

Aerial Lidar Report

16113

United States Geological Survey, 2017 Alabama 25 Counties Lidar (Block 1)

August 2017

Table of Contents

Section 1:	Lida	r Acquisition	2
	1.1	Acquisition	2
	1.2	Acquisition Status Report	2
	1.3	Acquisition Details	2
	1.4	Project Purpose	2
	1.5	Lidar Flight-line Orientation	3
	1.6	Acquisition Equipment	4
	1.7	Lidar System Acquisition Parameters	5
	1.8	GNSS Reference Station(s)	6
	1.9	Airborne GNSS Kinematic	7
Section 2:	Lida	r Processing	8
	2.1	Lidar Point Cloud Generation	8
	2.2	Coordinate Reference System	8
	2.3	Lidar Point Cloud Statistics	9
	2.4	Expected Horizontal Positional Error	9
	2.5	Smooth Surface Repeatability (Intraswath)	. 10
	2.6	Lidar Calibration	. 11
	2.7	Overlap Consistency (Interswath)	. 12
	2.8	Lidar Classification	. 14
Section 3:	Lida	r Accuracy	.15
	3.1	Ground Surveyed Check Points	. 15
	3.2	Vertical Accuracy Requirements	. 15
	3.3	Check Point Distribution	. 16
	3.4	Vertical Accuracy Results	. 18
	3.5	Check Point Assessment	. 18
Section 4:	Cert	ification	.22
	4.1	Limitations of Use	. 22
Section 5:	GNS	S Processing	.23

Section 1: Lidar Acquisition

1.1 Acquisition

The Atlantic Group, LLC (Atlantic) has successfully completed lidar acquisition for the 2017 Alabama 25 County Lidar (Block 1) Area of Interest (AOI). Lidar for this AOI was acquired in thirteen (13) flight missions completed on February 15th, 2017. The project area encompasses 1,182,395 acres, 4,785 square kilometers or 1,848 square miles.

1.2 Acquisition Status Report

Upon notification to proceed, the flight crew loaded the flight plans and validated the flight parameters. Atlantic's Director of Flight Operations contacted air traffic control and coordinated flight pattern requirements. Lidar acquisition began immediately upon notification that control base stations were in place. During flight operations, the flight crew monitored weather and atmospheric conditions. Lidar missions were flown only when no condition existed below the sensor that would affect the collection of data. The pilot constantly monitored the aircraft course, position, pitch, roll, and yaw of the aircraft. The sensor operator monitored the sensor, the status of the GNSS constellations, and performed the first QC review during acquisition. The flight crew constantly reviewed weather and cloud locations. Any flight lines impacted by unfavorable conditions were marked as invalid and re-flown at an optimal time.

1.3 Acquisition Details

Atlantic acquired one hundred and thirty-eight (138) passes of the AOI as a series of perpendicular and/or adjacent flight-lines. Differential GNSS unit in aircraft recorded sample positions at 2 Hz or more frequency. Lidar data was only acquired when a minimum of 6 satellites were in view.

Atlantic lidar sensors are calibrated at a designated site located at the Fayetteville Municipal Airport (FYM) in Fayetteville, TN and are periodically checked and adjusted to minimize corrections at project sites.

1.4 Project Purpose

The primary purpose of the lidar survey was to establish measurements of the bare earth surface, as well as top surface feature data for providing geometric inputs for modeling, other numerical modeling and economic related assessments.

1.5 Lidar Flight-line Orientation

The following graphic represents the alignment of the project area of interest (AOI) and the flight-lines executed to provide AOI coverage.

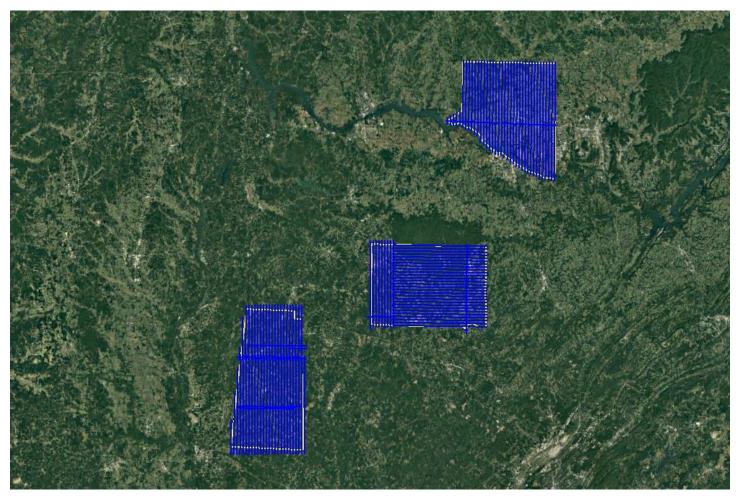


Figure 1: Trajectories as flown by Atlantic

1.6 Acquisition Equipment

Atlantic operated a Cessna T210L (N732JE) and Partenavia S.P.A. P-68 C/TC (N775MW) each outfitted with a Leica ALS70-HP lidar system during the collection of the project area. Table 1 represents a list of the features and characteristics for the Leica ALS70-HP lidar system:

