015_065566_E_C	LID2015_065580_E_A	LID2015_065593_E_C	LID2015_065607_E_A
LID2015_065566_E_D	LID2015_065580_E_B	LID2015_065593_E_D	LID2015_065607_E_C
LID2015_065567_E_A	LID2015_065580_E_C	LID2015_065594_E_A	LID2015_065864_E_A
LID2015_065567_E_B	LID2015_065580_E_D	LID2015_065594_E_B	LID2015_065864_E_B
LID2015_065567_E_C	LID2015_065581_E_A	LID2015_065594_E_C	LID2015_065864_E_C
LID2015_065567_E_D	LID2015_065581_E_B	LID2015_065594_E_D	LID2015_065864_E_D
LID2015_065568_E_A	LID2015_065581_E_C	LID2015_065595_E_A	LID2015_065865_E_A
LID2015_065568_E_B	LID2015_065581_E_D	LID2015_065595_E_B	LID2015_065865_E_B
LID2015_065568_E_C	LID2015_065582_E_A	LID2015_065595_E_C	LID2015_065865_E_C
LID2015_065568_E_D	LID2015_065582_E_B	LID2015_065595_E_D	LID2015_065865_E_D
LID2015_065569_E_A	LID2015_065582_E_C	LID2015_065596_E_A	LID2015_065866_E_A
LID2015_065569_E_B	LID2015_065582_E_D	LID2015_065596_E_B	LID2015_065866_E_B
LID2015_065569_E_C	LID2015_065583_E_A	LID2015_065596_E_C	LID2015_065866_E_C
LID2015_065569_E_D	LID2015_065583_E_B	LID2015_065596_E_D	LID2015_065866_E_D
LID2015_065570_E_A	LID2015_065583_E_C	LID2015_065597_E_A	LID2015_065867_E_A
LID2015_065570_E_B	LID2015_065583_E_D	LID2015_065597_E_B	LID2015_065867_E_B
LID2015_065570_E_C	LID2015_065584_E_A	LID2015_065597_E_C	LID2015_065867_E_C
LID2015_065570_E_D	LID2015_065584_E_B	LID2015_065597_E_D	LID2015_065867_E_D
LID2015_065571_E_A	LID2015_065584_E_C	LID2015_065598_E_A	LID2015_065868_E_A
LID2015_065571_E_B	LID2015_065584_E_D	LID2015_065598_E_B	LID2015_065868_E_B
LID2015_065571_E_C	LID2015_065585_E_A	LID2015_065598_E_C	LID2015_065868_E_C
LID2015_065571_E_D	LID2015_065585_E_B	LID2015_065598_E_D	LID2015_065868_E_D
LID2015_065572_E_A	LID2015_065585_E_C	LID2015_065599_E_A	LID2015_065869_E_A
LID2015_065572_E_B	LID2015_065585_E_D	LID2015_065599_E_B	LID2015_065869_E_B
LID2015_065572_E_C	LID2015_065586_E_A	LID2015_065599_E_C	LID2015_065869_E_C
LID2015_065572_E_D	LID2015_065586_E_B	LID2015_065599_E_D	LID2015_065869_E_D

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 99 of 122

LID2015_065870_E_A	LID2015_065883_E_C	LID2015_065897_E_A	LID2015_066167_E_A
LID2015_065870_E_B	LID2015_065883_E_D	LID2015_065897_E_B	LID2015_066167_E_B
LID2015_065870_E_C	LID2015_065884_E_A	LID2015_065897_E_C	LID2015_066167_E_C
LID2015_065870_E_D	LID2015_065884_E_B	LID2015_065897_E_D	LID2015_066167_E_D
LID2015_065871_E_A	LID2015_065884_E_C	LID2015_065898_E_A	LID2015_066168_E_A
LID2015_065871_E_B	LID2015_065884_E_D	LID2015_065898_E_B	LID2015_066168_E_B
LID2015_065871_E_C	LID2015_065885_E_A	LID2015_065898_E_C	LID2015_066168_E_C
LID2015_065871_E_D	LID2015_065885_E_B	LID2015_065898_E_D	LID2015_066168_E_D
LID2015_065872_E_A	LID2015_065885_E_C	LID2015_065899_E_A	LID2015_066169_E_A
LID2015_065872_E_B	LID2015_065885_E_D	LID2015_065899_E_B	LID2015_066169_E_B
LID2015_065872_E_C	LID2015_065886_E_A	LID2015_065899_E_C	LID2015_066169_E_C
LID2015_065872_E_D	LID2015_065886_E_B	LID2015_065899_E_D	LID2015_066169_E_D
LID2015_065873_E_A	LID2015_065886_E_C	LID2015_005099_E_D LID2015_065900_E_A	LID2015_000109_E_D LID2015_066170_E_A
		<u> </u>	<u> </u>
LID2015_065873_E_B	LID2015_065886_E_D	LID2015_065900_E_B	LID2015_066170_E_B
LID2015_065873_E_C	LID2015_065887_E_A	LID2015_065900_E_C	LID2015_066170_E_C
LID2015_065873_E_D	LID2015_065887_E_B	LID2015_065900_E_D	LID2015_066170_E_D
LID2015_065874_E_A	LID2015_065887_E_C	LID2015_065901_E_A	LID2015_066171_E_A
LID2015_065874_E_B	LID2015_065887_E_D	LID2015_065901_E_B	LID2015_066171_E_B
LID2015_065874_E_C	LID2015_065888_E_A	LID2015_065901_E_C	LID2015_066171_E_C
LID2015_065874_E_D	LID2015_065888_E_B	LID2015_065901_E_D	LID2015_066171_E_D
LID2015_065875_E_A	LID2015_065888_E_C	LID2015_065902_E_A	LID2015_066172_E_A
LID2015_065875_E_B	LID2015_065888_E_D	LID2015_065902_E_B	LID2015_066172_E_B
LID2015_065875_E_C	LID2015_065889_E_A	LID2015_065902_E_C	LID2015_066172_E_C
LID2015_065875_E_D	LID2015_065889_E_B	LID2015_065902_E_D	LID2015_066172_E_D
LID2015_065876_E_A	LID2015_065889_E_C	LID2015_065903_E_A	LID2015_066173_E_A
LID2015_065876_E_B	LID2015_065889_E_D	LID2015_065903_E_B	LID2015_066173_E_B
LID2015_065876_E_C	LID2015_065890_E_A	LID2015_065903_E_C	LID2015_066173_E_C
LID2015_065876_E_D	LID2015_065890_E_B	LID2015_065903_E_D	LID2015_066173_E_D
LID2015_065877_E_A	LID2015_065890_E_C	LID2015_065904_E_A	LID2015_066174_E_A
LID2015_065877_E_B	LID2015_065890_E_D	LID2015_065904_E_B	LID2015_066174_E_B
LID2015_065877_E_C	LID2015_065891_E_A	LID2015_065904_E_C	LID2015_066174_E_C
LID2015_005877_E_D	LID2015_005891_E_R LID2015_065891_E_B	LID2015_005904_E_D	LID2015_066174_E_D
			•= ••= =
LID2015_065878_E_A	LID2015_065891_E_C	LID2015_065905_E_A	LID2015_066175_E_A
LID2015_065878_E_B	LID2015_065891_E_D	LID2015_065905_E_B	LID2015_066175_E_B
LID2015_065878_E_C	LID2015_065892_E_A	LID2015_065905_E_C	LID2015_066175_E_C
LID2015_065878_E_D	LID2015_065892_E_B	LID2015_065905_E_D	LID2015_066175_E_D
LID2015_065879_E_A	LID2015_065892_E_C	LID2015_065906_E_A	LID2015_066176_E_A
LID2015_065879_E_B	LID2015_065892_E_D	LID2015_065906_E_B	LID2015_066176_E_B
LID2015_065879_E_C	LID2015_065893_E_A	LID2015_065906_E_C	LID2015_066176_E_C
LID2015_065879_E_D	LID2015_065893_E_B	LID2015_065906_E_D	LID2015_066176_E_D
LID2015_065880_E_A	LID2015_065893_E_C	LID2015_065907_E_A	LID2015_066177_E_A
LID2015_065880_E_B	LID2015_065893_E_D	LID2015_065907_E_C	LID2015_066177_E_B
LID2015_065880_E_C	LID2015_065894_E_A	LID2015_066164_E_A	LID2015_066177_E_C
LID2015_065880_E_D	LID2015_065894_E_B	LID2015_066164_E_B	LID2015_066177_E_D
LID2015_065881_E_A	LID2015_065894_E_C	LID2015_066164_E_C	LID2015_066178_E_A
LID2015_065881_E_B	LID2015_065894_E_D	LID2015_066164_E_D	LID2015_066178_E_B
LID2015_065881_E_C	LID2015_065895_E_A	LID2015_066165_E_A	LID2015_066178_E_C
LID2015_065881_E_D	LID2015_065895_E_B	LID2015_066165_E_B	LID2015_066178_E_D
LID2015_065882_E_A	LID2015_065895_E_C	LID2015_066165_E_C	LID2015_066179_E_A
LID2015_065882_E_B	LID2015_065895_E_D	LID2015_066165_E_D	LID2015_066179_E_B
LID2015_065882_E_C	LID2015_065896_E_A	LID2015_066166_E_A	LID2015_066179_E_C
LID2015_065882_E_D	LID2015_065896_E_B	LID2015_066166_E_B	LID2015_066179_E_D
LID2015_065883_E_A	LID2015_065896_E_C	LID2015_066166_E_C	LID2015_066180_E_A
LID2015_065883_E_B	LID2015_065896_E_D	LID2015_066166_E_D	LID2015_066180_E_B
			D

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 100 of 122

0			
LID2015_066180_E_C	LID2015_066194_E_A	LID2015_066464_E_A	LID2015_066477_E_C
LID2015_066180_E_D	LID2015_066194_E_B	LID2015_066464_E_B	LID2015_066477_E_D
LID2015_066181_E_A	LID2015_066194_E_C	LID2015_066464_E_C	LID2015_066478_E_A
LID2015_066181_E_B	LID2015_066194_E_D	LID2015_066464_E_D	LID2015_066478_E_B
LID2015_066181_E_C	LID2015_066195_E_A	LID2015_066465_E_A	LID2015_066478_E_C
LID2015_066181_E_D	LID2015_066195_E_B	LID2015_066465_E_B	LID2015_066478_E_D
LID2015_066182_E_A	LID2015_066195_E_C	LID2015_066465_E_C	LID2015_066479_E_A
LID2015_066182_E_B	LID2015_066195_E_D	LID2015_066465_E_D	LID2015_066479_E_B
LID2015_066182_E_C	LID2015_066196_E_A	LID2015_066466_E_A	LID2015_066479_E_C
LID2015_066182_E_D	LID2015_066196_E_B	LID2015_066466_E_B	LID2015_066479_E_D
LID2015_066183_E_A	LID2015_066196_E_C	LID2015_066466_E_C	LID2015_066480_E_A
LID2015_066183_E_B	LID2015_066196_E_D	LID2015_066466_E_D	LID2015_066480_E_B
LID2015_066183_E_C	LID2015_066197_E_A	LID2015_066467_E_A	LID2015_066480_E_C
LID2015_066183_E_D	LID2015_066197_E_B	LID2015_066467_E_B	LID2015_066480_E_D
LID2015_066184_E_A	LID2015_066197_E_C	LID2015_066467_E_C	LID2015_066481_E_A
LID2015_066184_E_B	LID2015_066197_E_D	LID2015_066467_E_D	LID2015_066481_E_B
LID2015_066184_E_C	LID2015_066198_E_A	LID2015_066468_E_A	LID2015_066481_E_C
LID2015_066184_E_D	LID2015_066198_E_B	LID2015_066468_E_B	LID2015_066481_E_D
LID2015_066185_E_A	LID2015_066198_E_C	LID2015_066468_E_C	LID2015_066482_E_A
LID2015_066185_E_B	LID2015_066198_E_D	LID2015_066468_E_D	LID2015_066482_E_B
LID2015_066185_E_C	LID2015_066199_E_A	LID2015_066469_E_A	LID2015_066482_E_C
LID2015_066185_E_D	LID2015_066199_E_B	LID2015_066469_E_B	LID2015_066482_E_D
LID2015_066186_E_A	LID2015_066199_E_C	LID2015_066469_E_C	LID2015_066483_E_A
LID2015_066186_E_B	LID2015_066199_E_D	LID2015_066469_E_D	LID2015_066483_E_B
LID2015_066186_E_C	LID2015_066200_E_A	LID2015_066470_E_A	LID2015_066483_E_C
LID2015_066186_E_D	LID2015_066200_E_B	LID2015_066470_E_B	LID2015_066483_E_D
LID2015_066187_E_A	LID2015_066200_E_C	LID2015_066470_E_C	LID2015_066484_E_A
LID2015_066187_E_B	LID2015_066200_E_D	LID2015_066470_E_D	LID2015_066484_E_B
LID2015_066187_E_C	LID2015_066201_E_A	LID2015_066471_E_A	LID2015_066484_E_C
LID2015_066187_E_D	LID2015_066201_E_B	LID2015_066471_E_B	LID2015_066484_E_D
LID2015_066188_E_A	LID2015_066201_E_C	LID2015_066471_E_C	LID2015_066485_E_A
LID2015_066188_E_B	LID2015_066201_E_D	LID2015_066471_E_D	LID2015_066485_E_B
LID2015_066188_E_C	LID2015_066202_E_A	LID2015_066472_E_A	LID2015_066485_E_C
LID2015_066188_E_D	LID2015_066202_E_B	LID2015_066472_E_B	LID2015_066485_E_D
LID2015_066189_E_A	LID2015_066202_E_C	LID2015_066472_E_C	LID2015_066486_E_A
LID2015_066189_E_B	LID2015_066202_E_D	LID2015_066472_E_D	LID2015_066486_E_B
LID2015_066189_E_C	LID2015_066203_E_A	LID2015_066473_E_A	LID2015_066486_E_C
LID2015_066189_E_D	LID2015_066203_E_B	LID2015_066473_E_B	LID2015_066486_E_D
LID2015_066190_E_A	LID2015_066203_E_C	LID2015_066473_E_C	LID2015_066487_E_A
LID2015_066190_E_B	LID2015_066203_E_D	LID2015_066473_E_D	LID2015_066487_E_B
LID2015_066190_E_C	LID2015_066204_E_A	LID2015_066474_E_A	LID2015_066487_E_C
LID2015_066190_E_D	LID2015_066204_E_B	LID2015_066474_E_B	LID2015_066487_E_D
LID2015_066191_E_A	LID2015_066204_E_C	LID2015_066474_E_C	LID2015_066488_E_A
LID2015_066191_E_B	LID2015_066204_E_D	LID2015_066474_E_D	LID2015_066488_E_B
LID2015_066191_E_C	LID2015_066205_E_A	LID2015_066475_E_A	LID2015_066488_E_C
LID2015_066191_E_D	LID2015_066205_E_B	LID2015_066475_E_B	LID2015_066488_E_D
LID2015_066192_E_A	LID2015_066205_E_C	LID2015_066475_E_C	LID2015_066489_E_A
LID2015_066192_E_B	LID2015_066205_E_D	LID2015_066475_E_D	LID2015_066489_E_B
LID2015_066192_E_C	LID2015_066206_E_A	LID2015_066476_E_A	LID2015_066489_E_C
LID2015_066192_E_D	LID2015_066206_E_B	LID2015_066476_E_B	LID2015_066489_E_D
LID2015_066193_E_A	LID2015_066206_E_C	LID2015_066476_E_C	LID2015_066490_E_A
LID2015_066193_E_B	LID2015_066206_E_D	LID2015_066476_E_D	LID2015_066490_E_B
LID2015_066193_E_C	LID2015_066207_E_A	LID2015_066477_E_A	LID2015_066490_E_C
LID2015_066193_E_D	LID2015_066207_E_C	LID2015_066477_E_B	LID2015_066490_E_D
	. –		