Atlantic's Sensor Characteristics					
Leica Al	.S70-HP				
Manufacturer	Leica				
Model	ALS70 - HP				
Platform	Fixed-Wing				
Scan Pattern	Sine, Triangle, Raster				
	Sine	200			
Maximum Scan Rate (Hz)	Triangle	158			
	Raster	120			
Field of View (°)	0 - 75 (Full Angle, Use	r Adjustable)			
Maximum Pulse rate (kHz)	500				
Maximum Flying height (m AGL)	3500				
Number of returns	Unlimited				
Number of Intensity Measurements	3 (First, Second, Third))			
Roll Stabilization (Automatic Adaptive, °)	75 - Active FOV				
Storage Media	Removable 500 GB SS	D			
Storage Capacity (Hours @ Max Pulse Rate)	6				
Size (em)	Scanner	37 W x 68 L x 26 H			
Size (cm)	Control Electronics	45 W x 47 D x 36 H			
Moight (kg)	Scanner	43			
Weight (kg)	Control Electronics	45			
Operating Temperature	0 - 40 °C				
Flight Management	Flight Management FCMS				
Power Consumption	927 @ 22.0 - 30.3 VD0				

Table 1: Atlantic Sensor Characteristics

1.7 Lidar System Acquisition Parameters

Table 2 illustrates Atlantic's system parameters for lidar acquisition on this project.

Lidar System Acqu	isition Parameters
Item	Parameter
System	Leica ALS-70 HP
Nominal Pulse Spacing (m)	0.7
Nominal Pulse Density (pls/m²)	2.4
Nominal Flight Height (AGL meters)	2,000
Nominal Flight Speed (kts)	130
Pass Heading (degree)	Varies
Sensor Scan Angle (degree)	45
Scan Frequency (Hz)	35.1
Pulse Rate of Scanner (kHz)	264.8
Line Spacing (m)	1,141
Pulse Duration of Scanner (ns)	4
Pulse Width of Scanner (m)	0.44
Central Wavelength of Sensor Laser (nm)	1064
Sensor Operated with Multiple Pulses	Yes
Beam Divergence (mrad)	0.22
Nominal Swath Width (m)	1,663
Nominal Swath Overlap (%)	20
Scan Pattern	Triangle

Table 2: Atlantic Lidar System Acquisition Parameters

1.8 GNSS Reference Station(s)

Eleven (11) Continuously Operating Reference Stations (CORS) and three (3) Alabama Department of Transportation (ALDOT) stations were used to control the lidar acquisition for the project area. The coordinates provided in Table 3 below are in NAD83 (2011), Geographic Coordinate System, Ellipsoid, Meters.

	GPS Reference Station Coordinates									
Designation	Туре	PID	Latitude (N)	Longitude (W)	Elevation					
AL20	CORS	DI2224	34 42 37.12915	087 39 45.73609	133.182					
AL23	ALDOT		34 08 54.84687	087 57 13.02166	142.491					
ALBE	CORS	DM3487	34 28 31.49761	087 51 52.36634	227.761					
ALC1	ALDOT		33 15 44.17849	088 05 43.40437	59.277					
ALCU	CORS	DM3965	34 10 47.51409	086 50 41.52983	224.150					
ALDS	CORS	DM5960	34 08 53.40799	087 24 17.49204	227.554					
ALFA	CORS	DM3493	33 41 06.74504	087 49 45.50930	90.500					
ALJA	CORS	DM3971	33 49 54.79664	087 16 39.26514	85.633					
ALNC	CORS	DM2662	34 40 52.58348	087 18 33.99419	158.085					
ALSP	ALDOT		34 25 05.08146	087 10 19.32663	175.120					
GTAC	CORS	DG5771	34 42 39.82636	086 39 12.28466	194.331					
HGIS	CORS	DK7412	34 43 41.17629	086 35 12.06178	177.731					
MSPE	CORS	DO8516	33 47 52.33113	088 39 30.10859	76.640					
TN39	CORS	DM4145	35 11 29.04675	087 00 26.74814	187.182					

Table 3: GNSS Reference Station Coordinates

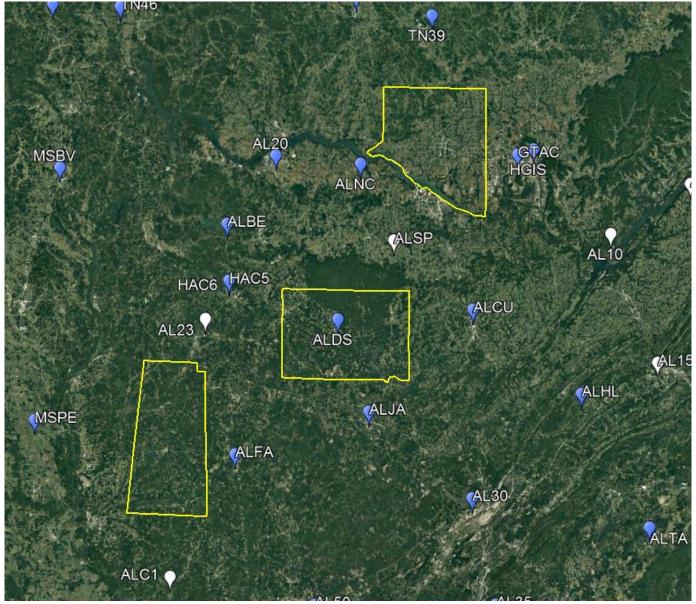


Figure 2: GNSS Reference Station(s)

1.9 Airborne GNSS Kinematic

Differential GNSS unit in aircraft collected positions at 2 Hz. Airborne GNSS data was processed using the Inertial Explorer (version 8.60.6717) software. Flights were flown with a minimum of 6 satellites in view (10° above the horizon).

For all flights, the GNSS data can be classified as good, with residuals of 3cm average or better but none larger than 10cm being recorded.

Data collected by the lidar unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GNSS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database.

GNSS processing results for each lift are included in Section 5: GNSS Processing.

Section 2: Lidar Processing

2.1 Lidar Point Cloud Generation

Atlantic used Leica software products to download the IPAS ABGNSS/IMU data and raw laser scan files from the airborne system. Waypoint Inertial Explorer is used to extract the raw IPAS ABGNSS/IMU data, which is further processed in combination with controlled base stations to provide the final Smoothed Best Estimate Trajectory (SBET) for each mission. The SBET's are combined with the raw laser scan files to export the Lidar ASCII Standard (*.las) formatted swath point clouds.

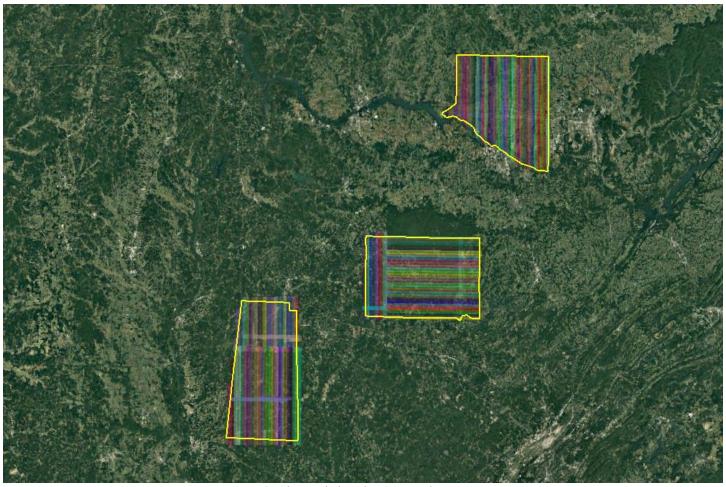


Figure 3: Lidar swath data showing complete coverage

2.2 Coordinate Reference System

Horizontal Datum: North American Datum of 1983 (2011)
Coordinate System: Universal Transverse Mercator Zone 16 North
Vertical Datum: North American Vertical Datum of 1988

Geoid Model: Geoid12B **Units of Reference:** Meters

2.3 Lidar Point Cloud Statistics

Table 4 illustrates the overall lidar point cloud statistics for this project.

Point Cloud Statistics					
Category	Value				
Total Points	30,393,615,336				
Nominal Pulse Spacing (m)	0.6260				
Nominal Pulse Density (pls/m²)	2.55				
Nominal Pulse Spacing (ft)	2.0539				
Nominal Pulse Density (pls/ft²)	0.24				
Total Aggregate Points	26,333,693,413				
Aggregate Nominal Pulse Spacing (m)	0.5463				
Aggregate Nominal Pulse Density (pls/m²)	3.35				
Aggregate Nominal Pulse Spacing (ft)	1.7923				
Aggregate Nominal Pulse Density (pls/ft²)	0.31				

Table 4: Lidar Point Cloud Statistics

2.4 Expected Horizontal Positional Error

As described in Section 7.5 of the ASPRS Positional Accuracy Standards for Digital Geospatial Data the horizontal errors in lidar data are largely a function of GNSS positional error, INS angular error, and flying altitude. Therefore, lidar data collected with GNSS error of 8cm and the IMU error of 0.00427 degrees at an altitude of 2,000m; the expected radial horizontal positional error will be RMSEz = 29.0cm.

2.5 Smooth Surface Repeatability (Intraswath)

Departures from planarity of first returns within single swaths in non-vegetated areas were assessed at multiple locations with hard surface areas (parking lots or large rooftops) inside the project area. Each area was evaluated using signed difference rasters (maximum elevation – minimum elevation) at a cell size equal to 2 x ANPS, rounded to the next integer. The following graphic depicts a sample of the assessment.

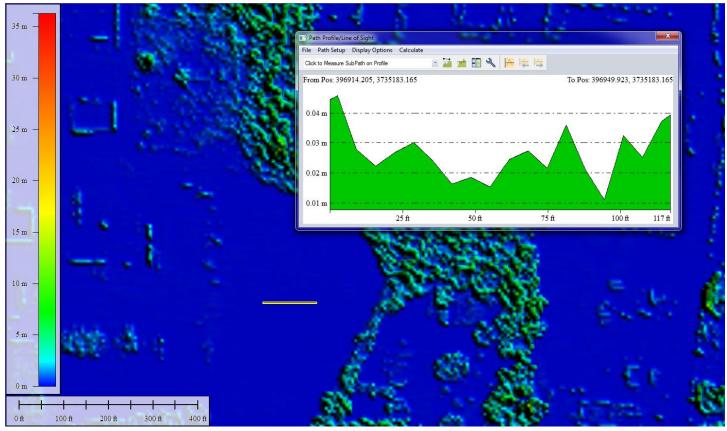


Figure 4: Smooth Surface Repeatability of ≤6cm

2.6 Lidar Calibration

Lidar ranging data were initially calibrated using previous best parameters for this instrument and aircraft. Using a combination of GeoCue, TerraScan and TerraMatch; the overlapping swath point clouds are corrected for any orientation or linear deviations to obtain the best fit swath-to-swath calibration. Relative calibration was evaluated using advanced plane-matching analysis and parameter corrections derived. This process was repeated interactively until residual errors between overlapping swaths, across all project missions, was reduced to ≤2cm. A final analysis of the calibrated lidar is preformed using a TerraMatch Tie Line report for an overall statistical model of the project area.

Upon completion of the data calibration, Atlantic runs a complete set of elevation difference intensity rasters (dZ Orthos). A user-defined color ramp is applied depicting the offsets between overlapping swaths based on project specifications. The dZ orthos provide an opportunity to review the data calibration in a qualitative manner. Atlantic assigns green to all offset values that fall below the required RMSDz requirement of the project. A yellow color is assigned for offsets that fall between the RMSDz value and 1.5x of that value. Finally, red values are assigned to all values that fall beyond 1.5x of the RMSDz requirements of the project.