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 101 of 122

0			
LID2015_066491_E_A	LID2015_066504_E_C	LID2015_066774_E_C	LID2015_066788_E_A
LID2015_066491_E_B	LID2015_066504_E_D	LID2015_066774_E_D	LID2015_066788_E_B
LID2015_066491_E_C	LID2015_066505_E_A	LID2015_066775_E_A	LID2015_066788_E_C
LID2015_066491_E_D	LID2015_066505_E_B	LID2015_066775_E_B	LID2015_066788_E_D
LID2015_066492_E_A	LID2015_066505_E_C	LID2015_066775_E_C	LID2015_066789_E_A
LID2015_066492_E_B	LID2015_066505_E_D	LID2015_066775_E_D	LID2015_066789_E_B
LID2015_066492_E_C	LID2015_066506_E_A	LID2015_066776_E_A	LID2015_066789_E_C
LID2015_066492_E_D	LID2015_066506_E_B	LID2015_066776_E_B	LID2015_066789_E_D
LID2015_066493_E_A	LID2015_066506_E_C	LID2015_066776_E_C	LID2015_066790_E_A
LID2015_066493_E_B	LID2015_066506_E_D	LID2015_066776_E_D	LID2015_066790_E_B
LID2015_066493_E_C	LID2015_066507_E_A	LID2015_066777_E_A	LID2015_066790_E_C
LID2015_066493_E_D	LID2015_066507_E_C	LID2015_066777_E_B	LID2015_066790_E_D
LID2015_066494_E_A	LID2015_066764_E_A	LID2015_066777_E_C	LID2015_066791_E_A
LID2015_066494_E_B	LID2015_066764_E_B	LID2015_066777_E_D	LID2015_066791_E_B
LID2015_066494_E_C	LID2015_066764_E_C	LID2015_066778_E_A	LID2015_066791_E_C
LID2015_066494_E_D	LID2015_066764_E_D	LID2015_066778_E_B	LID2015_066791_E_D
LID2015_066495_E_A	LID2015_066765_E_A	LID2015_066778_E_C	LID2015_066792_E_A
LID2015_066495_E_B	LID2015_066765_E_B	LID2015_066778_E_D	LID2015_066792_E_B
LID2015_066495_E_C	LID2015_066765_E_C	LID2015_066779_E_A	LID2015_066792_E_C
LID2015_066495_E_D	LID2015_066765_E_D	LID2015_066779_E_B	LID2015_066792_E_D
LID2015_066496_E_A	LID2015_066766_E_A	LID2015_066779_E_C	LID2015_066793_E_A
LID2015_066496_E_B	LID2015_066766_E_B	LID2015_066779_E_D	LID2015_066793_E_B
LID2015_066496_E_C	LID2015_066766_E_C	LID2015_066780_E_A	LID2015_066793_E_C
LID2015_066496_E_D	LID2015_066766_E_D	LID2015_066780_E_B	LID2015_066793_E_D
LID2015_066497_E_A	LID2015_066767_E_A	LID2015_066780_E_C	LID2015_066794_E_A
LID2015_066497_E_B	LID2015_066767_E_B	LID2015_066780_E_D	LID2015_066794_E_B
LID2015_066497_E_C	LID2015_066767_E_C	LID2015_066781_E_A	LID2015_066794_E_C
LID2015_066497_E_D	LID2015_066767_E_D	LID2015_066781_E_B	LID2015_066794_E_D
LID2015_066498_E_A	LID2015_066768_E_A	LID2015_066781_E_C	LID2015_066795_E_A
LID2015_066498_E_B	LID2015_066768_E_B	LID2015_066781_E_D	LID2015_066795_E_B
LID2015_066498_E_C	LID2015_066768_E_C	LID2015_066782_E_A	LID2015_066795_E_C
LID2015_066498_E_D	LID2015_066768_E_D	LID2015_066782_E_B	LID2015_066795_E_D
LID2015_066499_E_A	LID2015_066769_E_A	LID2015_066782_E_C	LID2015_066796_E_A
LID2015_066499_E_B	LID2015_066769_E_B	LID2015_066782_E_D	LID2015_066796_E_B
LID2015_066499_E_C	LID2015_066769_E_C	LID2015_066783_E_A	LID2015_066796_E_C
LID2015_066499_E_D	LID2015_066769_E_D	LID2015_066783_E_B	LID2015_066796_E_D
LID2015_066500_E_A	LID2015_066770_E_A	LID2015_066783_E_C	LID2015_066797_E_A
LID2015_066500_E_B	LID2015_066770_E_B	LID2015_066783_E_D	LID2015_066797_E_B
LID2015_066500_E_C	LID2015_066770_E_C	LID2015_066784_E_A	LID2015_066797_E_C
LID2015_066500_E_D	LID2015_066770_E_D	LID2015_066784_E_B	LID2015_066797_E_D
LID2015_066501_E_A	LID2015_066771_E_A	LID2015_066784_E_C	LID2015_066798_E_A
LID2015_066501_E_B	LID2015_066771_E_B	LID2015_066784_E_D	LID2015_066798_E_B
LID2015_066501_E_C	LID2015_066771_E_C	LID2015_066785_E_A	LID2015_066798_E_C
LID2015_066501_E_D	LID2015_066771_E_D	LID2015_066785_E_B	LID2015_066798_E_D
LID2015_066502_E_A	LID2015_066772_E_A	LID2015_066785_E_C	LID2015_066799_E_A
LID2015_066502_E_B	LID2015_066772_E_B	LID2015_066785_E_D	LID2015_066799_E_B
LID2015_066502_E_C	LID2015_066772_E_C	LID2015_066786_E_A	LID2015_066799_E_C
LID2015_066502_E_D	LID2015_066772_E_D	LID2015_066786_E_B	LID2015_066799_E_D
LID2015_066503_E_A	LID2015_066773_E_A	LID2015_066786_E_C	LID2015_066800_E_A
LID2015_066503_E_B	LID2015_066773_E_B	LID2015_066786_E_D	LID2015_066800_E_B
LID2015_066503_E_C	LID2015_066773_E_C	LID2015_066787_E_A	LID2015_066800_E_C
LID2015_066503_E_D	LID2015_066773_E_D	LID2015_066787_E_B	LID2015_066800_E_D
LID2015_066504_E_A	LID2015_066774_E_A	LID2015_066787_E_C	LID2015_066801_E_A
LID2015_066504_E_B	LID2015_066774_E_B	LID2015_066787_E_D	LID2015_066801_E_B
		· · · — —	

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 102 of 122

0			
LID2015_066801_E_C	LID2015_067073_E_B	LID2015_067086_E_D	LID2015_067100_E_B
LID2015_066801_E_D	LID2015_067073_E_C	LID2015_067087_E_A	LID2015_067100_E_C
LID2015_066802_E_A	LID2015_067073_E_D	LID2015_067087_E_B	LID2015_067100_E_D
LID2015_066802_E_B	LID2015_067074_E_A	LID2015_067087_E_C	LID2015_067101_E_A
LID2015_066802_E_C	LID2015_067074_E_B	LID2015_067087_E_D	LID2015_067101_E_B
LID2015_066802_E_D	LID2015_067074_E_C	LID2015_067088_E_A	LID2015_067101_E_C
LID2015_066803_E_A	LID2015_067074_E_D	LID2015_067088_E_B	LID2015_067101_E_D
LID2015_066803_E_B	LID2015_067075_E_A	LID2015_067088_E_C	LID2015_067102_E_A
LID2015_066803_E_C	LID2015_067075_E_B	LID2015_067088_E_D	LID2015_067102_E_B
LID2015_066803_E_D	LID2015_067075_E_C	LID2015_067089_E_A	LID2015_067102_E_C
LID2015_066804_E_A	LID2015_067075_E_D	LID2015_067089_E_B	LID2015_067102_E_D
LID2015_066804_E_B	LID2015_067076_E_A	LID2015_067089_E_C	LID2015_067103_E_A
LID2015_066804_E_C	LID2015_067076_E_B	LID2015_067089_E_D	LID2015_067103_E_B
LID2015_066804_E_D	LID2015_067076_E_C	LID2015_067090_E_A	LID2015_067103_E_C
LID2015_066805_E_A	LID2015_067076_E_D	LID2015_067090_E_B	LID2015_067103_E_D
LID2015_066805_E_B	LID2015_067077_E_A	LID2015_067090_E_C	LID2015_067104_E_A
LID2015_066805_E_C	LID2015_067077_E_B	LID2015_067090_E_D	LID2015_067104_E_B
LID2015_066805_E_D	LID2015_067077_E_C	LID2015_067091_E_A	LID2015_067104_E_C
LID2015_066806_E_A	LID2015_067077_E_D	LID2015_067091_E_B	LID2015_067104_E_D
LID2015_066806_E_B	LID2015_067078_E_A	LID2015_067091_E_C	LID2015_067105_E_A
LID2015_066806_E_C	LID2015_067078_E_B	LID2015_067091_E_D	LID2015_067105_E_B
LID2015_066806_E_D	LID2015_067078_E_C	LID2015_067092_E_A	LID2015_067105_E_C
LID2015_066807_E_A	LID2015_067078_E_D	LID2015_067092_E_B	LID2015_067105_E_D
LID2015_066807_E_C	LID2015_067079_E_A	LID2015_067092_E_C	LID2015_067106_E_A
LID2015_067064_E_A	LID2015_067079_E_B	LID2015_067092_E_D	LID2015_067106_E_B
LID2015_067064_E_B	LID2015_067079_E_C	LID2015_067093_E_A	LID2015_067106_E_C
LID2015_067065_E_A	LID2015_067079_E_D	LID2015_067093_E_B	LID2015_067106_E_D
LID2015_067065_E_B	LID2015_067080_E_A	LID2015_067093_E_C	LID2015_067107_E_A
LID2015_067066_E_A	LID2015_067080_E_B	LID2015_067093_E_D	LID2015_067107_E_C
LID2015_067066_E_B	LID2015_067080_E_C	LID2015_067094_E_A	LID2015_067367_E_B
LID2015_067067_E_A	LID2015_067080_E_D	LID2015_067094_E_B	LID2015_067367_E_D
LID2015_067067_E_B	LID2015_067081_E_A	LID2015_067094_E_C	LID2015_067368_E_A
LID2015_067067_E_D	LID2015_067081_E_B	LID2015_067094_E_D	LID2015_067368_E_B
LID2015_067068_E_A	LID2015_067081_E_C	LID2015_067095_E_A	LID2015_067368_E_C
LID2015_067068_E_B	LID2015_067081_E_D	LID2015_067095_E_B	LID2015_067368_E_D
LID2015_067068_E_C	LID2015_067082_E_A	LID2015_067095_E_C	LID2015_067369_E_A
LID2015_067068_E_D	LID2015_067082_E_B	LID2015_067095_E_D	LID2015_067369_E_B
LID2015_067069_E_A	LID2015_067082_E_C	LID2015_067096_E_A	LID2015_067369_E_C
LID2015_067069_E_B	LID2015_067082_E_D	LID2015_067096_E_B	LID2015_067369_E_D
LID2015_067069_E_C	LID2015_067083_E_A	LID2015_067096_E_C	LID2015_067370_E_A
LID2015_067069_E_D	LID2015_067083_E_B	LID2015_067096_E_D	LID2015_067370_E_B
LID2015_067070_E_A	LID2015_067083_E_C	LID2015_067097_E_A	LID2015_067370_E_C
LID2015_067070_E_B	LID2015_067083_E_D	LID2015_067097_E_B	LID2015_067370_E_D
LID2015_067070_E_C	LID2015_067084_E_A	LID2015_067097_E_C	LID2015_067371_E_A
LID2015_067070_E_D	LID2015_067084_E_B	LID2015_067097_E_D	LID2015_067371_E_B
LID2015_067071_E_A	LID2015_067084_E_C	LID2015_067098_E_A	LID2015_067371_E_C
LID2015_067071_E_B	LID2015_067084_E_D	LID2015_067098_E_B	LID2015_067371_E_D
LID2015_067071_E_C	LID2015_067085_E_A	LID2015_067098_E_C	LID2015_067372_E_A
LID2015_067071_E_D	LID2015_067085_E_B	LID2015_067098_E_D	LID2015_067372_E_B
LID2015_067072_E_A	LID2015_067085_E_C	LID2015_067099_E_A	LID2015_067372_E_C
LID2015_067072_E_B	LID2015_067085_E_D	LID2015_067099_E_B	LID2015_067372_E_D
LID2015_067072_E_C	LID2015_067086_E_A	LID2015_067099_E_C	LID2015_067373_E_A
LID2015_067072_E_D	LID2015_067086_E_B	LID2015_067099_E_D	LID2015_067373_E_B
LID2015_067073_E_A	LID2015_067086_E_C	LID2015_067100_E_A	LID2015_067373_E_C

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 103 of 122

0 0			
LID2015_067373_E_D	LID2015_067387_E_B	LID2015_067400_E_D	LID2015_067674_E_B
LID2015_067374_E_A	LID2015_067387_E_C	LID2015_067401_E_A	LID2015_067674_E_C
LID2015_067374_E_B	LID2015_067387_E_D	LID2015_067401_E_B	LID2015_067674_E_D
LID2015_067374_E_C	LID2015_067388_E_A	LID2015_067401_E_C	LID2015_067675_E_A
LID2015_067374_E_D	LID2015_067388_E_B	LID2015_067401_E_D	LID2015_067675_E_B
LID2015_067375_E_A	LID2015_067388_E_C	LID2015_067402_E_A	LID2015_067675_E_C
LID2015_067375_E_B	LID2015_067388_E_D	LID2015_067402_E_B	LID2015_067675_E_D
LID2015_067375_E_C	LID2015_067389_E_A	LID2015_067402_E_C	LID2015_067676_E_A
LID2015_067375_E_D	LID2015_067389_E_B	LID2015_067402_E_D	LID2015_067676_E_B
LID2015_067376_E_A	LID2015_067389_E_C	LID2015_067403_E_A	LID2015_067676_E_C
LID2015_067376_E_B	LID2015_067389_E_D	LID2015_067403_E_B	LID2015_067676_E_D
LID2015_067376_E_C	LID2015_067390_E_A	LID2015_067403_E_C	LID2015_067677_E_A
LID2015_067376_E_D	LID2015_067390_E_B	LID2015_067403_E_D	LID2015_067677_E_B
LID2015_067377_E_A	LID2015_067390_E_C	LID2015_067404_E_A	LID2015_067677_E_C
LID2015_067377_E_B	LID2015_067390_E_D	LID2015_067404_E_B	LID2015_067677_E_D
LID2015_067377_E_C	LID2015_067391_E_A	LID2015_067404_E_C	LID2015_067678_E_A
LID2015_067377_E_D	LID2015_067391_E_B	LID2015_067404_E_D	LID2015_067678_E_B
LID2015_067378_E_A	LID2015_067391_E_C	LID2015_067405_E_A	LID2015_067678_E_C
LID2015_067378_E_B	LID2015_067391_E_D	LID2015_067405_E_B	LID2015_067678_E_D
LID2015_067378_E_C	LID2015_067392_E_A	LID2015_067405_E_C	LID2015_067679_E_A
LID2015_067378_E_D	LID2015_067392_E_B	LID2015_067405_E_D	LID2015_067679_E_B
LID2015_067379_E_A	LID2015_067392_E_C	LID2015_067406_E_A	LID2015_067679_E_C
LID2015_067379_E_B	LID2015_067392_E_D	LID2015_067406_E_B	LID2015_067679_E_D
LID2015_067379_E_C	LID2015_067393_E_A	LID2015_067406_E_C	LID2015_067680_E_A
LID2015_067379_E_D	LID2015_067393_E_B	LID2015_067406_E_D	LID2015_067680_E_B
LID2015_067380_E_A	LID2015_067393_E_C	LID2015_067407_E_A	LID2015_067680_E_C
LID2015_067380_E_B	LID2015_067393_E_D	LID2015_067407_E_C	LID2015_067680_E_D
LID2015_067380_E_C	LID2015_067394_E_A	LID2015_067667_E_B	LID2015_067681_E_A
LID2015_067380_E_D	LID2015_067394_E_B	LID2015_067667_E_D	LID2015_067681_E_B
LID2015_067381_E_A	LID2015_067394_E_C	LID2015_067668_E_A	LID2015_067681_E_C
LID2015_067381_E_B	LID2015_067394_E_D	LID2015_067668_E_B	LID2015_067681_E_D
LID2015_067381_E_C	LID2015_067395_E_A	LID2015_067668_E_C	LID2015_067682_E_A
LID2015_067381_E_D	LID2015_067395_E_B	LID2015_067668_E_D	LID2015_067682_E_B
LID2015_067382_E_A	LID2015_067395_E_C	LID2015_067669_E_A	LID2015_067682_E_C
LID2015_067382_E_B	LID2015_067395_E_D	LID2015_067669_E_B	LID2015_067682_E_D
LID2015_067382_E_C	LID2015_067396_E_A	LID2015_067669_E_C	LID2015_067683_E_A
LID2015_067382_E_D	LID2015_067396_E_B	LID2015_067669_E_D	LID2015_067683_E_B
LID2015_067383_E_A	LID2015_067396_E_C	LID2015_067670_E_A	LID2015_067683_E_C
LID2015_067383_E_B	LID2015_067396_E_D	LID2015_067670_E_B	LID2015_067683_E_D
LID2015_067383_E_C	LID2015_067397_E_A	LID2015_067670_E_C	LID2015_067684_E_A
LID2015_067383_E_D	LID2015_067397_E_B	LID2015_067670_E_D	LID2015_067684_E_B
LID2015_067384_E_A	LID2015_067397_E_C	LID2015_067671_E_A	LID2015_067684_E_C
LID2015_067384_E_B	LID2015_067397_E_D	LID2015_067671_E_B	LID2015_067684_E_D
LID2015_067384_E_C	LID2015_067398_E_A	LID2015_067671_E_C	LID2015_067685_E_A
LID2015_067384_E_D	LID2015_067398_E_B	LID2015_067671_E_D	LID2015_067685_E_B
LID2015_067385_E_A	LID2015_067398_E_C	LID2015_067672_E_A	LID2015_067685_E_C
LID2015_067385_E_B	LID2015_067398_E_D	LID2015_067672_E_B	LID2015_067685_E_D
LID2015_067385_E_C	LID2015_067399_E_A	LID2015_067672_E_C	LID2015_067686_E_A
LID2015_067385_E_D	LID2015_067399_E_B	LID2015_067672_E_D	LID2015_067686_E_B
LID2015_067386_E_A	LID2015_067399_E_C	LID2015_067673_E_A	LID2015_067686_E_C
LID2015_067386_E_B	LID2015_067399_E_D	LID2015_067673_E_B	LID2015_067686_E_D
LID2015_067386_E_C	LID2015_067400_E_A	LID2015_067673_E_C	LID2015_067687_E_A
LID2015_067386_E_D	LID2015_067400_E_B	LID2015_067673_E_D	LID2015_067687_E_B
LID2015_067387_E_A	LID2015_067400_E_C	LID2015_067674_E_A	LID2015_067687_E_C