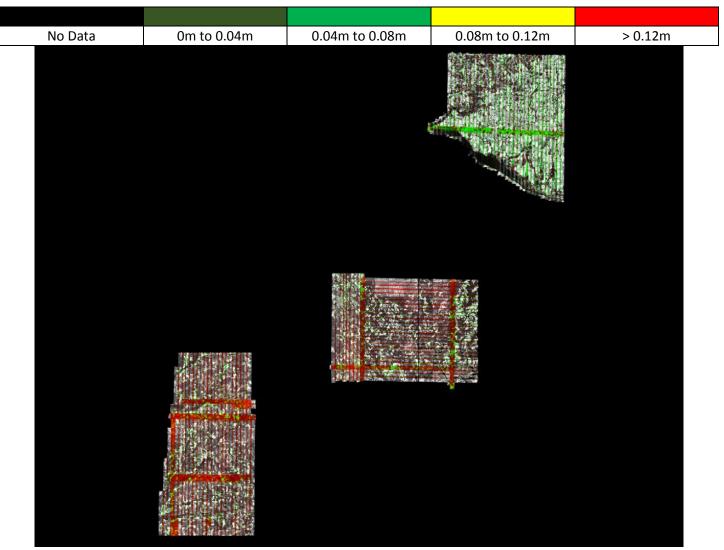


Figure 5: Swath Overlap Difference of ≤8cm, Maximum of ±16cm

2.7 Overlap Consistency (Interswath)

An overall statistical assessment of the relative accuracy using TerraMatch Tie Line Report between lidar swaths can be found in Tables 5, 6, 7, and 8 below. The values provided are in meters.

				Avei	rage Magn	itudes Per	Line				
Line	Х	Υ	Z	Line	Х	Υ	Z	Line	Х	Υ	Z
1002	0.011	0.013	0.017	1092	0.019	0.024	0.015	1175	0.008	0.070	0.016
1003	0.029	0.025	0.017	1093	0.016	0.023	0.017	1176	0.011	0.059	0.016
1004	0.030	0.027	0.016	1094	0.019	0.020	0.015	1177	0.009	0.059	0.016
1005	0.027	0.025	0.018	1095	0.018	0.025	0.015	1178	0.025	0.062	0.016
1006	0.023	0.021	0.018	1097	0.027	0.024	0.017	1179	0.013	0.071	0.016
1007	0.020	0.018	0.019	1098	0.028	0.030	0.017	1180	0.012	0.048	0.016
1008	0.019	0.017	0.020	1099	0.038	0.041	0.017	1181	0.008	0.069	0.017
1009	0.019	0.017	0.017	1100	0.036	0.033	0.018	1182	0.012	0.062	0.015
1010	0.020	0.019	0.017	1101	0.028	0.036	0.027	1183	0.008	0.058	0.016
1015	0.026	0.025	0.026	1102	0.029	0.018	0.019	1184	0.009	0.054	0.015
1023	0.033	0.046	0.019	1103	0.035	0.033	0.016	1185	0.007	0.073	0.016
1024	0.035	0.056	0.022	1104	0.028	0.023	0.016	1186	0.010	0.043	0.016
1025	0.038	0.052	0.021	1105	0.031	0.023	0.017	1187	0.009	0.045	0.016
1026	0.025	0.034	0.025	1106	0.030	0.022	0.017	1220	0.041	0.038	0.035
1027	0.049	0.051	0.020	1107	0.033	0.025	0.016	1221	0.024	0.045	0.014
1029	0.026	0.027	0.018	1108	0.027	0.027	0.016	1222	0.026	0.035	0.018
1030	0.020	0.026	0.016	1109	0.025	0.024	0.016	1223	0.029	0.080	0.018
1031	0.017	0.020	0.017	1110	0.018	0.014	0.016	1224	0.047	0.066	0.018
1032	0.021	0.023	0.017	1111	0.016	0.024	0.018	1225	0.058	0.044	0.017
1033	0.030	0.037	0.017	1112	0.022	0.023	0.020	1226	0.055	0.029	0.018
1034	0.026	0.035	0.017	1114	0.022	0.025	0.023	1227	0.047	0.033	0.017
1035	0.022	0.021	0.017	1140	0.026	0.030	0.023	1228	0.054	0.036	0.019
1036	0.024	0.022	0.017	1142	0.025	0.033	0.019	1229	0.050	0.037	0.018
1037	0.018	0.021	0.017	1143	0.031	0.032	0.015	1230	0.050	0.046	0.017
1038	0.018	0.021	0.017	1144	0.031	0.049	0.017	1231	0.049	0.044	0.017
1039	0.018	0.014	0.015	1145	0.040	0.039	0.015	1232	0.051	0.033	0.018
1040	0.019	0.020	0.018	1146	0.044	0.029	0.014	1233	0.058	0.042	0.017
1042	0.038	0.028	0.029	1147	0.044	0.036	0.013	1234	0.053	0.056	0.019
1043	0.026	0.022	0.019	1148	0.032	0.038	0.014	1235	0.051	0.050	0.017
1044	0.027	0.036	0.017	1149	0.043	0.046	0.014	1236	0.052	0.036	0.019
1045	0.022	0.035	0.018	1150	0.048	0.035	0.016	1237	0.054	0.040	0.017
1046	0.027	0.029	0.018	1151	0.049	0.036	0.015	1238	0.061	0.032	0.019
1047	0.020	0.021	0.017	1152	0.038	0.045	0.015	1239	0.055	0.041	0.019
1048	0.036	0.027	0.017	1153	0.037	0.046	0.015	1240	0.053	0.032	0.020

1049	0.020	0.039	0.019	1154	0.042	0.041	0.015	1241	0.021	0.016	0.014
1050	0.026	0.027	0.019	1155	0.038	0.051	0.016	1242	0.030	0.027	0.015
1051	0.019	0.021	0.017	1156	0.037	0.045	0.015	1243	0.029	0.033	0.016
1052	0.024	0.022	0.016	1157	0.045	0.042	0.015	1244	0.023	0.027	0.017
1058	0.033	0.029	0.023	1158	0.041	0.043	0.015	1245	0.020	0.020	0.024
1059	0.021	0.022	0.020	1159	0.040	0.039	0.014	1261	0.021	0.022	0.021
1060	0.013	0.021	0.019	1160	0.037	0.027	0.015	1262	0.025	0.021	0.017
1084	0.026	0.034	0.025	1169	0.020	0.029	0.028	1263	0.023	0.026	0.015
1087	0.015	0.028	0.014	1170	0.026	0.036	0.015	1264	0.020	0.022	0.015
1088	0.023	0.025	0.016	1171	0.019	0.052	0.015	1265	0.022	0.029	0.017
1089	0.027	0.022	0.016	1172	0.013	0.040	0.015	1266	0.031	0.035	0.022
1090	0.028	0.030	0.016	1173	0.011	0.041	0.015				
1091	0.027	0.030	0.018	1174	0.010	0.069	0.016				

Table 5: Average Tie Line Magnitudes per Line

Internal Observation Statistics							
Category X Y Z							
Average Magnitude	0.026	0.034	0.017				
RMS Values	0.040	0.049	0.023				
Maximum Values	0.157	0.157	0.160				
Observation Weight	27807.0	27807.0	946113.0				

Table 6: Tie Line Observation Statistics

Overall Relative Accuracy				
Category	Mismatch			
Average 3D Mismatch	0.01822			
Average XY Mismatch	0.05040			
Average Z Mismatch	0.01699			

Table 7: Relative Accuracy Results

TerraMatch Tie Lines				
Category	Observations			
Section Lines	417,795			
Roof Lines	13,325			

Table 8: Total Tie Lines

2.8 Lidar Classification

Atlantic uses multiple automated filtering routines on the calibrated lidar point cloud identifying and extracting bare-earth and above ground features. GeoCue, TerraScan, and TerraModeler software was used for the initial batch processing and manual editing of the lidar point clouds. Atlantic utilized collected breakline data to preform classification for classes' 9-Water and 10-Ignored Ground in LP360. Outlined in Table 9 are the classification codes utilized for this project.

ASPRS S	ASPRS Standard Lidar Point Classes				
Code	Description				
1	Unclassified				
2	Ground				
7	Low Noise				
9	Water				
10	Ignored Ground				
17	Bridges				
18	18 High Noise				
Flags	Overlap & Withheld				

Table 9: Point Cloud Classification Scheme

Section 3: Lidar Accuracy

3.1 Ground Surveyed Check Points

Atlantic established a total of fifty-two (52) check points for the block 1 project area (27 NVA + 25 VVA). Point cloud data accuracy was tested against a Triangulated Irregular Network (TIN) constructed from lidar points in clear and open areas. A clear and open area can be characterized with respect to topographic and ground cover variation such that a minimum of 5 times the NPS exists with less than 1/3 of the RMSE_Z deviation from a low-slope plane. Slopes that exceed 10 percent were avoided. Each land cover type representing 10 percent or more of the total project area were tested and reported with a VVA. In land cover categories other than dense urban areas, the tested points did not have obstructions 45 degrees above the horizon to ensure a sufficient TIN surface. The VVA value is provided as a target. It is understood that in areas of dense vegetation, swamps, or extremely difficult terrain, this value may be exceeded. The NVA value is a requirement that must be met, regardless of any allowed "busts" in the VVA(s) for individual land cover types within the project. Checkpoints for each assessment (NVA & VVA) are required to be well-distributed throughout the land cover type, for the entire project area.

3.2 Vertical Accuracy Requirements

Below are the vertical accuracy reporting requirements for this project:

Vertical Accuracy Reporting Requirements in Meters:

 $RMSE_Z \le 10.0cm$ (Non-Vegetated Swath, DEM) NVA $\le 19.6cm$ 95% Confidence Level (Swath, DEM) VVA $\le 29.4cm$ 95th Percentile (DEM)

Vertical Accuracy Reporting Requirements in Feet:

 $RMSE_Z \le 0.328ft$ (Non-Vegetated Swath, DEM) NVA $\le 0.643ft$ 95% Confidence Level (Swath, DEM) VVA $\le 0.965ft$ 95th Percentile (DEM)

*The terms FVA (Fundamental Vertical Accuracy), SVA (Supplemental Vertical Accuracy) and CVA (Consolidated Vertical Accuracy) are from the National Digital Elevation Program (NDEP) Guidelines for Digital Elevation Data (2004). The term FVA refers to open terrain, urban and levee classes; the term SVA refers to classes tested that are in addition or supplemental to the open terrain; the term CVA refers to the consolidated accuracy of the data from all classes (FVA + SVA).

*The terms NVA (Non-vegetated Vertical Accuracy) and VVA (Vegetated Vertical Accuracy) are from the ASPRS Positional Accuracy Standards for Digital Geospatial Data v1.0 (2014). The term NVA refers to assessments in clear, open areas (which typically produce only single lidar returns); the term VVA refers to assessments in vegetated areas (typically characterized by multiple return lidar).