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 104 of 122

0			
LID2015_067687_E_D	LID2015_067701_E_B	LID2015_067974_E_D	LID2015_067988_E_B
LID2015_067688_E_A	LID2015_067701_E_C	LID2015_067975_E_A	LID2015_067988_E_C
LID2015_067688_E_B	LID2015_067701_E_D	LID2015_067975_E_B	LID2015_067988_E_D
LID2015_067688_E_C	LID2015_067702_E_A	LID2015_067975_E_C	LID2015_067989_E_A
LID2015_067688_E_D	LID2015 067702 E B	LID2015_067975_E_D	LID2015_067989_E_B
LID2015_067689_E_A	LID2015_067702_E_C	LID2015_067976_E_A	LID2015_067989_E_C
LID2015_067689_E_B	LID2015_067702_E_D	LID2015_067976_E_B	LID2015_067989_E_D
LID2015_067689_E_C	LID2015_067703_E_A	LID2015_067976_E_C	LID2015_067990_E_A
LID2015_067689_E_D	LID2015_067703_E_B	LID2015_067976_E_D	LID2015_067990_E_B
LID2015_067690_E_A	LID2015_067703_E_C	LID2015_067977_E_A	LID2015_067990_E_C
LID2015_067690_E_B	LID2015_067703_E_D	LID2015_067977_E_B	LID2015_067990_E_D
LID2015_067690_E_C	LID2015_067704_E_A	LID2015_067977_E_C	LID2015_067991_E_A
LID2015_067690_E_D	LID2015_067704_E_B	LID2015_067977_E_D	LID2015_067991_E_B
LID2015_067691_E_A	LID2015_067704_E_C	LID2015_067978_E_A	LID2015_067991_E_C
LID2015_067691_E_B	LID2015_067704_E_D	LID2015_067978_E_B	LID2015_067991_E_D
LID2015_067691_E_C	LID2015_067705_E_A	LID2015_067978_E_C	LID2015_067992_E_A
LID2015_067691_E_D	LID2015_067705_E_B	LID2015_067978_E_D	LID2015_067992_E_B
LID2015_067692_E_A	LID2015_067705_E_C	LID2015_067979_E_A	LID2015_067992_E_C
LID2015_067692_E_B	LID2015_067705_E_D	LID2015_067979_E_B	LID2015_067992_E_D
LID2015_067692_E_C	LID2015_067706_E_A	LID2015_067979_E_C	LID2015_067993_E_A
LID2015_067692_E_D	LID2015_067706_E_B	LID2015_067979_E_D	LID2015_067993_E_B
LID2015_067693_E_A	LID2015_067706_E_C	LID2015_067980_E_A	LID2015_067993_E_C
LID2015_067693_E_B	LID2015_067706_E_D	LID2015_067980_E_B	LID2015_067993_E_D
LID2015_067693_E_C	LID2015_067707_E_A	LID2015_067980_E_C	LID2015_067994_E_A
LID2015_067693_E_D	LID2015_067707_E_C	LID2015_067980_E_D	LID2015_067994_E_B
LID2015_067694_E_A	LID2015_067967_E_B	LID2015_067981_E_A	LID2015_067994_E_C
LID2015_067694_E_B	LID2015_067967_E_D	LID2015_067981_E_B	LID2015_067994_E_D
LID2015_067694_E_C	LID2015_067968_E_A	LID2015_067981_E_C	LID2015_067995_E_A
LID2015_067694_E_D	LID2015_067968_E_B	LID2015_067981_E_D	LID2015_067995_E_B
LID2015_067695_E_A	LID2015_067968_E_C	LID2015_067982_E_A	LID2015_067995_E_C
LID2015_067695_E_B	LID2015_067968_E_D	LID2015_067982_E_B	LID2015_067995_E_D
LID2015_067695_E_C	LID2015_067969_E_A	LID2015_067982_E_C	LID2015_067996_E_A
LID2015_067695_E_D	LID2015_067969_E_B	LID2015_067982_E_D	LID2015_067996_E_B
LID2015_067696_E_A	LID2015_067969_E_C	LID2015_067983_E_A	LID2015_067996_E_C
LID2015_067696_E_B	LID2015_067969_E_D	LID2015_067983_E_B	LID2015_067996_E_D
LID2015_067696_E_C	LID2015_067970_E_A	LID2015_067983_E_C	LID2015_067997_E_A
LID2015_067696_E_D	LID2015_067970_E_B	LID2015_067983_E_D	LID2015_067997_E_B
LID2015_067697_E_A	LID2015_067970_E_C	LID2015_067984_E_A	LID2015_067997_E_C
LID2015_067697_E_B	LID2015_067970_E_D	LID2015_067984_E_B	LID2015_067997_E_D
LID2015_067697_E_C	LID2015_067971_E_A	LID2015_067984_E_C	LID2015_067998_E_A
LID2015_067697_E_D	LID2015_067971_E_B	LID2015_067984_E_D	LID2015_067998_E_B
LID2015_067698_E_A	LID2015_067971_E_C	LID2015_067985_E_A	LID2015_067998_E_C
LID2015_067698_E_B	LID2015_067971_E_D	LID2015_067985_E_B	LID2015_067998_E_D
LID2015_067698_E_C	LID2015_067972_E_A	LID2015_067985_E_C	LID2015_067999_E_A
LID2015_067698_E_D	LID2015_067972_E_B	LID2015_067985_E_D	LID2015_067999_E_B
LID2015_067699_E_A	LID2015_067972_E_C	LID2015_067986_E_A	LID2015_067999_E_C
LID2015_067699_E_B	LID2015_067972_E_D	LID2015_067986_E_B	LID2015_067999_E_D
LID2015_067699_E_C	LID2015_067973_E_A	LID2015_067986_E_C	LID2015_068000_E_A
LID2015_067699_E_D	LID2015_067973_E_B	LID2015_067986_E_D	LID2015_068000_E_B
LID2015_067700_E_A	LID2015_067973_E_C	LID2015_067987_E_A	LID2015_068000_E_C
LID2015_067700_E_B	LID2015_067973_E_D	LID2015_067987_E_B	LID2015_068000_E_D
LID2015_067700_E_C	LID2015_067974_E_A	LID2015_067987_E_C	LID2015_068001_E_A
LID2015_067700_E_D	LID2015_067974_E_B	LID2015_067987_E_D	LID2015_068001_E_B
LID2015_067701_E_A	LID2015_067974_E_C	LID2015_067988_E_A	LID2015_068001_E_C

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 105 of 122

0 0			
LID2015_068001_E_D	LID2015_068275_E_B	LID2015_068288_E_D	LID2015_068302_E_B
LID2015_068002_E_A	LID2015 068275 E C	LID2015_068289_E_A	LID2015_068302_E_C
LID2015_068002_E_B	LID2015_068275_E_D	LID2015_068289_E_B	LID2015_068302_E_D
LID2015_068002_E_C	LID2015_068276_E_A	LID2015_068289_E_C	LID2015_068303_E_A
LID2015_068002_E_D	LID2015_068276_E_B	LID2015_068289_E_D	LID2015_068303_E_B
LID2015_068003_E_A	LID2015_068276_E_C	LID2015_068290_E_A	LID2015_068303_E_C
LID2015_068003_E_B	LID2015_068276_E_D	LID2015_068290_E_B	LID2015_068303_E_D
LID2015_068003_E_C	LID2015_068277_E_A	LID2015_068290_E_C	LID2015_068304_E_A
LID2015_068003_E_D	LID2015_068277_E_B	LID2015_068290_E_D	LID2015_068304_E_B
LID2015_068004_E_A	LID2015_068277_E_C	LID2015_068291_E_A	LID2015_068304_E_C
LID2015_068004_E_B	LID2015_068277_E_D	LID2015_068291_E_B	LID2015_068304_E_D
LID2015 068004 E C	LID2015_068278_E_A	LID2015_068291_E_C	LID2015_068305_E_A
LID2015_068004_E_D	LID2015_068278_E_B	LID2015_068291_E_D	LID2015_068305_E_B
LID2015_068005_E_A	LID2015_068278_E_C	LID2015_068292_E_A	LID2015_068305_E_C
LID2015_068005_E_B	LID2015_068278_E_D	LID2015_068292_E_B	LID2015_068305_E_D
LID2015_068005_E_C	LID2015_068279_E_A	LID2015_068292_E_C	LID2015_068306_E_A
LID2015_068005_E_D	LID2015_068279_E_B	LID2015_068292_E_D	LID2015_068306_E_B
LID2015_068006_E_A	LID2015_068279_E_C	LID2015_068293_E_A	LID2015_068306_E_C
LID2015_068006_E_B	LID2015_068279_E_D	LID2015_068293_E_B	LID2015_068306_E_D
LID2015_068006_E_C	LID2015_068280_E_A	LID2015_068293_E_C	LID2015_068307_E_A
LID2015 068006 E D	LID2015 068280 E B	LID2015_068293_E_D	LID2015_068567_E_B
LID2015 068007 E A	LID2015 068280 E C	LID2015_068294_E_A	LID2015_068567_E_D
LID2015_068007_E_C	LID2015_068280_E_D	LID2015_068294_E_B	LID2015_068568_E_A
LID2015_068267_E_B	LID2015_068281_E_A	LID2015_068294_E_C	LID2015_068568_E_B
LID2015_068267_E_D	LID2015_068281_E_B	LID2015_068294_E_D	LID2015_068568_E_C
LID2015_068268_E_A	LID2015_068281_E_C	LID2015_068295_E_A	LID2015_068568_E_D
LID2015_068268_E_B	LID2015_068281_E_D	LID2015_068295_E_B	LID2015_068569_E_A
LID2015_068268_E_C	LID2015_068282_E_A	LID2015_068295_E_C	LID2015_068569_E_B
LID2015_068268_E_D	LID2015_068282_E_B	LID2015_068295_E_D	LID2015_068569_E_C
LID2015_068269_E_A	LID2015_068282_E_C	LID2015_068296_E_A	LID2015_068569_E_D
LID2015_068269_E_B	LID2015_068282_E_D	LID2015_068296_E_B	LID2015_068570_E_A
LID2015_068269_E_C	LID2015_068283_E_A	LID2015_068296_E_C	LID2015_068570_E_B
LID2015_068269_E_D	LID2015_068283_E_B	LID2015_068296_E_D	LID2015_068570_E_C
LID2015_068270_E_A	LID2015_068283_E_C	LID2015_068297_E_A	LID2015_068570_E_D
LID2015_068270_E_B	LID2015_068283_E_D	LID2015_068297_E_B	LID2015_068571_E_A
LID2015_068270_E_C	LID2015_068284_E_A	LID2015_068297_E_C	LID2015_068571_E_B
LID2015_068270_E_D	LID2015_068284_E_B	LID2015_068297_E_D	LID2015_068571_E_C
LID2015_068271_E_A	LID2015_068284_E_C	LID2015_068298_E_A	LID2015_068571_E_D
LID2015_068271_E_B	LID2015_068284_E_D	LID2015_068298_E_B	LID2015_068572_E_A
LID2015_068271_E_C	LID2015_068285_E_A	LID2015_068298_E_C	LID2015_068572_E_B
LID2015_068271_E_D	LID2015_068285_E_B	LID2015_068298_E_D	LID2015_068572_E_C
LID2015_068272_E_A	LID2015_068285_E_C	LID2015_068299_E_A	LID2015_068572_E_D
LID2015_068272_E_B	LID2015_068285_E_D	LID2015_068299_E_B	LID2015_068573_E_A
LID2015_068272_E_C	LID2015_068286_E_A	LID2015_068299_E_C	LID2015_068573_E_B
LID2015_068272_E_D	LID2015_068286_E_B	LID2015_068299_E_D	LID2015_068573_E_C
LID2015_068273_E_A	LID2015_068286_E_C	LID2015_068300_E_A	LID2015_068573_E_D
LID2015_068273_E_B	LID2015_068286_E_D	LID2015_068300_E_B	LID2015_068574_E_A
LID2015_068273_E_C	LID2015_068287_E_A	LID2015_068300_E_C	LID2015_068574_E_B
LID2015_068273_E_D	LID2015_068287_E_B	LID2015_068300_E_D	LID2015_068574_E_C
LID2015_068274_E_A	LID2015_068287_E_C	LID2015_068301_E_A	LID2015_068574_E_D
LID2015_068274_E_B	LID2015_068287_E_D	LID2015_068301_E_B	LID2015_068575_E_A
LID2015_068274_E_C	LID2015_068288_E_A	LID2015_068301_E_C	LID2015_068575_E_B
LID2015_068274_E_D	LID2015_068288_E_B	LID2015_068301_E_D	LID2015_068575_E_C
LID2015_068275_E_A	LID2015_068288_E_C	LID2015_068302_E_A	LID2015_068575_E_D
,			

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 106 of 122

0			
LID2015_068576_E_A	LID2015_068589_E_C	LID2015_068603_E_A	LID2015_068877_E_A
LID2015_068576_E_B	LID2015_068589_E_D	LID2015_068603_E_B	LID2015_068877_E_B
LID2015_068576_E_C	LID2015_068590_E_A	LID2015_068603_E_C	LID2015_068877_E_C
LID2015_068576_E_D	LID2015_068590_E_B	LID2015_068603_E_D	LID2015_068877_E_D
LID2015_068577_E_A	LID2015_068590_E_C	LID2015_068604_E_A	LID2015_068878_E_A
LID2015_068577_E_B	LID2015_068590_E_D	LID2015_068604_E_B	LID2015_068878_E_B
LID2015_068577_E_C	LID2015_068591_E_A	LID2015_068604_E_C	LID2015_068878_E_C
LID2015_068577_E_D	LID2015_068591_E_B	LID2015_068604_E_D	LID2015_068878_E_D
LID2015_068578_E_A	LID2015_068591_E_C	LID2015_068605_E_A	LID2015_068879_E_A
LID2015_068578_E_B	LID2015_068591_E_D	LID2015_068605_E_B	LID2015_068879_E_B
LID2015_068578_E_C	LID2015_068592_E_A	LID2015_068605_E_C	LID2015_068879_E_C
LID2015_068578_E_D	LID2015_068592_E_B	LID2015_068605_E_D	LID2015_068879_E_D
LID2015_068579_E_A	LID2015_068592_E_C	LID2015_068606_E_A	LID2015_068880_E_A
LID2015_068579_E_B	LID2015_068592_E_D	LID2015_068606_E_B	LID2015_068880_E_B
LID2015_068579_E_C	LID2015_068593_E_A	LID2015_068606_E_C	LID2015_068880_E_C
LID2015_068579_E_D	LID2015_068593_E_B	LID2015_068606_E_D	LID2015_068880_E_D
LID2015_068580_E_A	LID2015_068593_E_C	LID2015_068867_E_B	LID2015_068881_E_A
LID2015_068580_E_B	LID2015_068593_E_D	LID2015_068867_E_D	LID2015_068881_E_B
LID2015_068580_E_C	LID2015_068594_E_A	LID2015_068868_E_A	LID2015_068881_E_C
LID2015_068580_E_D	LID2015_068594_E_B	LID2015_068868_E_B	LID2015_068881_E_D
LID2015_068581_E_A	LID2015_068594_E_C	LID2015_068868_E_C	LID2015_068882_E_A
LID2015_068581_E_B	LID2015_068594_E_D	LID2015 068868 E D	LID2015 068882 E B
LID2015_068581_E_C	LID2015_068595_E_A	LID2015_068869_E_A	LID2015_068882_E_C
LID2015_068581_E_D	LID2015_068595_E_B	LID2015_068869_E_B	LID2015_068882_E_D
LID2015_068582_E_A	LID2015_068595_E_C	LID2015_068869_E_C	LID2015_068883_E_A
LID2015_068582_E_B	LID2015_068595_E_D	LID2015_068869_E_D	LID2015_068883_E_B
LID2015_068582_E_C	LID2015_068596_E_A	LID2015_068870_E_A	LID2015_068883_E_C
LID2015_068582_E_D	LID2015_068596_E_B	LID2015_068870_E_B	LID2015_068883_E_D
LID2015_068583_E_A	LID2015_068596_E_C	LID2015_068870_E_C	LID2015_068884_E_A
LID2015_068583_E_B	LID2015_068596_E_D	LID2015_068870_E_D	LID2015_068884_E_B
LID2015_068583_E_C	LID2015_068597_E_A	LID2015_068871_E_A	LID2015_068884_E_C
LID2015_068583_E_D	LID2015_068597_E_B	LID2015_068871_E_B	LID2015_068884_E_D
LID2015_068584_E_A	LID2015_068597_E_C	LID2015_068871_E_C	LID2015_068885_E_A
LID2015_068584_E_B	LID2015_068597_E_D	LID2015_068871_E_D	LID2015 068885 E B
LID2015_068584_E_C	LID2015_068598_E_A	LID2015_068872_E_A	LID2015_068885_E_C
LID2015_068584_E_D	LID2015_068598_E_B	LID2015_068872_E_B	LID2015_068885_E_D
LID2015_068585_E_A	LID2015_068598_E_C	LID2015_068872_E_C	LID2015_068886_E_A
LID2015_068585_E_B	LID2015_068598_E_D	LID2015_068872_E_D	LID2015_068886_E_B
LID2015_068585_E_C	LID2015_068599_E_A	LID2015_068873_E_A	LID2015_068886_E_C
LID2015_068585_E_D	LID2015_068599_E_B	LID2015_068873_E_B	LID2015_068886_E_D
LID2015_068586_E_A	LID2015_068599_E_C	LID2015_068873_E_C	LID2015_068887_E_A
LID2015_068586_E_B	LID2015_068599_E_D	LID2015_068873_E_D	LID2015_068887_E_B
LID2015_068586_E_C	LID2015_068600_E_A	LID2015_068874_E_A	LID2015_068887_E_C
LID2015_068586_E_D	LID2015_068600_E_B	LID2015_068874_E_B	LID2015_068887_E_D
LID2015_068587_E_A	LID2015_068600_E_C	LID2015_068874_E_C	LID2015_068888_E_A
LID2015_068587_E_B	LID2015_068600_E_D	LID2015_068874_E_D	LID2015_068888_E_B
LID2015_068587_E_C	LID2015_068601_E_A	LID2015_068875_E_A	LID2015_068888_E_C
LID2015_068587_E_D	LID2015_068601_E_B	LID2015_068875_E_B	LID2015_068888_E_D
LID2015_068588_E_A	LID2015_068601_E_C	LID2015_068875_E_C	LID2015_068889_E_A
LID2015_068588_E_B	LID2015_068601_E_D	LID2015_068875_E_D	LID2015_068889_E_B
LID2015_068588_E_C	LID2015_068602_E_A	LID2015_068876_E_A	LID2015_068889_E_C
LID2015_068588_E_D	LID2015_068602_E_B	LID2015_068876_E_B	LID2015_068889_E_D
LID2015_068589_E_A	LID2015_068602_E_C	LID2015_068876_E_C	LID2015_068890_E_A
LID2015_068589_E_B	LID2015_068602_E_D	LID2015_068876_E_D	LID2015_068890_E_B
	<u> </u>	<u> </u>	