3.3 Check Point Distribution

The following graphics depict the location and distribution of NVA and VVA check points established for this project.

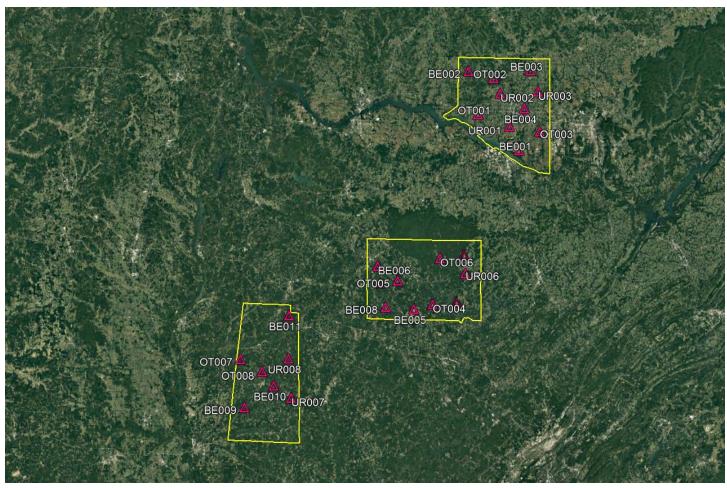


Figure 6: Non-vegetated Vertical Accuracy (NVA) Check Point Distribution

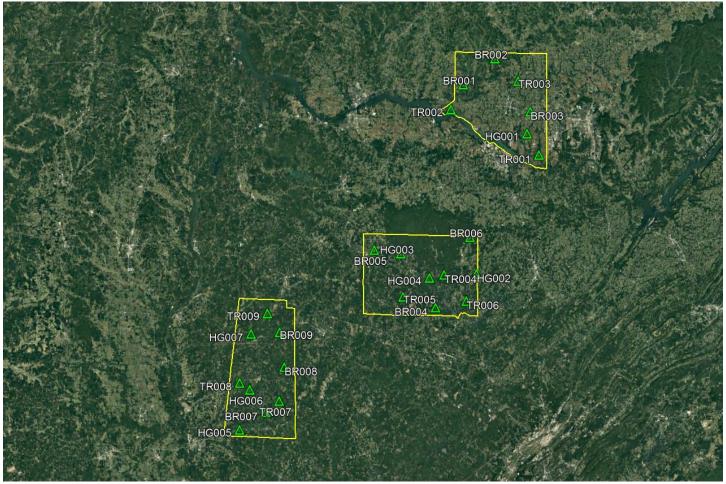


Figure 7: Vegetated Vertical Accuracy (VVA) Check Point Distribution

3.4 Vertical Accuracy Results

An overall statistical assessment of the check points can be found in Tables 10 and 11 below. The values provided are in meters.

Non-vegetated Vertical Accuracy (NVA) and Vegetated Vertical Accuracy (VVA)								
Broad Land Cover Type	# of Points	RMSEz	95% Confidence Level	95th Percentile				
NVA of Lidar Point Cloud	27	0.062	0.122					
NVA of Bare-Earth Lidar	27	0.059	0.115					
NVA of Bare-Earth DEM	27	0.057	0.112					
VVA of Bare-Earth Lidar	25	0.097		0.177				

Table 10: Non-vegetated Vertical Accuracy (NVA) and Vegetated Vertical Accuracy (VVA)

Vegetated Vertical Accuracy (VVA) 5% Outliers > 95th Percentile (0.177m)							
PointID	Easting	Northing	KnownZ	LaserZ	Description	DeltaZ	
BR002	497730.910	3870126.461	180.103	180.287	Brush	0.184	
HG003	457302.639	3787898.026	272.699	272.938	High Grass	0.239	

Table 11: 5% Outlier Check Points

3.5 Check Point Assessment

A vertical accuracy assessment of the NVA & VVA check points against the lidar point cloud and bare-earth lidar can be found in Tables 12, 13, 14, and 15 below. The coordinates provided are in NAD83 (2011), UTM Zone 16 North, NAVD88 (Geoid12B), Meters.

Non-vegetated Vertical Accuracy (NVA) Check Point Assessment (Point Cloud)						
PointID	Easting	Northing	KnownZ	LaserZ	Description	DeltaZ
BE001	506382.505	3833447.026	181.632	181.682	Open Terrain/Bare Earth	0.050
BE002	485027.296	3867101.655	186.001	185.914	Open Terrain/Bare Earth	-0.087
BE003	511400.001	3867295.396	272.738	272.796	Open Terrain/Bare Earth	0.058
BE004	508745.927	3851174.300	224.042	224.026	Open Terrain/Bare Earth	-0.016
BE005	461213.118	3766497.115	224.483	224.461	Open Terrain/Bare Earth	-0.022
BE006	445976.213	3784703.414	231.354	231.339	Open Terrain/Bare Earth	-0.015
BE007	482618.214	3789300.113	266.554	266.658	Open Terrain/Bare Earth	0.104
BE008	449244.664	3767395.077	218.307	218.276	Open Terrain/Bare Earth	-0.031
BE009	388820.728	3725176.814	75.401	75.444	Open Terrain/Bare Earth	0.043
BE010	401407.481	3734347.081	138.738	138.797	Open Terrain/Bare Earth	0.059
BE011	408073.589	3764047.593	142.346	142.385	Open Terrain/Bare Earth	0.039
OT001	488987.147	3848777.121	214.031	214.028	Open Terrain/Bare Earth	-0.003
OT002	495754.941	3864102.881	191.764	191.797	Open Terrain/Bare Earth	0.033
OT003	515250.758	3841380.887	203.001	203.009	Open Terrain/Bare Earth	0.008
OT004	469195.952	3768423.941	246.688	246.714	Open Terrain/Bare Earth	0.026
OT005	454410.742	3778523.406	203.591	203.680	Open Terrain/Bare Earth	0.089
ОТ006	472500.634	3787911.161	261.029	261.090	Open Terrain/Bare Earth	0.061
OT007	387304.269	3745645.047	108.880	108.875	Open Terrain/Bare Earth	-0.005
ОТ008	396531.550	3740391.299	126.387	126.594	Open Terrain/Bare Earth	0.207