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 107 of 122

LID2015_068890_E_C	LID2015_068904_E_A	LID2015_069178_E_A	LID2015_069191_E_C
LID2015_068890_E_D	LID2015_068904_E_B	LID2015_069178_E_B	LID2015_069191_E_D
LID2015_068891_E_A	LID2015_068904_E_C	LID2015_069178_E_C	LID2015_069192_E_A
LID2015_068891_E_B	LID2015_068904_E_D	LID2015_069178_E_D	LID2015_069192_E_B
LID2015_068891_E_C	LID2015_068905_E_A	LID2015_069179_E_A	LID2015_069192_E_C
LID2015_068891_E_D	LID2015_068905_E_B	LID2015_069179_E_B	LID2015_069192_E_D
LID2015_068892_E_A	LID2015_068905_E_C	LID2015_069179_E_C	LID2015_069192_E_A
LID2015_068892_E_B	LID2015_068905_E_D	LID2015_069179_E_D	LID2015_069193_E_B
LID2015_068892_E_C	LID2015_068906_E_A	LID2015_069180_E_A	LID2015_069193_E_C
LID2015_068892_E_D	LID2015_068906_E_B	LID2015_069180_E_B	
			LID2015_069193_E_D
LID2015_068893_E_A	LID2015_068906_E_C	LID2015_069180_E_C	LID2015_069194_E_A
LID2015_068893_E_B	LID2015_068906_E_D	LID2015_069180_E_D	LID2015_069194_E_B
LID2015_068893_E_C	LID2015_069167_E_B	LID2015_069181_E_A	LID2015_069194_E_C
LID2015_068893_E_D	LID2015_069167_E_D	LID2015_069181_E_B	LID2015_069194_E_D
LID2015_068894_E_A	LID2015_069168_E_A	LID2015_069181_E_C	LID2015_069195_E_A
LID2015_068894_E_B	LID2015_069168_E_B	LID2015_069181_E_D	LID2015_069195_E_B
LID2015_068894_E_C	LID2015_069168_E_C	LID2015_069182_E_A	LID2015_069195_E_C
LID2015_068894_E_D	LID2015_069168_E_D	LID2015_069182_E_B	LID2015_069195_E_D
LID2015_068895_E_A	LID2015_069169_E_A	LID2015_069182_E_C	LID2015_069196_E_A
LID2015_068895_E_B	LID2015_069169_E_B	LID2015_069182_E_D	LID2015_069196_E_B
LID2015_068895_E_C	LID2015_069169_E_C	LID2015_069183_E_A	LID2015_069196_E_C
LID2015_068895_E_D	LID2015_069169_E_D	LID2015_069183_E_B	LID2015_069196_E_D
LID2015_068896_E_A	LID2015_069170_E_A	LID2015_069183_E_C	LID2015_069197_E_A
LID2015_068896_E_B	LID2015_069170_E_B	LID2015_069183_E_D	LID2015_069197_E_B
LID2015_068896_E_C	LID2015_069170_E_C	LID2015_069184_E_A	LID2015_069197_E_C
LID2015_068896_E_D	LID2015_069170_E_D	LID2015_069184_E_B	LID2015_069197_E_D
LID2015_068897_E_A	LID2015_069171_E_A	LID2015_069184_E_C	LID2015_069198_E_A
LID2015_068897_E_B	LID2015_069171_E_B	LID2015_069184_E_D	LID2015_069198_E_B
LID2015_068897_E_C	LID2015_069171_E_C	LID2015_069185_E_A	LID2015_069198_E_C
LID2015_068897_E_D	LID2015_069171_E_D	LID2015_069185_E_B	LID2015_069198_E_D
LID2015_068898_E_A	LID2015_069172_E_A	LID2015_069185_E_C	LID2015_069199_E_A
LID2015_068898_E_B	LID2015_069172_E_B	LID2015_069185_E_D	LID2015_069199_E_B
LID2015_068898_E_C	LID2015_069172_E_C	LID2015_069186_E_A	LID2015_069199_E_C
LID2015_068898_E_D	LID2015_069172_E_D	LID2015_069186_E_B	LID2015_069199_E_D
LID2015_068899_E_A	LID2015_069173_E_A	LID2015_069186_E_C	LID2015_069200_E_A
LID2015_068899_E_B	LID2015_069173_E_B	LID2015_069186_E_D	LID2015_069200_E_B
LID2015_068899_E_C	LID2015_069173_E_C	LID2015_069187_E_A	LID2015_069200_E_C
LID2015_068899_E_D	LID2015_069173_E_D	LID2015_009187_E_A LID2015_069187_E_B	LID2015_069200_E_D
LID2015_008899_E_D LID2015_068900_E_A	LID2015_069173_E_D LID2015_069174_E_A	LID2015_069187_E_C	LID2015_069200_E_D LID2015_069201_E_A
LID2015_008900_E_A LID2015_068900_E_B		LID2015_069187_E_D	
	LID2015_069174_E_B		LID2015_069201_E_B
LID2015_068900_E_C	LID2015_069174_E_C	LID2015_069188_E_A	LID2015_069201_E_C
LID2015_068900_E_D	LID2015_069174_E_D	LID2015_069188_E_B	LID2015_069201_E_D
LID2015_068901_E_A	LID2015_069175_E_A	LID2015_069188_E_C	LID2015_069202_E_A
LID2015_068901_E_B	LID2015_069175_E_B	LID2015_069188_E_D	LID2015_069202_E_B
LID2015_068901_E_C	LID2015_069175_E_C	LID2015_069189_E_A	LID2015_069202_E_C
LID2015_068901_E_D	LID2015_069175_E_D	LID2015_069189_E_B	LID2015_069202_E_D
LID2015_068902_E_A	LID2015_069176_E_A	LID2015_069189_E_C	LID2015_069203_E_A
LID2015_068902_E_B	LID2015_069176_E_B	LID2015_069189_E_D	LID2015_069203_E_B
LID2015_068902_E_C	LID2015_069176_E_C	LID2015_069190_E_A	LID2015_069203_E_C
LID2015_068902_E_D	LID2015_069176_E_D	LID2015_069190_E_B	LID2015_069203_E_D
LID2015_068903_E_A	LID2015_069177_E_A	LID2015_069190_E_C	LID2015_069204_E_A
LID2015_068903_E_B	LID2015_069177_E_B	LID2015_069190_E_D	LID2015_069204_E_B
LID2015_068903_E_C	LID2015_069177_E_C	LID2015_069191_E_A	LID2015_069204_E_C
LID2015_068903_E_D	LID2015_069177_E_D	LID2015_069191_E_B	LID2015_069204_E_D

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 108 of 122

0			
LID2015_069205_E_A	LID2015_069479_E_A	LID2015_069492_E_C	LID2015_069506_E_A
LID2015_069205_E_B	LID2015_069479_E_B	LID2015_069492_E_D	LID2015_069506_E_B
LID2015_069205_E_C	LID2015_069479_E_C	LID2015_069493_E_A	LID2015_069506_E_C
LID2015_069205_E_D	LID2015_069479_E_D	LID2015_069493_E_B	LID2015_069506_E_D
LID2015_069206_E_A	LID2015_069480_E_A	LID2015_069493_E_C	LID2015_069767_E_B
LID2015_069206_E_B	LID2015_069480_E_B	LID2015_069493_E_D	LID2015_069768_E_A
LID2015_069206_E_C	LID2015_069480_E_C	LID2015_069494_E_A	LID2015_069768_E_B
LID2015_069206_E_D	LID2015_069480_E_D	LID2015_069494_E_B	LID2015_069769_E_A
LID2015_069467_E_B	LID2015_069481_E_A	LID2015_069494_E_C	LID2015_069769_E_B
LID2015_069467_E_D	LID2015_069481_E_B	LID2015_069494_E_D	LID2015_069770_E_A
LID2015_069468_E_A	LID2015_069481_E_C	LID2015_069495_E_A	LID2015_069770_E_B
LID2015_069468_E_B	LID2015_069481_E_D	LID2015_069495_E_B	LID2015_069770_E_D
LID2015_069468_E_C	LID2015_069482_E_A	LID2015_069495_E_C	LID2015_069771_E_A
LID2015_069468_E_D	LID2015_069482_E_B	LID2015_069495_E_D	LID2015_069771_E_B
LID2015_069469_E_A	LID2015_069482_E_C	LID2015_069496_E_A	LID2015_069771_E_C
LID2015_069469_E_B	LID2015_069482_E_D	LID2015_069496_E_B	LID2015_069771_E_D
LID2015_069469_E_C	LID2015_069483_E_A	LID2015_069496_E_C	LID2015_069772_E_A
LID2015_069469_E_D	LID2015_069483_E_B	LID2015_069496_E_D	LID2015_069772_E_B
LID2015_069470_E_A	LID2015_069483_E_C	LID2015_069497_E_A	LID2015_069772_E_C
LID2015_069470_E_B	LID2015_069483_E_D	LID2015_069497_E_B	LID2015_069772_E_D
LID2015_069470_E_C	LID2015_069484_E_A	LID2015_069497_E_C	LID2015_069773_E_A
LID2015_069470_E_D	LID2015_069484_E_B	LID2015_069497_E_D	LID2015_069773_E_B
LID2015_069471_E_A	LID2015_069484_E_C	LID2015_069498_E_A	LID2015_069773_E_C
LID2015_069471_E_B	LID2015_069484_E_D	LID2015_069498_E_B	LID2015_069773_E_D
LID2015_069471_E_C	LID2015_069485_E_A	LID2015_069498_E_C	LID2015_069774_E_A
LID2015_069471_E_D	LID2015_069485_E_B	LID2015_069498_E_D	LID2015_069774_E_B
LID2015_069472_E_A	LID2015_069485_E_C	LID2015_069499_E_A	LID2015_069774_E_C
LID2015_069472_E_B	LID2015_069485_E_D	LID2015_069499_E_B	LID2015_069774_E_D
LID2015_069472_E_C	LID2015_069486_E_A	LID2015_069499_E_C	LID2015_069775_E_A
LID2015_069472_E_D	LID2015_069486_E_B	LID2015_069499_E_D	LID2015_069775_E_B
LID2015_069473_E_A	LID2015_069486_E_C	LID2015_069500_E_A	LID2015_069775_E_C
LID2015_069473_E_B	LID2015_069486_E_D	LID2015_069500_E_B	LID2015_069775_E_D
LID2015_069473_E_C	LID2015_069487_E_A	LID2015_069500_E_C	LID2015_069776_E_A
LID2015_069473_E_D	LID2015_069487_E_B	LID2015_069500_E_D	LID2015_069776_E_B
LID2015_069474_E_A	LID2015_069487_E_C	LID2015_069501_E_A	LID2015_069776_E_C
LID2015_069474_E_B	LID2015_069487_E_D	LID2015_069501_E_B	LID2015_069776_E_D
LID2015_069474_E_C	LID2015_069488_E_A	LID2015_069501_E_C	LID2015_069777_E_A
LID2015_069474_E_D	LID2015_069488_E_B	LID2015_069501_E_D	LID2015_069777_E_B
LID2015_069475_E_A	LID2015_069488_E_C	LID2015_069502_E_A	LID2015_069777_E_C
LID2015_069475_E_B	LID2015_069488_E_D	LID2015_069502_E_B	LID2015_069777_E_D
LID2015_069475_E_C	LID2015_069489_E_A	LID2015_069502_E_C	LID2015_069778_E_A
LID2015_069475_E_D	LID2015_069489_E_B	LID2015_069502_E_D	LID2015_069778_E_B
LID2015_069476_E_A	LID2015_069489_E_C	LID2015_069503_E_A	LID2015_069778_E_C
LID2015_069476_E_B	LID2015_069489_E_D	LID2015_069503_E_B	LID2015_069778_E_D
LID2015_069476_E_C	LID2015_069490_E_A	LID2015_069503_E_C	LID2015_069779_E_A
LID2015_069476_E_D	LID2015_069490_E_B	LID2015_069503_E_D	LID2015_069779_E_B
LID2015_069477_E_A	LID2015_069490_E_C	LID2015_069504_E_A	LID2015_069779_E_C
LID2015_069477_E_B	LID2015_069490_E_D	LID2015_069504_E_B	LID2015_069779_E_D
LID2015_069477_E_C	LID2015_069491_E_A	LID2015_069504_E_C	LID2015_069780_E_A
LID2015_069477_E_D	LID2015_069491_E_B	LID2015_069504_E_D	LID2015_069780_E_B
LID2015_069478_E_A	LID2015_069491_E_C	LID2015_069505_E_A	LID2015_069780_E_C
LID2015_069478_E_B	LID2015_069491_E_D	LID2015_069505_E_B	LID2015_069780_E_D
LID2015_069478_E_C	LID2015_069492_E_A	LID2015_069505_E_C	LID2015_069781_E_A
LID2015_069478_E_D	LID2015_069492_E_B	LID2015_069505_E_D	LID2015_069781_E_B

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 109 of 122

0 2			
LID2015_069781_E_C	LID2015_069795_E_A	LID2015_070072_E_B	LID2015_070086_E_B
LID2015_069781_E_D	LID2015_069795_E_B	LID2015_070073_E_A	LID2015_070086_E_C
LID2015_069782_E_A	LID2015_069795_E_C	LID2015_070073_E_B	LID2015_070086_E_D
LID2015_069782_E_B	LID2015_069795_E_D	LID2015_070073_E_C	LID2015_070087_E_A
LID2015_069782_E_C	LID2015_069796_E_A	LID2015_070073_E_D	LID2015_070087_E_B
LID2015_069782_E_D	LID2015_069796_E_B	LID2015_070074_E_A	LID2015_070087_E_C
LID2015_069783_E_A	LID2015_069796_E_C	LID2015_070074_E_B	LID2015_070087_E_D
LID2015_069783_E_B	LID2015_069796_E_D	LID2015_070074_E_C	LID2015_070088_E_A
LID2015_069783_E_C	LID2015_069797_E_A	LID2015_070074_E_D	LID2015_070088_E_B
LID2015_069783_E_D	LID2015_069797_E_B	LID2015_070075_E_A	LID2015_070088_E_C
LID2015_069784_E_A	LID2015_069797_E_C	LID2015_070075_E_B	LID2015_070088_E_D
LID2015_069784_E_B	LID2015_069797_E_D	LID2015_070075_E_C	LID2015_070089_E_A
LID2015_069784_E_C	LID2015_069798_E_A	LID2015_070075_E_D	LID2015_070089_E_B
LID2015_069784_E_D	LID2015_069798_E_B	LID2015_070076_E_A	LID2015_070089_E_C
LID2015_069785_E_A	LID2015_069798_E_C	LID2015_070076_E_B	LID2015_070089_E_D
LID2015_069785_E_B	LID2015_069798_E_D	LID2015_070076_E_C	LID2015_070090_E_A
LID2015_069785_E_C	LID2015_069799_E_A	LID2015_070076_E_D	LID2015_070090_E_B
LID2015_069785_E_D	LID2015_069799_E_B	LID2015_070077_E_A	LID2015_070090_E_C
LID2015_069786_E_A	LID2015_069799_E_C	LID2015_070077_E_B	LID2015_070090_E_D
LID2015_069786_E_B	LID2015_069799_E_D	LID2015_070077_E_C	LID2015_070091_E_A
LID2015_069786_E_C	LID2015_069800_E_A	LID2015_070077_E_D	LID2015_070091_E_B
LID2015_069786_E_D	LID2015_069800_E_B	LID2015_070078_E_A	LID2015_070091_E_C
LID2015_069787_E_A	LID2015_069800_E_C	LID2015_070078_E_B	LID2015_070091_E_D
LID2015_069787_E_B	LID2015_069800_E_D	LID2015_070078_E_C	LID2015_070092_E_A
LID2015_069787_E_C	LID2015_069801_E_A	LID2015_070078_E_D	LID2015_070092_E_B
LID2015_069787_E_D	LID2015_069801_E_B	LID2015_070079_E_A	LID2015_070092_E_C
LID2015_069788_E_A	LID2015_069801_E_C	LID2015_070079_E_B	LID2015_070092_E_D
LID2015_069788_E_B	LID2015_069801_E_D	LID2015_070079_E_C	LID2015_070093_E_A
LID2015_069788_E_C	LID2015_069802_E_A	LID2015_070079_E_D	LID2015_070093_E_B
LID2015_069788_E_D	LID2015_069802_E_B	LID2015_070080_E_A	LID2015_070093_E_C
LID2015_069789_E_A	LID2015_069802_E_C	LID2015_070080_E_B	LID2015_070093_E_D
LID2015_069789_E_B	LID2015_069802_E_D	LID2015_070080_E_C	LID2015_070094_E_A
LID2015_069789_E_C	LID2015_069803_E_A	LID2015_070080_E_D	LID2015_070094_E_B
LID2015_069789_E_D	LID2015_069803_E_B	LID2015_070081_E_A	LID2015_070094_E_C
LID2015_069790_E_A	LID2015_069803_E_C	LID2015_070081_E_B	LID2015_070094_E_D
LID2015_069790_E_B	LID2015_069803_E_D	LID2015_070081_E_C	LID2015_070095_E_A
LID2015_069790_E_C	LID2015_069804_E_A	LID2015_070081_E_D	LID2015_070095_E_B
LID2015_069790_E_D	LID2015_069804_E_B	LID2015_070082_E_A	LID2015_070095_E_C
LID2015_069791_E_A	LID2015_069804_E_C	LID2015_070082_E_B	LID2015_070095_E_D
LID2015_069791_E_B	LID2015_069804_E_D	LID2015_070082_E_C	LID2015_070096_E_A
LID2015_069791_E_C	LID2015_069805_E_A	LID2015_070082_E_D	LID2015_070096_E_B
LID2015_069791_E_D	LID2015_069805_E_B	LID2015_070083_E_A	LID2015_070096_E_C
LID2015_069792_E_A	LID2015_069805_E_C	LID2015_070083_E_B	LID2015_070096_E_D
LID2015_069792_E_B	LID2015_069805_E_D	LID2015_070083_E_C	LID2015_070097_E_A
LID2015_069792_E_C	LID2015_069806_E_A	LID2015_070083_E_D	LID2015_070097_E_B
LID2015_069792_E_D	LID2015_069806_E_B	LID2015_070084_E_A	LID2015_070097_E_C
LID2015_069793_E_A	LID2015_069806_E_C	LID2015_070084_E_B	LID2015_070097_E_D
LID2015_069793_E_B	LID2015_069806_E_D	LID2015_070084_E_C	LID2015_070098_E_A
LID2015_069793_E_C	LID2015_070070_E_B	LID2015_070084_E_D	LID2015_070098_E_B
LID2015_069793_E_D	LID2015_070071_E_A	LID2015_070085_E_A	LID2015_070098_E_C
LID2015_069794_E_A	LID2015_070071_E_B	LID2015_070085_E_B	LID2015_070098_E_D
LID2015_069794_E_B	LID2015_070071_E_C	LID2015_070085_E_C	LID2015_070099_E_A
LID2015_069794_E_C	LID2015_070071_E_D	LID2015_070085_E_D	LID2015_070099_E_B
LID2015_069794_E_D	LID2015_070072_E_A	LID2015_070086_E_A	LID2015_070099_E_C