UR001	502332.187	3843631.158	206.214	206.219	Urban Terrain	0.005
UR002	498515.870	3857546.276	232.378	232.318	Urban Terrain	-0.060
UR003	514663.973	3858272.857	246.923	246.947	Urban Terrain	0.024
UR004	447088.776	3777577.429	254.801	254.783	Urban Terrain	-0.018
UR005	479409.021	3769236.899	226.592	226.516	Urban Terrain	-0.076
UR006	483206.190	3781435.050	253.167	253.165	Urban Terrain	-0.002
UR007	408796.479	3729096.075	143.262	143.201	Urban Terrain	-0.061
UR008	407705.217	3745799.660	109.150	109.116	Urban Terrain	-0.034

Table 12: Lidar Point Cloud NVA Assessment

Non-vegetated Vertical Accuracy (NVA) Check Point Assessment (Bare-Earth)							
PointID	Easting	Northing	KnownZ	LaserZ	Description	DeltaZ	
BE001	506382.505	3833447.026	181.632	181.676	Open Terrain/Bare Earth	0.044	
BE002	485027.296	3867101.655	186.001	185.914	Open Terrain/Bare Earth	-0.087	
BE003	511400.001	3867295.396	272.738	272.791	Open Terrain/Bare Earth	0.053	
BE004	508745.927	3851174.300	224.042	224.026	Open Terrain/Bare Earth	-0.016	
BE005	461213.118	3766497.115	224.483	224.454	Open Terrain/Bare Earth	-0.029	
BE006	445976.213	3784703.414	231.354	231.339	Open Terrain/Bare Earth	-0.015	
BE007	482618.214	3789300.113	266.554	266.658	Open Terrain/Bare Earth	0.104	
BE008	449244.664	3767395.077	218.307	218.268	Open Terrain/Bare Earth	-0.039	
BE009	388820.728	3725176.814	75.401	75.405	Open Terrain/Bare Earth	0.004	
BE010	401407.481	3734347.081	138.738	138.797	Open Terrain/Bare Earth	0.059	
BE011	408073.589	3764047.593	142.346	142.385	Open Terrain/Bare Earth	0.039	
OT001	488987.147	3848777.121	214.031	214.028	Open Terrain/Bare Earth	-0.003	
OT002	495754.941	3864102.881	191.764	191.789	Open Terrain/Bare Earth	0.025	
OT003	515250.758	3841380.887	203.001	202.981	Open Terrain/Bare Earth	-0.020	
OT004	469195.952	3768423.941	246.688	246.714	Open Terrain/Bare Earth	0.026	
OT005	454410.742	3778523.406	203.591	203.680	Open Terrain/Bare Earth	0.089	
ОТ006	472500.634	3787911.161	261.029	261.090	Open Terrain/Bare Earth	0.061	
ОТ007	387304.269	3745645.047	108.880	108.875	Open Terrain/Bare Earth	-0.005	
OT008	396531.550	3740391.299	126.387	126.530	Open Terrain/Bare Earth	0.143	
UR001	502332.187	3843631.158	206.214	206.219	Urban Terrain	0.005	
UR002	498515.870	3857546.276	232.378	232.311	Urban Terrain	-0.067	
UR003	514663.973	3858272.857	246.923	246.906	Urban Terrain	-0.017	
UR004	447088.776	3777577.429	254.801	254.783	Urban Terrain	-0.018	
UR005	479409.021	3769236.899	226.592	226.501	Urban Terrain	-0.091	
UR006	483206.190	3781435.050	253.167	253.165	Urban Terrain	-0.002	
UR007	408796.479	3729096.075	143.262	143.162	Urban Terrain	-0.100	
UR008	407705.217	3745799.660	109.150	109.079	Urban Terrain	-0.071	