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 110 of 122

0			
LID2015_070099_E_D	LID2015_070379_E_D	LID2015_070393_E_B	LID2015_070406_E_D
LID2015_070100_E_A	LID2015_070380_E_A	LID2015_070393_E_C	LID2015_070673_E_B
LID2015_070100_E_B	LID2015_070380_E_B	LID2015_070393_E_D	LID2015_070674_E_A
LID2015_070100_E_C	LID2015_070380_E_C	LID2015_070394_E_A	LID2015_070674_E_B
LID2015_070100_E_D	LID2015_070380_E_D	LID2015_070394_E_B	LID2015_070674_E_D
LID2015_070101_E_A	LID2015_070381_E_A	LID2015_070394_E_C	LID2015_070675_E_A
LID2015_070101_E_B	LID2015_070381_E_B	LID2015_070394_E_D	LID2015_070675_E_B
LID2015_070101_E_C	LID2015_070381_E_C	LID2015_070395_E_A	LID2015_070675_E_C
LID2015_070101_E_D	LID2015_070381_E_D	LID2015_070395_E_B	LID2015_070675_E_D
LID2015_070102_E_A	LID2015_070382_E_A	LID2015_070395_E_C	LID2015_070676_E_A
LID2015_070102_E_B	LID2015_070382_E_B	LID2015_070395_E_D	LID2015_070676_E_B
LID2015_070102_E_C	LID2015_070382_E_C	LID2015_070396_E_A	LID2015_070676_E_C
LID2015_070102_E_D	LID2015_070382_E_D	LID2015_070396_E_B	LID2015_070676_E_D
LID2015_070103_E_A	LID2015_070383_E_A	LID2015_070396_E_C	LID2015_070677_E_A
LID2015_070103_E_B	LID2015_070383_E_B	LID2015_070396_E_D	LID2015_070677_E_B
LID2015_070103_E_C	LID2015_070383_E_C	LID2015_070397_E_A	LID2015_070677_E_C
LID2015_070103_E_D	LID2015_070383_E_D	LID2015_070397_E_B	LID2015_070677_E_D
LID2015_070104_E_A	LID2015_070384_E_A	LID2015_070397_E_C	LID2015_070678_E_A
LID2015_070104_E_B	LID2015_070384_E_B	LID2015_070397_E_D	LID2015_070678_E_B
LID2015_070104_E_C	LID2015_070384_E_C	LID2015_070398_E_A	LID2015_070678_E_C
LID2015_070104_E_D	LID2015_070384_E_D	LID2015_070398_E_B	LID2015_070678_E_D
LID2015_070105_E_A	LID2015_070385_E_A	LID2015_070398_E_C	LID2015_070679_E_A
LID2015_070105_E_B	LID2015_070385_E_B	LID2015_070398_E_D	LID2015_070679_E_B
LID2015_070105_E_C	LID2015_070385_E_C	LID2015_070399_E_A	LID2015_070679_E_C
LID2015_070105_E_D	LID2015_070385_E_D	LID2015_070399_E_B	LID2015_070679_E_D
LID2015_070106_E_A	LID2015_070386_E_A	LID2015_070399_E_C	LID2015_070680_E_A
LID2015_070106_E_B	LID2015_070386_E_B	LID2015_070399_E_D	LID2015_070680_E_B
LID2015_070106_E_C	LID2015_070386_E_C	LID2015_070400_E_A	LID2015_070680_E_C
LID2015_070106_E_D	LID2015_070386_E_D	LID2015_070400_E_B	LID2015_070680_E_D
LID2015_070373_E_B	LID2015_070387_E_A	LID2015_070400_E_C	LID2015_070681_E_A
LID2015_070373_E_D	LID2015_070387_E_B	LID2015_070400_E_D	LID2015_070681_E_B
LID2015_070374_E_A	LID2015_070387_E_C	LID2015_070401_E_A	LID2015_070681_E_C
LID2015_070374_E_B	LID2015_070387_E_D	LID2015_070401_E_B	LID2015_070681_E_D
LID2015_070374_E_C	LID2015_070388_E_A	LID2015_070401_E_C	LID2015_070682_E_A
LID2015_070374_E_D	LID2015_070388_E_B	LID2015_070401_E_D	LID2015_070682_E_B
LID2015_070375_E_A	LID2015_070388_E_C	LID2015_070402_E_A	LID2015_070682_E_C
LID2015_070375_E_B	LID2015_070388_E_D	LID2015_070402_E_B	LID2015_070682_E_D
LID2015_070375_E_C	LID2015_070389_E_A	LID2015_070402_E_C	LID2015_070683_E_A
LID2015_070375_E_D	LID2015_070389_E_B	LID2015_070402_E_D	LID2015_070683_E_B
LID2015_070376_E_A	LID2015_070389_E_C	LID2015_070403_E_A	LID2015_070683_E_C
LID2015_070376_E_B	LID2015_070389_E_D	LID2015_070403_E_B	LID2015_070683_E_D
LID2015_070376_E_C	LID2015_070390_E_A	LID2015_070403_E_C	LID2015_070684_E_A
LID2015_070376_E_D	LID2015_070390_E_B	LID2015_070403_E_D	LID2015_070684_E_B
LID2015_070377_E_A	LID2015_070390_E_C	LID2015_070404_E_A	LID2015_070684_E_C
LID2015_070377_E_B	LID2015_070390_E_D	LID2015_070404_E_B	LID2015_070684_E_D
LID2015_070377_E_C	LID2015_070391_E_A	LID2015_070404_E_C	LID2015_070685_E_A
LID2015_070377_E_D	LID2015_070391_E_B	LID2015_070404_E_D	LID2015_070685_E_B
LID2015_070378_E_A	LID2015_070391_E_C	LID2015_070405_E_A	LID2015_070685_E_C
LID2015_070378_E_B	LID2015_070391_E_D	LID2015_070405_E_B	LID2015_070685_E_D
LID2015_070378_E_C	LID2015_070392_E_A	LID2015_070405_E_C	LID2015_070686_E_A
LID2015_070378_E_D	LID2015_070392_E_B	LID2015_070405_E_D	LID2015_070686_E_B
LID2015_070379_E_A	LID2015_070392_E_C	LID2015_070406_E_A	LID2015_070686_E_C
LID2015_070379_E_B	LID2015_070392_E_D	LID2015_070406_E_B	LID2015_070686_E_D
LID2015_070379_E_C	LID2015_070393_E_A	LID2015_070406_E_C	LID2015_070687_E_A

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 111 of 122

0			
LID2015_070687_E_B	LID2015_070700_E_D	LID2015_070982_E_C	LID2015_070996_E_A
LID2015_070687_E_C	LID2015_070701_E_A	LID2015_070982_E_D	LID2015_070996_E_B
LID2015_070687_E_D	LID2015_070701_E_B	LID2015_070983_E_A	LID2015_070996_E_C
LID2015_070688_E_A	LID2015_070701_E_C	LID2015_070983_E_B	LID2015_070996_E_D
LID2015_070688_E_B	LID2015_070701_E_D	LID2015_070983_E_C	LID2015_070997_E_A
LID2015_070688_E_C	LID2015_070702_E_A	LID2015_070983_E_D	LID2015_070997_E_B
LID2015_070688_E_D	LID2015_070702_E_B	LID2015_070984_E_A	LID2015_070997_E_C
LID2015_070689_E_A	LID2015_070702_E_C	LID2015_070984_E_B	LID2015_070997_E_D
LID2015_070689_E_B	LID2015_070702_E_D	LID2015_070984_E_C	LID2015_070998_E_A
LID2015_070689_E_C	LID2015_070703_E_A	LID2015_070984_E_D	LID2015_070998_E_B
LID2015_070689_E_D	LID2015_070703_E_B	LID2015_070985_E_A	LID2015_070998_E_C
LID2015_070690_E_A	LID2015_070703_E_C	LID2015_070985_E_B	LID2015_070998_E_D
LID2015_070690_E_B	LID2015_070703_E_D	LID2015_070985_E_C	LID2015_070999_E_A
LID2015_070690_E_C	LID2015_070704_E_A	LID2015_070985_E_D	LID2015_070999_E_B
LID2015_070690_E_D	LID2015_070704_E_B	LID2015_070986_E_A	LID2015_070999_E_C
LID2015_070691_E_A	LID2015_070704_E_C	LID2015_070986_E_B	LID2015_070999_E_D
LID2015_070691_E_B	LID2015_070704_E_D	LID2015_070986_E_C	LID2015_071000_E_A
LID2015_070691_E_C	LID2015_070705_E_A	LID2015_070986_E_D	LID2015_071000_E_B
LID2015_070691_E_D	LID2015_070705_E_B	LID2015_070987_E_A	LID2015_071000_E_C
LID2015_070692_E_A	LID2015_070705_E_C	LID2015_070987_E_B	LID2015_071000_E_D
LID2015_070692_E_B	LID2015_070705_E_D	LID2015_070987_E_C	LID2015_071001_E_A
LID2015_070692_E_C	LID2015_070706_E_A	LID2015_070987_E_D	LID2015_071001_E_B
LID2015_070692_E_D	LID2015_070706_E_B	LID2015_070988_E_A	LID2015_071001_E_C
LID2015_070693_E_A	LID2015_070706_E_C	LID2015_070988_E_B	LID2015_071001_E_D
LID2015_070693_E_B	LID2015_070706_E_D	LID2015_070988_E_C	LID2015_071002_E_A
LID2015_070693_E_C	LID2015_070975_E_A	LID2015_070988_E_D	LID2015_071002_E_B
LID2015_070693_E_D	LID2015_070975_E_B	LID2015_070989_E_A	LID2015_071002_E_C
LID2015_070694_E_A	LID2015_070975_E_D	LID2015_070989_E_B	LID2015_071002_E_D
LID2015_070694_E_B	LID2015_070976_E_A	LID2015_070989_E_C	LID2015_071003_E_A
LID2015_070694_E_C	LID2015_070976_E_B	LID2015_070989_E_D	LID2015_071003_E_B
LID2015_070694_E_D	LID2015_070976_E_C	LID2015_070990_E_A	LID2015_071003_E_C
LID2015_070695_E_A	LID2015_070976_E_D	LID2015_070990_E_B	LID2015_071003_E_D
LID2015_070695_E_B	LID2015_070977_E_A	LID2015_070990_E_C	LID2015_071004_E_A
LID2015_070695_E_C	LID2015_070977_E_B	LID2015_070990_E_D	LID2015_071004_E_B
LID2015_070695_E_D	LID2015_070977_E_C	LID2015_070991_E_A	LID2015_071004_E_C
LID2015_070696_E_A	LID2015_070977_E_D	LID2015_070991_E_B	LID2015_071004_E_D
LID2015_070696_E_B	LID2015_070978_E_A	LID2015_070991_E_C	LID2015_071005_E_A
LID2015_070696_E_C	LID2015_070978_E_B	LID2015_070991_E_D	LID2015_071005_E_B
LID2015_070696_E_D	LID2015_070978_E_C	LID2015_070992_E_A	LID2015_071005_E_C
LID2015_070697_E_A	LID2015_070978_E_D	LID2015_070992_E_B	LID2015_071005_E_D
LID2015_070697_E_B	LID2015_070979_E_A	LID2015_070992_E_C	LID2015_071006_E_A
LID2015_070697_E_C	LID2015_070979_E_B	LID2015_070992_E_D	LID2015_071006_E_B
LID2015_070697_E_D	LID2015_070979_E_C	LID2015_070993_E_A	LID2015_071006_E_C
LID2015_070698_E_A	LID2015_070979_E_D	LID2015_070993_E_B	LID2015_071006_E_D
LID2015_070698_E_B	LID2015_070980_E_A	LID2015_070993_E_C	LID2015_071275_E_D
LID2015_070698_E_C	LID2015_070980_E_B	LID2015_070993_E_D	LID2015_071276_E_A
LID2015_070698_E_D	LID2015_070980_E_C	LID2015_070994_E_A	LID2015_071276_E_B
LID2015_070699_E_A	LID2015_070980_E_D	LID2015_070994_E_B	LID2015_071276_E_C
LID2015_070699_E_B	LID2015_070981_E_A	LID2015_070994_E_C	LID2015_071276_E_D
LID2015_070699_E_C	LID2015_070981_E_B	LID2015_070994_E_D	LID2015_071277_E_A
LID2015_070699_E_D	LID2015_070981_E_C	LID2015_070995_E_A	LID2015_071277_E_B
LID2015_070700_E_A	LID2015_070981_E_D	LID2015_070995_E_B	LID2015_071277_E_C
LID2015_070700_E_B	LID2015_070982_E_A	LID2015_070995_E_C	LID2015_071277_E_D
LID2015_070700_E_C	LID2015_070982_E_B	LID2015_070995_E_D	LID2015_071278_E_A

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 112 of 122

8			
LID2015_071278_E_B	LID2015_071291_E_D	LID2015_071305_E_B	LID2015_071587_E_D
LID2015_071278_E_C	LID2015_071292_E_A	LID2015_071305_E_C	LID2015_071588_E_A
LID2015_071278_E_D	LID2015_071292_E_B	LID2015_071305_E_D	LID2015_071588_E_B
LID2015_071279_E_A	LID2015_071292_E_C	LID2015_071306_E_A	LID2015_071588_E_C
LID2015_071279_E_B	LID2015_071292_E_D	LID2015_071306_E_B	LID2015_071588_E_D
LID2015_071279_E_C	LID2015_071293_E_A	LID2015_071306_E_C	LID2015_071589_E_A
LID2015_071279_E_D	LID2015_071293_E_B	LID2015_071306_E_D	LID2015_071589_E_B
LID2015_071280_E_A	LID2015_071293_E_C	LID2015_071575_E_B	LID2015_071589_E_C
LID2015_071280_E_B	LID2015_071293_E_D	LID2015_071576_E_A	LID2015_071589_E_D
LID2015_071280_E_C	LID2015_071294_E_A	LID2015_071576_E_B	LID2015_071590_E_A
LID2015_071280_E_D	LID2015_071294_E_B	LID2015_071576_E_D	LID2015_071590_E_B
LID2015_071281_E_A	LID2015_071294_E_C	LID2015_071577_E_A	LID2015_071590_E_C
LID2015_071281_E_B	LID2015_071294_E_D	LID2015_071577_E_B	LID2015_071590_E_D
LID2015_071281_E_C	LID2015_071295_E_A	LID2015_071577_E_C	LID2015_071591_E_A
LID2015_071281_E_D	LID2015_071295_E_B	LID2015_071577_E_D	LID2015_071591_E_B
LID2015_071282_E_A	LID2015_071295_E_C	LID2015_071578_E_A	LID2015_071591_E_C
LID2015_071282_E_B	LID2015_071295_E_D	LID2015_071578_E_B	LID2015_071591_E_D
LID2015_071282_E_C	LID2015_071296_E_A	LID2015_071578_E_C	LID2015_071592_E_A
LID2015_071282_E_D	LID2015_071296_E_B	LID2015_071578_E_D	LID2015_071592_E_B
LID2015_071283_E_A	LID2015_071296_E_C	LID2015_071579_E_A	LID2015_071592_E_C
LID2015_071283_E_B	LID2015_071296_E_D	LID2015_071579_E_B	LID2015_071592_E_D
LID2015_071283_E_C	LID2015_071297_E_A	LID2015_071579_E_C	LID2015_071593_E_A
LID2015_071283_E_D	LID2015_071297_E_B	LID2015_071579_E_D	LID2015_071593_E_B
LID2015_071284_E_A	LID2015_071297_E_C	LID2015_071580_E_A	LID2015_071593_E_C
LID2015_071284_E_B	LID2015_071297_E_D	LID2015_071580_E_B	LID2015_071593_E_D
LID2015_071284_E_C	LID2015_071298_E_A	LID2015_071580_E_C	LID2015_071594_E_A
LID2015_071284_E_D	LID2015_071298_E_B	LID2015_071580_E_D	LID2015_071594_E_B
LID2015_071285_E_A	LID2015_071298_E_C	LID2015_071581_E_A	LID2015_071594_E_C
LID2015_071285_E_B	LID2015_071298_E_D	LID2015_071581_E_B	LID2015_071594_E_D
LID2015_071285_E_C	LID2015_071299_E_A	LID2015_071581_E_C	LID2015_071595_E_A
LID2015_071285_E_D	LID2015_071299_E_B	LID2015_071581_E_D	LID2015_071595_E_B
LID2015_071286_E_A	LID2015_071299_E_C	LID2015_071582_E_A	LID2015_071595_E_C
LID2015_071286_E_B	LID2015_071299_E_D	LID2015_071582_E_B	LID2015_071595_E_D
LID2015_071286_E_C	LID2015_071300_E_A	LID2015_071582_E_C	LID2015_071596_E_A
LID2015_071286_E_D	LID2015_071300_E_B	LID2015_071582_E_D	LID2015_071596_E_B
LID2015_071287_E_A	LID2015_071300_E_C	LID2015_071583_E_A	LID2015_071596_E_C
LID2015_071287_E_B	LID2015_071300_E_D	LID2015_071583_E_B	LID2015_071596_E_D
LID2015_071287_E_C	LID2015_071301_E_A	LID2015_071583_E_C	LID2015_071597_E_A
LID2015_071287_E_D	LID2015_071301_E_B	LID2015_071583_E_D	LID2015_071597_E_B
LID2015_071288_E_A	LID2015_071301_E_C	LID2015_071584_E_A	LID2015_071597_E_C
LID2015_071288_E_B	LID2015_071301_E_D	LID2015_071584_E_B	LID2015_071597_E_D
LID2015_071288_E_C	LID2015_071302_E_A	LID2015_071584_E_C	LID2015_071598_E_A
LID2015_071288_E_D	LID2015_071302_E_B	LID2015_071584_E_D	LID2015_071598_E_B
LID2015_071289_E_A	LID2015_071302_E_C	LID2015_071585_E_A	LID2015_071598_E_C
LID2015_071289_E_B	LID2015_071302_E_D	LID2015_071585_E_B	LID2015_071598_E_D
LID2015_071289_E_C	LID2015_071303_E_A	LID2015_071585_E_C	LID2015_071599_E_A
LID2015_071289_E_D	LID2015_071303_E_B	LID2015_071585_E_D	LID2015_071599_E_B
LID2015_071290_E_A	LID2015_071303_E_C	LID2015_071586_E_A	LID2015_071599_E_C
LID2015_071290_E_B	LID2015_071303_E_D	LID2015_071586_E_B	LID2015_071599_E_D
LID2015_071290_E_C	LID2015_071304_E_A	LID2015_071586_E_C	LID2015_071600_E_A
LID2015_071290_E_D	LID2015_071304_E_B	LID2015_071586_E_D	LID2015_071600_E_B
LID2015_071291_E_A	LID2015_071304_E_C	LID2015_071587_E_A	LID2015_071600_E_C
LID2015_071291_E_B	LID2015_071304_E_D	LID2015_071587_E_B	LID2015_071600_E_D
LID2015_071291_E_C	LID2015_071305_E_A	LID2015_071587_E_C	LID2015_071601_E_A

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 113 of 122

5 5			
LID2015_071601_E_B	LID2015_071885_E_B	LID2015_071898_E_D	LID2015_072182_E_D
LID2015_071601_E_C	LID2015_071885_E_C	LID2015_071899_E_A	LID2015_072183_E_A
LID2015_071601_E_D	LID2015_071885_E_D	LID2015_071899_E_B	LID2015_072183_E_B
LID2015_071602_E_A	LID2015_071886_E_A	LID2015_071899_E_C	LID2015_072183_E_C
LID2015_071602_E_B	LID2015 071886 E B	LID2015_071899_E_D	LID2015_072183_E_D
LID2015_071602_E_C	LID2015_071886_E_C	LID2015_071900_E_A	LID2015_072184_E_A
LID2015_071602_E_D	LID2015_071886_E_D	LID2015_071900_E_B	LID2015_072184_E_B
LID2015_071603_E_A	LID2015_071887_E_A	LID2015_071900_E_C	LID2015_072184_E_C
LID2015_071603_E_B	LID2015_071887_E_B	LID2015_071900_E_D	LID2015_072184_E_D
LID2015_071603_E_C	LID2015_071887_E_C	LID2015_071901_E_A	LID2015_072185_E_A
LID2015_071603_E_D	LID2015_071887_E_D	LID2015_071901_E_B	LID2015_072185_E_B
LID2015_071604_E_A	LID2015_071888_E_A	LID2015_071901_E_C	LID2015_072185_E_C
LID2015_071604_E_B	LID2015_071888_E_B	LID2015_071901_E_D	LID2015_072185_E_D
LID2015_071604_E_C	LID2015_071888_E_C	LID2015_071902_E_A	LID2015_072186_E_A
LID2015_071604_E_D	LID2015_071888_E_D	LID2015_071902_E_B	LID2015_072186_E_B
LID2015_071605_E_A	LID2015_071889_E_A	LID2015_071902_E_C	LID2015_072186_E_C
LID2015_071605_E_B	LID2015_071889_E_B	LID2015_071902_E_D	LID2015_072186_E_D
LID2015_071605_E_C	LID2015_071889_E_C	LID2015_071903_E_A	LID2015_072187_E_A
LID2015_071605_E_D	LID2015_071889_E_D	LID2015_071903_E_B	LID2015_072187_E_B
LID2015_071606_E_A	LID2015_071890_E_A	LID2015_071903_E_C	LID2015_072187_E_C
LID2015_071606_E_B	LID2015_071890_E_B	LID2015_071903_E_D	LID2015_072187_E_D
LID2015_071606_E_C	LID2015_071890_E_C	LID2015_071904_E_A	LID2015_072188_E_A
LID2015_071606_E_D	LID2015_071890_E_D	LID2015_071904_E_B	LID2015_072188_E_B
LID2015_071877_E_B	LID2015_071891_E_A	LID2015_071904_E_C	LID2015_072188_E_C
LID2015_071877_E_D	LID2015_071891_E_B	LID2015_071904_E_D	LID2015_072188_E_D
LID2015_071878_E_A	LID2015_071891_E_C	LID2015_071905_E_A	LID2015_072189_E_A
LID2015_071878_E_B	LID2015_071891_E_D	LID2015_071905_E_B	LID2015_072189_E_B
LID2015_071878_E_C	LID2015_071892_E_A	LID2015_071905_E_C	LID2015_072189_E_C
LID2015_071878_E_D	LID2015_071892_E_B	LID2015_071905_E_D	LID2015_072189_E_D
LID2015_071879_E_A	LID2015_071892_E_C	LID2015_071906_E_A	LID2015_072190_E_A
LID2015_071879_E_B	LID2015_071892_E_D	LID2015_071906_E_B	LID2015_072190_E_B
LID2015_071879_E_C	LID2015_071893_E_A	LID2015_071906_E_C	LID2015_072190_E_C
LID2015_071879_E_D	LID2015_071893_E_B	LID2015_071906_E_D	LID2015_072190_E_D
LID2015_071880_E_A	LID2015_071893_E_C	LID2015_072177_E_B	LID2015_072191_E_A
LID2015_071880_E_B	LID2015_071893_E_D	LID2015_072177_E_D	LID2015_072191_E_B
LID2015_071880_E_C	LID2015_071894_E_A	LID2015_072178_E_A	LID2015_072191_E_C
LID2015_071880_E_D	LID2015_071894_E_B	LID2015_072178_E_B	LID2015_072191_E_D
LID2015_071881_E_A	LID2015_071894_E_C	LID2015_072178_E_C	LID2015_072192_E_A
LID2015_071881_E_B	LID2015_071894_E_D	LID2015_072178_E_D	LID2015_072192_E_B
LID2015_071881_E_C	LID2015_071895_E_A	LID2015_072179_E_A	LID2015_072192_E_C
LID2015_071881_E_D	LID2015_071895_E_B	LID2015_072179_E_B	LID2015_072192_E_D
LID2015_071882_E_A	LID2015_071895_E_C	LID2015_072179_E_C	LID2015_072193_E_A
LID2015_071882_E_B	LID2015_071895_E_D	LID2015_072179_E_D	LID2015_072193_E_B
LID2015_071882_E_C	LID2015_071896_E_A	LID2015_072180_E_A	LID2015_072193_E_C
LID2015_071882_E_D	LID2015_071896_E_B	LID2015_072180_E_B	LID2015_072193_E_D
LID2015_071883_E_A	LID2015_071896_E_C	LID2015_072180_E_C	LID2015_072194_E_A
LID2015_071883_E_B	LID2015_071896_E_D	LID2015_072180_E_D	LID2015_072194_E_B
LID2015_071883_E_C	LID2015_071897_E_A	LID2015_072181_E_A	LID2015_072194_E_C
LID2015_071883_E_D	LID2015_071897_E_B	LID2015_072181_E_B	LID2015_072194_E_D
LID2015_071884_E_A	LID2015_071897_E_C	LID2015_072181_E_C	LID2015_072195_E_A
LID2015_071884_E_B	LID2015_071897_E_D	LID2015_072181_E_D	LID2015_072195_E_B
LID2015_071884_E_C	LID2015_071898_E_A	LID2015_072182_E_A	LID2015_072195_E_C
LID2015_071884_E_D	LID2015_071898_E_B	LID2015_072182_E_B	LID2015_072195_E_D
LID2015_071885_E_A	LID2015_071898_E_C	LID2015_072182_E_C	LID2015_072196_E_A

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 114 of 122

0			
LID2015_072196_E_B	LID2015_072480_E_C	LID2015_072494_E_A	LID2015_072778_E_C
LID2015_072196_E_C	LID2015_072480_E_D	LID2015_072494_E_B	LID2015_072778_E_D
LID2015_072196_E_D	LID2015_072481_E_A	LID2015_072494_E_C	LID2015_072779_E_A
LID2015_072197_E_A	LID2015_072481_E_B	LID2015_072494_E_D	LID2015_072779_E_B
LID2015_072197_E_B	LID2015 072481 E C	LID2015_072495_E_A	LID2015_072779_E_C
LID2015_072197_E_C	LID2015_072481_E_D	LID2015_072495_E_B	LID2015_072779_E_D
LID2015_072197_E_D	LID2015_072482_E_A	LID2015_072495_E_C	LID2015_072780_E_A
LID2015_072198_E_A	LID2015_072482_E_B	LID2015_072495_E_D	LID2015_072780_E_B
LID2015_072198_E_B	LID2015_072482_E_C	LID2015_072496_E_A	LID2015_072780_E_C
LID2015_072198_E_C	LID2015_072482_E_D	LID2015_072496_E_B	LID2015_072780_E_D
LID2015_072198_E_D	LID2015_072483_E_A	LID2015_072496_E_C	LID2015_072781_E_A
LID2015_072199_E_A	LID2015_072483_E_B	LID2015_072496_E_D	LID2015_072781_E_B
LID2015_072199_E_B	LID2015_072483_E_C	LID2015_072497_E_A	LID2015_072781_E_C
LID2015_072199_E_C	LID2015_072483_E_D	LID2015_072497_E_B	LID2015_072781_E_D
LID2015_072199_E_D	LID2015_072484_E_A	LID2015_072497_E_C	LID2015_072782_E_A
LID2015_072200_E_A	LID2015_072484_E_B	LID2015_072497_E_D	LID2015_072782_E_B
LID2015_072200_E_B	LID2015_072484_E_C	LID2015_072498_E_A	LID2015_072782_E_C
LID2015_072200_E_C	LID2015_072484_E_D	LID2015_072498_E_B	LID2015_072782_E_D
LID2015_072200_E_D	LID2015_072485_E_A	LID2015_072498_E_C	LID2015_072783_E_A
LID2015_072201_E_A	LID2015_072485_E_B	LID2015_072498_E_D	LID2015_072783_E_B
LID2015_072201_E_B	LID2015_072485_E_C	LID2015_072499_E_A	LID2015_072783_E_C
LID2015_072201_E_C	LID2015_072485_E_D	LID2015_072499_E_B	LID2015_072783_E_D
LID2015_072201_E_D	LID2015_072486_E_A	LID2015_072499_E_C	LID2015_072784_E_A
LID2015_072202_E_A	LID2015_072486_E_B	LID2015_072499_E_D	LID2015_072784_E_B
LID2015_072202_E_B	LID2015_072486_E_C	LID2015_072500_E_A	LID2015_072784_E_C
LID2015_072202_E_C	LID2015_072486_E_D	LID2015_072500_E_B	LID2015_072784_E_D
LID2015_072202_E_D	LID2015_072487_E_A	LID2015_072500_E_C	LID2015_072785_E_A
LID2015_072203_E_A	LID2015_072487_E_B	LID2015_072500_E_D	LID2015_072785_E_B
LID2015_072203_E_B	LID2015_072487_E_C	LID2015_072501_E_A	LID2015_072785_E_C
LID2015_072203_E_C	LID2015_072487_E_D	LID2015_072501_E_B	LID2015_072785_E_D
LID2015_072203_E_D	LID2015_072488_E_A	LID2015_072501_E_C	LID2015_072786_E_A
LID2015_072204_E_A	LID2015_072488_E_B	LID2015_072501_E_D	LID2015_072786_E_B
LID2015_072204_E_B	LID2015_072488_E_C	LID2015_072502_E_A	LID2015_072786_E_C
LID2015_072204_E_C	LID2015_072488_E_D	LID2015_072502_E_B	LID2015_072786_E_D
LID2015_072204_E_D	LID2015_072489_E_A	LID2015_072502_E_C	LID2015_072787_E_A
LID2015_072205_E_A	LID2015_072489_E_B	LID2015_072502_E_D	LID2015_072787_E_B
LID2015_072205_E_B	LID2015_072489_E_C	LID2015_072503_E_A	LID2015_072787_E_C
LID2015_072205_E_C	LID2015_072489_E_D	LID2015_072503_E_B	LID2015_072787_E_D
LID2015_072205_E_D	LID2015_072490_E_A	LID2015_072503_E_C	LID2015_072788_E_A
LID2015_072206_E_A	LID2015_072490_E_B	LID2015_072503_E_D	LID2015_072788_E_B
LID2015_072206_E_B	LID2015_072490_E_C	LID2015_072504_E_A	LID2015_072788_E_C
LID2015_072206_E_C	LID2015_072490_E_D	LID2015_072504_E_B	LID2015_072788_E_D
LID2015_072206_E_D	LID2015_072491_E_A	LID2015_072504_E_C	LID2015_072789_E_A
LID2015_072477_E_B	LID2015_072491_E_B	LID2015_072504_E_D	LID2015_072789_E_B
LID2015_072478_E_A	LID2015_072491_E_C	LID2015_072505_E_A	LID2015_072789_E_C
LID2015_072478_E_B	LID2015_072491_E_D	LID2015_072505_E_B	LID2015_072789_E_D
LID2015_072478_E_C	LID2015_072492_E_A	LID2015_072505_E_C	LID2015_072790_E_A
LID2015_072478_E_D	LID2015_072492_E_B	LID2015_072505_E_D	LID2015_072790_E_B
LID2015_072479_E_A	LID2015_072492_E_C	LID2015_072506_E_A	LID2015_072790_E_C
LID2015_072479_E_B	LID2015_072492_E_D	LID2015_072506_E_B	LID2015_072790_E_D
LID2015_072479_E_C	LID2015_072493_E_A	LID2015_072506_E_C	LID2015_072791_E_A
LID2015_072479_E_D	LID2015_072493_E_B	LID2015_072506_E_D	LID2015_072791_E_B
LID2015_072480_E_A	LID2015_072493_E_C	LID2015_072778_E_A	LID2015_072791_E_C
LID2015_072480_E_B	LID2015_072493_E_D	LID2015_072778_E_B	LID2015_072791_E_D

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 115 of 122

LID2015_072792_E_A	LID2015_072805_E_C	LID2015_073090_E_B	LID2015_073103_E_D
LID2015_072792_E_B	LID2015_072805_E_D	LID2015_073090_E_C	LID2015_073104_E_A
LID2015_072792_E_C	LID2015_072806_E_A	LID2015_073090_E_D	LID2015_073104_E_B
LID2015_072792_E_D	LID2015_072806_E_B	LID2015_073091_E_A	LID2015_073104_E_C
LID2015_072793_E_A	LID2015_072806_E_C	LID2015_073091_E_B	LID2015_073104_E_D
LID2015_072793_E_B	LID2015_072806_E_D	LID2015_073091_E_C	LID2015_073105_E_A
LID2015_072793_E_C	LID2015_073078_E_A	LID2015_073091_E_D	LID2015_073105_E_B
LID2015_072793_E_D	LID2015_073078_E_B	LID2015_073091_E_D	LID2015_073105_E_C
LID2015_072794_E_A	LID2015_073078_E_D	LID2015_073092_E_B	LID2015_073105_E_D
	LID2015_073079_E_A	LID2015_073092_E_C	
LID2015_072794_E_B			LID2015_073106_E_A
LID2015_072794_E_C	LID2015_073079_E_B	LID2015_073092_E_D	LID2015_073106_E_B
LID2015_072794_E_D	LID2015_073079_E_C	LID2015_073093_E_A	LID2015_073106_E_C
LID2015_072795_E_A	LID2015_073079_E_D	LID2015_073093_E_B	LID2015_073106_E_D
LID2015_072795_E_B	LID2015_073080_E_A	LID2015_073093_E_C	LID2015_073379_E_B
LID2015_072795_E_C	LID2015_073080_E_B	LID2015_073093_E_D	LID2015_073380_E_A
LID2015_072795_E_D	LID2015_073080_E_C	LID2015_073094_E_A	LID2015_073380_E_B
LID2015_072796_E_A	LID2015_073080_E_D	LID2015_073094_E_B	LID2015_073380_E_D
LID2015_072796_E_B	LID2015_073081_E_A	LID2015_073094_E_C	LID2015_073381_E_A
LID2015_072796_E_C	LID2015_073081_E_B	LID2015_073094_E_D	LID2015_073381_E_B
LID2015_072796_E_D	LID2015_073081_E_C	LID2015_073095_E_A	LID2015_073381_E_C
LID2015_072797_E_A	LID2015_073081_E_D	LID2015_073095_E_B	LID2015_073381_E_D
LID2015_072797_E_B	LID2015_073082_E_A	LID2015_073095_E_C	LID2015_073382_E_A
LID2015_072797_E_C	LID2015_073082_E_B	LID2015_073095_E_D	LID2015_073382_E_B
LID2015_072797_E_D	LID2015_073082_E_C	LID2015_073096_E_A	LID2015_073382_E_C
LID2015_072798_E_A	LID2015_073082_E_D	LID2015_073096_E_B	LID2015_073382_E_D
LID2015_072798_E_B	LID2015_073083_E_A	LID2015_073096_E_C	LID2015_073383_E_A
LID2015_072798_E_C	LID2015_073083_E_B	LID2015_073096_E_D	LID2015_073383_E_B
LID2015_072798_E_D	LID2015_073083_E_C	LID2015_073097_E_A	LID2015_073383_E_C
LID2015_072799_E_A	LID2015_073083_E_D	LID2015_073097_E_B	LID2015_073383_E_D
LID2015_072799_E_B	LID2015_073084_E_A	LID2015_073097_E_C	LID2015_073384_E_A
LID2015_072799_E_C	LID2015_073084_E_B	LID2015_073097_E_D	LID2015_073384_E_B
LID2015_072799_E_D	LID2015_073084_E_C	LID2015_073098_E_A	LID2015_073384_E_C
LID2015_072800_E_A	LID2015_073084_E_D	LID2015_073098_E_B	LID2015_073384_E_D
LID2015_072800_E_B	LID2015_073085_E_A	LID2015_073098_E_C	LID2015_073385_E_A
LID2015_072800_E_C	LID2015_073085_E_B	LID2015_073098_E_D	LID2015_073385_E_B
LID2015_072800_E_D	LID2015_073085_E_C	LID2015_073099_E_A	LID2015_073385_E_C
LID2015_072801_E_A	LID2015_073085_E_D	LID2015_073099_E_B	LID2015_073385_E_D
LID2015_072801_E_B	LID2015_073086_E_A	LID2015_073099_E_C	LID2015_073386_E_A
LID2015_072801_E_C	LID2015_073086_E_B	LID2015_073099_E_D	LID2015_073386_E_B
LID2015_072801_E_D	LID2015_073086_E_C	LID2015_073100_E_A	LID2015_073386_E_C
LID2015_072802_E_A	LID2015_073086_E_D	LID2015_073100_E_B	LID2015_073386_E_D
LID2015_072802_E_B	LID2015_073087_E_A	LID2015_073100_E_C	LID2015_073387_E_A
LID2015_072802_E_C	LID2015_073087_E_B	LID2015_073100_E_D	LID2015_073387_E_B
LID2015_072802_E_D	LID2015_073087_E_C	LID2015_073101_E_A	LID2015_073387_E_C
LID2015_072803_E_A	LID2015_073087_E_D	LID2015_073101_E_B	LID2015_073387_E_D
LID2015_072803_E_B	LID2015_073087_E_D	LID2015_073101_E_C	LID2015_073387_E_D LID2015_073388_E_A
· · · · ·			
LID2015_072803_E_C	LID2015_073088_E_B	LID2015_073101_E_D	LID2015_073388_E_B
LID2015_072803_E_D	LID2015_073088_E_C	LID2015_073102_E_A	LID2015_073388_E_C
LID2015_072804_E_A	LID2015_073088_E_D	LID2015_073102_E_B	LID2015_073388_E_D
LID2015_072804_E_B	LID2015_073089_E_A	LID2015_073102_E_C	LID2015_073389_E_A
LID2015_072804_E_C	LID2015_073089_E_B	LID2015_073102_E_D	LID2015_073389_E_B
LID2015_072804_E_D	LID2015_073089_E_C	LID2015_073103_E_A	LID2015_073389_E_C
LID2015_072805_E_A	LID2015_073089_E_D	LID2015_073103_E_B	LID2015_073389_E_D
LID2015_072805_E_B	LID2015_073090_E_A	LID2015_073103_E_C	LID2015_073390_E_A

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 116 of 122

0			
LID2015_073390_E_B	LID2015_073403_E_D	LID2015_073693_E_C	LID2015_073984_E_A
LID2015_073390_E_C	LID2015_073404_E_A	LID2015_073693_E_D	LID2015_073984_E_B
LID2015_073390_E_D	LID2015_073404_E_B	LID2015_073694_E_A	LID2015_073984_E_D
LID2015_073391_E_A	LID2015_073404_E_C	LID2015_073694_E_B	LID2015_073985_E_A
LID2015_073391_E_B	LID2015_073404_E_D	LID2015_073694_E_C	LID2015_073985_E_B
LID2015_073391_E_C	LID2015_073405_E_A	LID2015_073694_E_D	LID2015_073985_E_C
LID2015_073391_E_D	LID2015_073405_E_B	LID2015_073695_E_A	LID2015_073985_E_D
LID2015_073392_E_A	LID2015_073405_E_C	LID2015_073695_E_B	LID2015_073986_E_A
LID2015_073392_E_B	LID2015_073405_E_D	LID2015_073695_E_C	LID2015_073986_E_B
LID2015_073392_E_C	LID2015_073406_E_A	LID2015_073695_E_D	LID2015_073986_E_C
LID2015_073392_E_D	LID2015_073406_E_B	LID2015_073696_E_A	LID2015_073986_E_D
LID2015_073393_E_A	LID2015_073406_E_C	LID2015_073696_E_B	LID2015_073987_E_A
LID2015_073393_E_B	LID2015_073406_E_D	LID2015_073696_E_C	LID2015_073987_E_B
LID2015_073393_E_C	LID2015_073683_E_A	LID2015_073696_E_D	LID2015_073987_E_C
LID2015_073393_E_D	LID2015_073683_E_B	LID2015_073697_E_A	LID2015_073987_E_D
LID2015_073394_E_A	LID2015_073683_E_D	LID2015_073697_E_B	LID2015_073988_E_A
LID2015_073394_E_B	LID2015_073684_E_A	LID2015_073697_E_C	LID2015_073988_E_B
LID2015_073394_E_C	LID2015_073684_E_B	LID2015_073697_E_D	LID2015_073988_E_C
LID2015_073394_E_D	LID2015_073684_E_C	LID2015_073698_E_A	LID2015_073988_E_D
LID2015_073395_E_A	LID2015_073684_E_D	LID2015_073698_E_B	LID2015_073989_E_A
LID2015_073395_E_B	LID2015_073685_E_A	LID2015_073698_E_C	LID2015_073989_E_B
LID2015_073395_E_C	LID2015_073685_E_B	LID2015_073698_E_D	LID2015_073989_E_C
LID2015_073395_E_D	LID2015_073685_E_C	LID2015_073699_E_A	LID2015_073989_E_D
LID2015_073396_E_A	LID2015_073685_E_D	LID2015_073699_E_B	LID2015_073990_E_A
LID2015_073396_E_B	LID2015_073686_E_A	LID2015_073699_E_C	LID2015_073990_E_B
LID2015_073396_E_C	LID2015_073686_E_B	LID2015_073699_E_D	LID2015_073990_E_C
LID2015_073396_E_D	LID2015_073686_E_C	LID2015_073700_E_A	LID2015_073990_E_D
LID2015_073397_E_A	LID2015_073686_E_D	LID2015_073700_E_B	LID2015_073991_E_A
LID2015_073397_E_B	LID2015_073687_E_A	LID2015_073700_E_C	LID2015_073991_E_B
LID2015_073397_E_C	LID2015_073687_E_B	LID2015_073700_E_D	LID2015_073991_E_C
LID2015_073397_E_D	LID2015_073687_E_C	LID2015_073701_E_A	LID2015_073991_E_D
LID2015_073398_E_A	LID2015_073687_E_D	LID2015_073701_E_B	LID2015_073992_E_A
LID2015_073398_E_B	LID2015_073688_E_A	LID2015_073701_E_C	LID2015_073992_E_B
LID2015_073398_E_C	LID2015_073688_E_B	LID2015_073701_E_D	LID2015_073992_E_C
LID2015_073398_E_D	LID2015_073688_E_C	LID2015_073702_E_A	LID2015_073992_E_D
LID2015_073399_E_A	LID2015_073688_E_D	LID2015_073702_E_B	LID2015_073993_E_A
LID2015_073399_E_B	LID2015_073689_E_A	LID2015_073702_E_C	LID2015_073993_E_B
LID2015_073399_E_C	LID2015_073689_E_B	LID2015_073702_E_D	LID2015_073993_E_C
LID2015_073399_E_D	LID2015_073689_E_C	LID2015_073703_E_A	LID2015_073993_E_D
LID2015_073400_E_A	LID2015_073689_E_D	LID2015_073703_E_B	LID2015_073994_E_A
LID2015_073400_E_B	LID2015_073690_E_A	LID2015_073703_E_C	LID2015_073994_E_B
LID2015_073400_E_C	LID2015_073690_E_B	LID2015_073703_E_D	LID2015_073994_E_C
LID2015_073400_E_D	LID2015_073690_E_C	LID2015_073704_E_A	LID2015_073994_E_D
LID2015_073401_E_A	LID2015_073690_E_D	LID2015_073704_E_B	LID2015_073995_E_A
LID2015_073401_E_B	LID2015_073691_E_A	LID2015_073704_E_C	LID2015_073995_E_B
LID2015_073401_E_C	LID2015_073691_E_B	LID2015_073704_E_D	LID2015_073995_E_C
LID2015_073401_E_D	LID2015_073691_E_C	LID2015_073705_E_A	LID2015_073995_E_D
LID2015_073402_E_A	LID2015_073691_E_D	LID2015_073705_E_B	LID2015_073996_E_A
LID2015_073402_E_B	LID2015_073692_E_A	LID2015_073705_E_C	LID2015_073996_E_B
LID2015_073402_E_C	LID2015_073692_E_B	LID2015_073705_E_D	LID2015_073996_E_C
LID2015_073402_E_D	LID2015_073692_E_C	LID2015_073706_E_A	LID2015_073996_E_D
LID2015_073403_E_A	LID2015_073692_E_D	LID2015_073706_E_B	LID2015_073997_E_A
LID2015_073403_E_B	LID2015_073693_E_A	LID2015_073706_E_C	LID2015_073997_E_B
LID2015_073403_E_C	LID2015_073693_E_B	LID2015_073706_E_D	LID2015_073997_E_C

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 117 of 122

0			
LID2015_073997_E_D	LID2015_074289_E_C	LID2015_074303_E_A	LID2015_074595_E_C
LID2015_073998_E_A	LID2015_074289_E_D	LID2015_074303_E_B	LID2015_074595_E_D
LID2015_073998_E_B	LID2015_074290_E_A	LID2015_074303_E_C	LID2015_074596_E_A
LID2015_073998_E_C	LID2015_074290_E_B	LID2015_074303_E_D	LID2015_074596_E_B
LID2015_073998_E_D	LID2015_074290_E_C	LID2015_074304_E_A	LID2015_074596_E_C
LID2015_073999_E_A	LID2015_074290_E_D	LID2015_074304_E_B	LID2015_074596_E_D
LID2015_073999_E_B	LID2015_074291_E_A	LID2015_074304_E_C	LID2015_074597_E_A
LID2015_073999_E_C	LID2015_074291_E_B	LID2015_074304_E_D	LID2015_074597_E_B
LID2015_073999_E_D	LID2015_074291_E_C	LID2015_074305_E_A	LID2015_074597_E_C
LID2015_074000_E_A	LID2015_074291_E_D	LID2015_074305_E_B	LID2015_074597_E_D
LID2015_074000_E_B	LID2015_074292_E_A	LID2015_074305_E_C	LID2015_074598_E_A
LID2015_074000_E_C	LID2015_074292_E_B	LID2015_074305_E_D	LID2015_074598_E_B
LID2015_074000_E_D	LID2015_074292_E_C	LID2015_074585_E_A	LID2015_074598_E_C
LID2015_074001_E_A	LID2015_074292_E_D	LID2015_074585_E_B	LID2015_074598_E_D
LID2015_074001_E_B	LID2015_074293_E_A	LID2015_074585_E_C	LID2015_074599_E_A
LID2015_074001_E_C	LID2015_074293_E_B	LID2015_074585_E_D	LID2015_074599_E_B
LID2015_074001_E_D	LID2015_074293_E_C	LID2015_074586_E_A	LID2015_074599_E_C
LID2015_074002_E_A	LID2015_074293_E_D	LID2015_074586_E_B	LID2015_074599_E_D
LID2015_074002_E_B	LID2015_074294_E_A	LID2015_074586_E_C	LID2015_074600_E_A
LID2015_074002_E_C	LID2015_074294_E_B	LID2015_074586_E_D	LID2015_074600_E_B
LID2015_074002_E_D	LID2015_074294_E_C	LID2015_074587_E_A	LID2015_074600_E_C
LID2015_074003_E_A	LID2015_074294_E_D	LID2015_074587_E_B	LID2015_074600_E_D
LID2015_074003_E_B	LID2015_074295_E_A	LID2015_074587_E_C	LID2015_074601_E_A
LID2015_074003_E_C	LID2015_074295_E_B	LID2015_074587_E_D	LID2015_074601_E_B
LID2015_074003_E_D	LID2015_074295_E_C	LID2015_074588_E_A	LID2015_074601_E_C
LID2015_074004_E_A	LID2015_074295_E_D	LID2015_074588_E_B	LID2015_074601_E_D
LID2015_074004_E_B	LID2015_074296_E_A	LID2015_074588_E_C	LID2015_074602_E_A
LID2015_074004_E_C	LID2015_074296_E_B	LID2015_074588_E_D	LID2015_074602_E_B
LID2015_074004_E_D	LID2015_074296_E_C	LID2015_074589_E_A	LID2015_074602_E_C
LID2015_074005_E_A	LID2015_074296_E_D	LID2015_074589_E_B	LID2015_074602_E_D
LID2015_074005_E_B	LID2015_074297_E_A	LID2015_074589_E_C	LID2015_074603_E_A
LID2015_074005_E_C	LID2015_074297_E_B	LID2015_074589_E_D	LID2015_074603_E_B
LID2015_074005_E_D	LID2015_074297_E_C	LID2015_074590_E_A	LID2015_074603_E_C
LID2015_074006_E_A	LID2015_074297_E_D	LID2015_074590_E_B	LID2015_074603_E_D
LID2015_074006_E_B	LID2015_074298_E_A	LID2015_074590_E_C	LID2015_074604_E_A
LID2015_074284_E_B	LID2015_074298_E_B	LID2015_074590_E_D	LID2015_074604_E_B
LID2015_074285_E_A	LID2015_074298_E_C	LID2015_074591_E_A	LID2015_074604_E_C
LID2015_074285_E_B	LID2015_074298_E_D	LID2015_074591_E_B	LID2015_074604_E_D
LID2015_074285_E_C	LID2015_074299_E_A	LID2015_074591_E_C	LID2015_074605_E_A
LID2015_074285_E_D	LID2015_074299_E_B	LID2015_074591_E_D	LID2015_074605_E_B
LID2015_074286_E_A	LID2015_074299_E_C	LID2015_074592_E_A	LID2015_074605_E_C
LID2015_074286_E_B	LID2015_074299_E_D	LID2015_074592_E_B	LID2015_074605_E_D
LID2015_074286_E_C	LID2015_074300_E_A	LID2015_074592_E_C	LID2015_074606_E_C
LID2015_074286_E_D	LID2015_074300_E_B	LID2015_074592_E_D	LID2015_074885_E_B
LID2015_074287_E_A	LID2015_074300_E_C	LID2015_074593_E_A	LID2015_074886_E_A
LID2015_074287_E_B	LID2015_074300_E_D	LID2015_074593_E_B	LID2015_074886_E_B
LID2015_074287_E_C	LID2015_074301_E_A	LID2015_074593_E_C	LID2015_074886_E_C
LID2015_074287_E_D	LID2015_074301_E_B	LID2015_074593_E_D	LID2015_074886_E_D
LID2015_074288_E_A	LID2015_074301_E_C	LID2015_074594_E_A	LID2015_074887_E_A
LID2015_074288_E_B	LID2015_074301_E_D	LID2015_074594_E_B	LID2015_074887_E_B
LID2015_074288_E_C	LID2015_074302_E_A	LID2015_074594_E_C	LID2015_074887_E_C
LID2015_074288_E_D	LID2015_074302_E_B	LID2015_074594_E_D	LID2015_074887_E_D
LID2015_074289_E_A	LID2015_074302_E_C	LID2015_074595_E_A	LID2015_074888_E_A
LID2015_074289_E_B	LID2015_074302_E_D	LID2015_074595_E_B	LID2015_074888_E_B

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 118 of 122

0			
LID2015_074888_E_C	LID2015_074902_E_A	LID2015_075195_E_B	LID2015_075488_E_D
LID2015_074888_E_D	LID2015_074902_E_B	LID2015_075195_E_C	LID2015_075489_E_A
LID2015_074889_E_A	LID2015_074902_E_C	LID2015_075195_E_D	LID2015_075489_E_B
LID2015_074889_E_B	LID2015_074902_E_D	LID2015_075196_E_A	LID2015_075489_E_C
LID2015_074889_E_C	LID2015_074903_E_A	LID2015_075196_E_B	LID2015_075489_E_D
LID2015_074889_E_D	LID2015_074903_E_B	LID2015_075196_E_C	LID2015_075490_E_A
LID2015_074890_E_A	LID2015_074903_E_C	LID2015_075196_E_D	LID2015_075490_E_B
LID2015_074890_E_B	LID2015_074903_E_D	LID2015_075197_E_A	LID2015_075490_E_C
LID2015_074890_E_C	LID2015_074904_E_A	LID2015_075197_E_B	LID2015_075490_E_D
LID2015_074890_E_D	LID2015_074904_E_B	LID2015_075197_E_C	LID2015_075491_E_A
LID2015_074891_E_A	LID2015_074904_E_C	LID2015_075197_E_D	LID2015_075491_E_B
LID2015_074891_E_B	LID2015_074904_E_D	LID2015_075198_E_A	LID2015_075491_E_C
LID2015_074891_E_C	LID2015_074905_E_A	LID2015_075198_E_B	LID2015_075491_E_D
LID2015_074891_E_D	LID2015_074905_E_B	LID2015_075198_E_C	LID2015_075492_E_A
LID2015_074892_E_A	LID2015_074905_E_C	LID2015_075198_E_D	LID2015_075492_E_B
LID2015_074892_E_B	LID2015_074905_E_D	LID2015_075199_E_A	LID2015_075492_E_C
LID2015_074892_E_C	LID2015_074906_E_A	LID2015_075199_E_B	LID2015_075492_E_D
LID2015_074892_E_D	LID2015_074906_E_C	LID2015_075199_E_C	LID2015_075493_E_A
LID2015_074893_E_A	LID2015_075186_E_A	LID2015_075199_E_D	LID2015_075493_E_B
LID2015_074893_E_B	LID2015_075186_E_B	LID2015_075200_E_A	LID2015_075493_E_C
LID2015_074893_E_C	LID2015_075186_E_D	LID2015_075200_E_B	LID2015_075493_E_D
LID2015_074893_E_D	LID2015_075187_E_A	LID2015_075200_E_C	LID2015_075494_E_A
LID2015_074894_E_A	LID2015_075187_E_B	LID2015_075200_E_D	LID2015_075494_E_B
LID2015_074894_E_B	LID2015_075187_E_C	LID2015_075201_E_A	LID2015_075494_E_C
LID2015_074894_E_C	LID2015_075187_E_D	LID2015_075201_E_B	LID2015_075494_E_D
LID2015_074894_E_D	LID2015_075188_E_A	LID2015_075201_E_C	LID2015_075495_E_A
LID2015_074895_E_A	LID2015_075188_E_B	LID2015_075201_E_D	LID2015_075495_E_B
LID2015_074895_E_B	LID2015_075188_E_C	LID2015_075202_E_A	LID2015_075495_E_C
LID2015_074895_E_C	LID2015_075188_E_D	LID2015_075202_E_B	LID2015_075495_E_D
LID2015_074895_E_D	LID2015_075189_E_A	LID2015_075202_E_C	LID2015_075496_E_A
LID2015_074896_E_A	LID2015_075189_E_B	LID2015_075202_E_D	LID2015_075496_E_B
LID2015_074896_E_B	LID2015_075189_E_C	LID2015_075203_E_A	LID2015_075496_E_C
LID2015_074896_E_C	LID2015_075189_E_D	LID2015_075203_E_B	LID2015_075496_E_D
LID2015_074896_E_D	LID2015_075190_E_A	LID2015_075203_E_C	LID2015_075497_E_A
LID2015_074897_E_A	LID2015_075190_E_B	LID2015_075203_E_D	LID2015_075497_E_B
LID2015_074897_E_B	LID2015_075190_E_C	LID2015_075204_E_A	LID2015_075497_E_C
LID2015_074897_E_C	LID2015_075190_E_D	LID2015_075204_E_B	LID2015_075497_E_D
LID2015_074897_E_D	LID2015_075191_E_A	LID2015_075204_E_C	LID2015_075498_E_A
LID2015_074898_E_A	LID2015_075191_E_B	LID2015_075204_E_D	LID2015_075498_E_B
LID2015_074898_E_B	LID2015_075191_E_C	LID2015_075205_E_A	LID2015_075498_E_C
LID2015_074898_E_C	LID2015_075191_E_D	LID2015_075205_E_B	LID2015_075498_E_D
LID2015_074898_E_D	LID2015_075192_E_A	LID2015_075205_E_C	LID2015_075499_E_A
LID2015_074899_E_A	LID2015_075192_E_B	LID2015_075205_E_D	LID2015_075499_E_B
LID2015_074899_E_B	LID2015_075192_E_C	LID2015_075206_E_A	LID2015_075499_E_C
LID2015_074899_E_C	LID2015_075192_E_D	LID2015_075206_E_C	LID2015_075499_E_D
LID2015_074899_E_D	LID2015_075193_E_A	LID2015_075486_E_B	LID2015_075500_E_A
LID2015_074900_E_A	LID2015_075193_E_B	LID2015_075486_E_D	LID2015_075500_E_B
LID2015_074900_E_B	LID2015_075193_E_C	LID2015_075487_E_A	LID2015_075500_E_C
LID2015_074900_E_C	LID2015_075193_E_D	LID2015_075487_E_B	LID2015_075500_E_D
LID2015_074900_E_D	LID2015_075194_E_A	LID2015_075487_E_C	LID2015_075501_E_A
LID2015_074901_E_A	LID2015_075194_E_B	LID2015_075487_E_D	LID2015_075501_E_B
LID2015_074901_E_B	LID2015_075194_E_C	LID2015_075488_E_A	LID2015_075501_E_C
LID2015_074901_E_C	LID2015_075194_E_D	LID2015_075488_E_B	LID2015_075501_E_D
LID2015_074901_E_D	LID2015_075195_E_A	LID2015_075488_E_C	LID2015_075502_E_A

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 119 of 122

0			
LID2015_075502_E_B	LID2015_075796_E_A	LID2015_076090_E_A	LID2015_076103_E_C
LID2015_075502_E_C	LID2015_075796_E_B	LID2015_076090_E_B	LID2015_076103_E_D
LID2015_075502_E_D	LID2015_075796_E_C	LID2015_076090_E_C	LID2015_076104_E_A
LID2015_075503_E_A	LID2015_075796_E_D	LID2015_076090_E_D	LID2015_076104_E_B
LID2015_075503_E_B	LID2015_075797_E_A	LID2015_076091_E_A	LID2015_076104_E_C
LID2015_075503_E_C	LID2015_075797_E_B	LID2015_076091_E_B	LID2015_076104_E_D
LID2015_075503_E_D	LID2015_075797_E_C	LID2015_076091_E_C	LID2015_076105_E_A
LID2015_075504_E_A	LID2015_075797_E_D	LID2015_076091_E_D	LID2015_076105_E_B
LID2015_075504_E_B	LID2015_075798_E_A	LID2015_076092_E_A	LID2015_076105_E_C
LID2015_075504_E_C	LID2015_075798_E_B	LID2015_076092_E_B	LID2015_076105_E_D
LID2015_075504_E_D	LID2015_075798_E_C	LID2015_076092_E_C	LID2015_076106_E_A
LID2015_075505_E_A	LID2015_075798_E_D	LID2015_076092_E_D	LID2015_076106_E_C
LID2015_075505_E_B	LID2015_075799_E_A	LID2015_076093_E_A	LID2015_076388_E_A
LID2015_075505_E_C	LID2015_075799_E_B	LID2015_076093_E_B	LID2015_076388_E_B
LID2015_075505_E_D	LID2015_075799_E_C	LID2015_076093_E_C	LID2015_076388_E_D
LID2015_075506_E_A	LID2015_075799_E_D	LID2015_076093_E_D	LID2015_076389_E_A
LID2015_075506_E_C	LID2015_075800_E_A	LID2015_076094_E_A	LID2015_076389_E_B
LID2015_075786_E_B	LID2015_075800_E_B	LID2015_076094_E_B	LID2015_076389_E_C
LID2015_075787_E_A	LID2015_075800_E_C	LID2015_076094_E_C	LID2015_076389_E_D
LID2015_075787_E_B	LID2015_075800_E_D	LID2015_076094_E_D	LID2015_076390_E_A
LID2015_075787_E_C	LID2015_075801_E_A	LID2015_076095_E_A	LID2015_076390_E_B
LID2015_075787_E_D	LID2015_075801_E_B	LID2015_076095_E_B	LID2015_076390_E_C
LID2015_075788_E_A	LID2015_075801_E_C	LID2015_076095_E_C	LID2015_076390_E_D
LID2015_075788_E_B	LID2015_075801_E_D	LID2015_076095_E_D	LID2015_076391_E_A
LID2015_075788_E_C	LID2015_075802_E_A	LID2015_076096_E_A	LID2015_076391_E_B
LID2015_075788_E_D	LID2015_075802_E_B	LID2015_076096_E_B	LID2015_076391_E_C
LID2015_075789_E_A	LID2015_075802_E_C	LID2015_076096_E_C	LID2015_076391_E_D
LID2015_075789_E_B	LID2015_075802_E_D	LID2015_076096_E_D	LID2015_076392_E_A
LID2015_075789_E_C	LID2015_075803_E_A	LID2015_076097_E_A	LID2015_076392_E_B
LID2015_075789_E_D	LID2015_075803_E_B	LID2015_076097_E_B	LID2015_076392_E_C
LID2015_075790_E_A	LID2015_075803_E_C	LID2015_076097_E_C	LID2015_076392_E_D
LID2015_075790_E_B	LID2015_075803_E_D	LID2015_076097_E_D	LID2015_076393_E_A
LID2015_075790_E_C	LID2015_075804_E_A	LID2015_076098_E_A	LID2015_076393_E_B
LID2015_075790_E_D	LID2015_075804_E_B	LID2015_076098_E_B	LID2015_076393_E_C
LID2015_075791_E_A	LID2015_075804_E_C	LID2015_076098_E_C	LID2015_076393_E_D
LID2015_075791_E_B	LID2015_075804_E_D	LID2015_076098_E_D	LID2015_076394_E_A
LID2015_075791_E_C	LID2015_075805_E_A	LID2015_076099_E_A	LID2015_076394_E_B
LID2015_075791_E_D	LID2015_075805_E_B	LID2015_076099_E_B	LID2015_076394_E_C
LID2015_075792_E_A	LID2015_075805_E_C	LID2015_076099_E_C	LID2015_076394_E_D
LID2015_075792_E_B	LID2015_075805_E_D	LID2015_076099_E_D	LID2015_076395_E_A
LID2015_075792_E_C	LID2015_075806_E_A	LID2015_076100_E_A	LID2015_076395_E_B
LID2015_075792_E_D	LID2015_075806_E_C	LID2015_076100_E_B	LID2015_076395_E_C
LID2015_075793_E_A	LID2015_076087_E_A	LID2015_076100_E_C	LID2015_076395_E_D
LID2015_075793_E_B	LID2015_076087_E_B	LID2015_076100_E_D	LID2015_076396_E_A
LID2015_075793_E_C	LID2015_076087_E_C	LID2015_076101_E_A	LID2015_076396_E_B
LID2015_075793_E_D	LID2015_076087_E_D	LID2015_076101_E_B	LID2015_076396_E_C
LID2015_075794_E_A	LID2015_076088_E_A	LID2015_076101_E_C	LID2015_076396_E_D
LID2015_075794_E_B	LID2015_076088_E_B	LID2015_076101_E_D	LID2015_076397_E_A
LID2015_075794_E_C	LID2015_076088_E_C	LID2015_076102_E_A	LID2015_076397_E_B
LID2015_075794_E_D	LID2015_076088_E_D	LID2015_076102_E_B	LID2015_076397_E_C
LID2015_075795_E_A	LID2015_076089_E_A	LID2015_076102_E_C	LID2015_076397_E_D
LID2015_075795_E_B	LID2015_076089_E_B	LID2015_076102_E_D	LID2015_076398_E_A
LID2015_075795_E_C	LID2015_076089_E_C	LID2015_076103_E_A	LID2015_076398_E_B
LID2015_075795_E_D	LID2015_076089_E_D	LID2015_076103_E_B	LID2015_076398_E_C

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 120 of 122

0			
LID2015_076398_E_D	LID2015_076694_E_A	LID2015_076989_E_C	LID2015_077003_E_A
LID2015_076399_E_A	LID2015_076694_E_B	LID2015_076989_E_D	LID2015_077003_E_B
LID2015_076399_E_B	LID2015_076694_E_C	LID2015_076990_E_A	LID2015_077003_E_C
LID2015_076399_E_C	LID2015_076694_E_D	LID2015_076990_E_B	LID2015_077003_E_D
LID2015_076399_E_D	LID2015 076695 E A	LID2015_076990_E_C	LID2015_077004_E_A
LID2015_076400_E_A	LID2015_076695_E_B	LID2015_076990_E_D	LID2015_077004_E_B
LID2015_076400_E_B	LID2015_076695_E_C	LID2015_076991_E_A	LID2015_077004_E_C
LID2015_076400_E_C	LID2015_076695_E_D	LID2015_076991_E_B	LID2015_077004_E_D
LID2015_076400_E_D	LID2015_076696_E_A	LID2015_076991_E_C	LID2015_077005_E_A
LID2015_076401_E_A	LID2015_076696_E_B	LID2015_076991_E_D	LID2015_077005_E_B
LID2015_076401_E_B	LID2015_076696_E_C	LID2015_076992_E_A	LID2015_077005_E_C
LID2015_076401_E_C	LID2015_076696_E_D	LID2015_076992_E_B	LID2015_077005_E_D
LID2015_076401_E_D	LID2015_076697_E_A	LID2015_076992_E_C	LID2015_077006_E_A
LID2015_076402_E_A	LID2015_076697_E_B	LID2015_076992_E_D	LID2015_077006_E_C
LID2015_076402_E_B	LID2015_076697_E_C	LID2015_076993_E_A	LID2015_077288_E_B
LID2015_076402_E_C	LID2015_076697_E_D	LID2015_076993_E_B	LID2015_077288_E_D
LID2015_076402_E_D	LID2015_076698_E_A	LID2015_076993_E_C	LID2015_077289_E_A
LID2015_076403_E_A	LID2015_076698_E_B	LID2015_076993_E_D	LID2015_077289_E_B
LID2015_076403_E_B	LID2015_076698_E_C	LID2015_076994_E_A	LID2015_077289_E_C
LID2015_076403_E_C	LID2015_076698_E_D	LID2015_076994_E_B	LID2015_077289_E_D
LID2015_076403_E_D	LID2015_076699_E_A	LID2015_076994_E_C	LID2015_077290_E_A
LID2015_076404_E_A	LID2015_076699_E_B	LID2015_076994_E_D	LID2015_077290_E_B
LID2015_076404_E_B	LID2015_076699_E_C	LID2015_076995_E_A	LID2015_077290_E_C
LID2015_076404_E_C	LID2015_076699_E_D	LID2015_076995_E_B	LID2015_077290_E_D
LID2015_076404_E_D	LID2015_076700_E_A	LID2015_076995_E_C	LID2015_077291_E_A
LID2015_076405_E_A	LID2015_076700_E_B	LID2015_076995_E_D	LID2015_077291_E_B
LID2015_076405_E_B	LID2015_076700_E_C	LID2015_076996_E_A	LID2015_077291_E_C
LID2015_076405_E_C	LID2015_076700_E_D	LID2015_076996_E_B	LID2015_077291_E_D
LID2015_076405_E_D	LID2015_076701_E_A	LID2015_076996_E_C	LID2015_077292_E_A
LID2015_076406_E_A	LID2015_076701_E_B	LID2015_076996_E_D	LID2015_077292_E_B
LID2015_076406_E_C	LID2015_076701_E_C	LID2015_076997_E_A	LID2015_077292_E_C
LID2015_076688_E_A	LID2015_076701_E_D	LID2015_076997_E_B	LID2015_077292_E_D
LID2015_076688_E_B	LID2015_076702_E_A	LID2015_076997_E_C	LID2015_077293_E_A
LID2015_076688_E_D	LID2015_076702_E_B	LID2015_076997_E_D	LID2015_077293_E_B
LID2015_076689_E_A	LID2015_076702_E_C	LID2015_076998_E_A	LID2015_077293_E_C
LID2015_076689_E_B	LID2015_076702_E_D	LID2015_076998_E_B	LID2015_077293_E_D
LID2015_076689_E_C	LID2015_076703_E_A	LID2015_076998_E_C	LID2015_077294_E_A
LID2015_076689_E_D	LID2015_076703_E_B	LID2015_076998_E_D	LID2015_077294_E_B
LID2015_076690_E_A	LID2015_076703_E_C	LID2015_076999_E_A	LID2015_077294_E_C
LID2015_076690_E_B	LID2015_076703_E_D	LID2015_076999_E_B	LID2015_077294_E_D
LID2015_076690_E_C	LID2015_076704_E_A	LID2015_076999_E_C	LID2015_077295_E_A
LID2015_076690_E_D	LID2015_076704_E_B	LID2015_076999_E_D	LID2015_077295_E_B
LID2015_076691_E_A	LID2015_076704_E_C	LID2015_077000_E_A	LID2015_077295_E_C
LID2015_076691_E_B	LID2015_076704_E_D	LID2015_077000_E_B	LID2015_077295_E_D
LID2015_076691_E_C	LID2015_076705_E_A	LID2015_077000_E_C	LID2015_077296_E_A
LID2015_076691_E_D	LID2015_076705_E_B	LID2015_077000_E_D	LID2015_077296_E_B
LID2015_076692_E_A	LID2015_076705_E_C	LID2015_077001_E_A	LID2015_077296_E_C
LID2015_076692_E_B	LID2015_076705_E_D	LID2015_077001_E_B	LID2015_077296_E_D
LID2015_076692_E_C	LID2015_076706_E_A	LID2015_077001_E_C	LID2015_077297_E_A
LID2015_076692_E_D	LID2015_076706_E_C	LID2015_077001_E_D	LID2015_077297_E_B
LID2015_076693_E_A	LID2015_076988_E_B	LID2015_077002_E_A	LID2015_077297_E_C
LID2015_076693_E_B	LID2015_076988_E_D	LID2015_077002_E_B	LID2015_077297_E_D
LID2015_076693_E_C	LID2015_076989_E_A	LID2015_077002_E_C	LID2015_077298_E_A
LID2015_076693_E_D	LID2015_076989_E_B	LID2015_077002_E_D	LID2015_077298_E_B

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 121 of 122

LID2015_077298_E_C	LID2015_077592_E_A	LID2015_077603_E_A	LID2015_077897_E_A
LID2015_077298_E_D	LID2015_077592_E_B	LID2015_077603_E_B	LID2015_077897_E_B
LID2015_077299_E_A	LID2015_077592_E_C	LID2015_077603_E_C	LID2015_077897_E_C
LID2015_077299_E_B	LID2015_077592_E_D	LID2015_077603_E_D	LID2015_077897_E_D
LID2015_077299_E_C	LID2015_077593_E_A	LID2015_077604_E_A	LID2015_077898_E_A
LID2015_077299_E_D	LID2015_077593_E_B	LID2015_077604_E_B	LID2015_077898_E_B
LID2015_077300_E_A	LID2015_077593_E_C	LID2015_077604_E_C	LID2015_077898_E_C
LID2015_077300_E_B	LID2015_077593_E_D	LID2015_077604_E_D	LID2015_077898_E_D
LID2015_077300_E_C	LID2015_077594_E_A	LID2015_077605_E_A	LID2015_077899_E_A
LID2015_077300_E_D	LID2015_077594_E_B	LID2015_077605_E_B	LID2015_077899_E_B
LID2015_077301_E_A	LID2015_077594_E_C	LID2015_077605_E_C	LID2015_077899_E_C
LID2015_077301_E_B	LID2015_077594_E_D	LID2015_077605_E_D	LID2015_077899_E_D
LID2015_077301_E_C	LID2015_077595_E_A	LID2015_077606_E_A	LID2015_077900_E_A
LID2015_077301_E_D	LID2015_077595_E_B	LID2015_077606_E_B	LID2015_077900_E_B
LID2015_077302_E_A	LID2015_077595_E_C	LID2015_077606_E_C	LID2015_077900_E_C
LID2015_077302_E_B	LID2015_077595_E_D	LID2015_077606_E_D	LID2015_077900_E_D
LID2015_077302_E_C	LID2015_077596_E_A	LID2015_077888_E_B	LID2015_077901_E_A
LID2015_077302_E_D	LID2015_077596_E_B	LID2015_077889_E_A	LID2015_077901_E_B
LID2015_077303_E_A	LID2015_077596_E_C	LID2015_077889_E_B	LID2015_077901_E_C
LID2015_077303_E_B	LID2015_077596_E_D	LID2015_077890_E_A	LID2015_077901_E_D
LID2015_077303_E_C	LID2015_077597_E_A	LID2015_077890_E_B	LID2015_077902_E_A
LID2015_077303_E_D	LID2015_077597_E_B	LID2015_077891_E_A	LID2015_077902_E_B
LID2015_077304_E_A	LID2015_077597_E_C	LID2015_077891_E_B	LID2015_077902_E_C
LID2015_077304_E_B	LID2015_077597_E_D	LID2015_077891_E_D	LID2015_077902_E_D
LID2015_077304_E_C	LID2015_077598_E_A	LID2015_077892_E_A	LID2015_077903_E_A
LID2015_077304_E_D	LID2015_077598_E_B	LID2015_077892_E_B	LID2015_077903_E_B
LID2015_077305_E_A	LID2015_077598_E_C	LID2015_077892_E_C	LID2015_077903_E_C
LID2015_077305_E_B	LID2015_077598_E_D	LID2015_077892_E_D	LID2015_077903_E_D
LID2015_077305_E_C	LID2015_077599_E_A	LID2015_077893_E_A	LID2015_077904_E_A
LID2015_077305_E_D	LID2015_077599_E_B	LID2015_077893_E_B	LID2015_077904_E_B
LID2015_077306_E_A	LID2015_077599_E_C	LID2015_077893_E_C	LID2015_077904_E_C
LID2015_077306_E_C	LID2015_077599_E_D	LID2015_077893_E_D	LID2015_077904_E_D
LID2015_077589_E_A	LID2015_077600_E_A	LID2015_077894_E_A	LID2015_077905_E_A
LID2015_077589_E_B	LID2015_077600_E_B	LID2015_077894_E_B	LID2015_077905_E_B
LID2015_077589_E_C	LID2015_077600_E_C	LID2015_077894_E_C	LID2015_077905_E_C
LID2015_077589_E_D	LID2015_077600_E_D	LID2015_077894_E_D	LID2015_077905_E_D
LID2015_077590_E_A	LID2015_077601_E_A	LID2015_077895_E_A	LID2015_077906_E_A
LID2015_077590_E_B	LID2015_077601_E_B	LID2015_077895_E_B	LID2015_077906_E_B
LID2015_077590_E_C	LID2015_077601_E_C	LID2015_077895_E_C	LID2015_077906_E_C
LID2015_077590_E_D	LID2015_077601_E_D	LID2015_077895_E_D	LID2015_077906_E_D
LID2015_077591_E_A	LID2015_077602_E_A	LID2015_077896_E_A	
LID2015_077591_E_B	LID2015_077602_E_B	LID2015_077896_E_B	
LID2015_077591_E_C	LID2015_077602_E_C	LID2015_077896_E_C	
LID2015_077591_E_D	LID2015_077602_E_D	LID2015_077896_E_D	
0_ //0/			

Osceola Lidar Project TO# G15PD00887 October 19, 2016 Page 122 of 122

Appendix D: GPS Processing

Appendix D is a separate document located in the Reports folder of the deliverables.