Table 13: Bare-Earth Lidar NVA Assessment

Non-vegetated Vertical Accuracy (NVA) Check Point Assessment (DEM)							
PointID	Easting	Northing	KnownZ	DEMZ	Description	DeltaZ	
BE001	506382.505	3833447.026	181.632	181.671	Open Terrain/Bare Earth	0.039	
BE002	485027.296	3867101.655	186.001	185.893	Open Terrain/Bare Earth	-0.108	
BE003	511400.001	3867295.396	272.738	272.789	Open Terrain/Bare Earth	0.051	
BE004	508745.927	3851174.300	224.042	224.024	Open Terrain/Bare Earth	-0.018	
BE005	461213.118	3766497.115	224.483	224.428	Open Terrain/Bare Earth	-0.055	
BE006	445976.213	3784703.414	231.354	231.347	Open Terrain/Bare Earth	-0.007	
BE007	482618.214	3789300.113	266.554	266.650	Open Terrain/Bare Earth	0.096	
BE008	449244.664	3767395.077	218.307	218.264	Open Terrain/Bare Earth	-0.043	
BE009	388820.728	3725176.814	75.401	75.436	Open Terrain/Bare Earth	0.035	
BE010	401407.481	3734347.081	138.738	138.760	Open Terrain/Bare Earth	0.022	
BE011	408073.589	3764047.593	142.346	142.376	Open Terrain/Bare Earth	0.030	
OT001	488987.147	3848777.121	214.031	213.995	Open Terrain/Bare Earth	-0.036	
OT002	495754.941	3864102.881	191.764	191.790	Open Terrain/Bare Earth	0.026	
OT003	515250.758	3841380.887	203.001	203.008	Open Terrain/Bare Earth	0.006	
OT004	469195.952	3768423.941	246.688	246.697	Open Terrain/Bare Earth	0.009	
OT005	454410.742	3778523.406	203.591	203.663	Open Terrain/Bare Earth	0.072	
ОТ006	472500.634	3787911.161	261.029	261.083	Open Terrain/Bare Earth	0.054	
OT007	387304.269	3745645.047	108.880	108.892	Open Terrain/Bare Earth	0.012	
OT008	396531.550	3740391.299	126.387	126.513	Open Terrain/Bare Earth	0.126	
UR001	502332.187	3843631.158	206.214	206.229	Urban Terrain	0.015	
UR002	498515.870	3857546.276	232.378	232.307	Urban Terrain	-0.071	
UR003	514663.973	3858272.857	246.923	246.901	Urban Terrain	-0.022	
UR004	447088.776	3777577.429	254.801	254.793	Urban Terrain	-0.008	
UR005	479409.021	3769236.899	226.592	226.495	Urban Terrain	-0.097	
UR006	483206.190	3781435.050	253.167	253.144	Urban Terrain	-0.023	
UR007	408796.479	3729096.075	143.262	143.166	Urban Terrain	-0.096	
UR008	407705.217	3745799.660	109.150	109.080	Urban Terrain	-0.070	

Table 14: Bare=Earth DEM NVA Assessment

Vegetated Vertical Accuracy (VVA) Check Point Assessment (Bare Earth)							
PointID	Easting	Northing	KnownZ	LaserZ	Description	DeltaZ	
BR001	484176.497	3859164.749	238.178	238.181	Brush	0.003	
BR002	497730.910	3870126.461	180.103	180.287	Brush	0.184	
BR003	512601.539	3847599.527	211.932	212.083	Brush	0.151	
BR004	471913.156	3765053.980	225.738	225.771	Brush	0.033	
BR005	446052.376	3789450.311	297.564	297.691	Brush	0.127	
BR006	486698.835	3794682.681	285.958	285.959	Brush	0.001	
BR007	399614.112	3721205.192	102.244	102.163	Brush	-0.081	
BR008	407619.408	3740226.889	159.991	159.981	Brush	-0.010	
BR009	405714.541	3754960.288	117.087	116.990	Brush	-0.097	
HG001	511152.199	3838275.196	180.630	180.522	High Grass	-0.108	

HG002	489347.004	3779134.206	265.702	265.723	High Grass	0.021
HG003	457302.639	3787898.026	272.699	272.938	High Grass	0.239
HG004	469389.432	3777566.455	226.319	226.449	High Grass	0.130
HG005	388440.622	3713754.116	76.157	76.085	High Grass	-0.072
HG006	392914.159	3730673.320	84.702	84.735	High Grass	0.033
HG007	393604.969	3754340.668	94.027	94.091	High Grass	0.064
TR001	516174.073	3829252.711	172.691	172.764	Trees	0.073
TR002	478888.594	3848619.680	181.704	181.718	Trees	0.014
TR003	507517.444	3860530.865	248.106	248.081	Trees	-0.025
TR004	475609.994	3778845.693	240.151	240.047	Trees	-0.104
TR005	458177.084	3769669.663	231.695	231.679	Trees	-0.016
TR006	484960.209	3767742.794	221.643	221.671	Trees	0.028
TR007	405377.576	3725898.158	125.304	125.432	Trees	0.128
TR008	388641.685	3733603.511	96.053	95.998	Trees	-0.055
TR009	400583.320	3762921.173	105.820	105.934	Trees	0.114

Table 15: Bare-Earth Lidar VVA Assessment

Section 4: Certification

4.1 Limitations of Use

Bi Mayfor

The accuracy assessment confirms that the data may be used for the intended applications stated in the **Project Purpose** section of this document. The dataset may also be used as a topographic input for other applications but the user should be aware that this lidar dataset was designed with a specific purpose and was not intended to meet specifications and/or requirements of users outside of the United States Geological Survey.

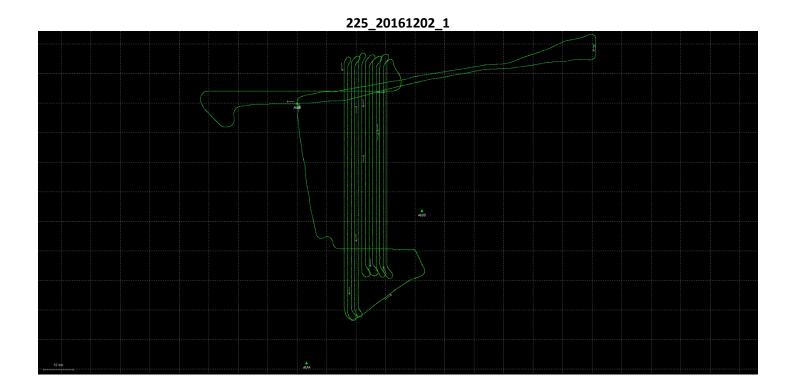
It should also be noted that lidar points do not represent a continuous surface model. Lidar points are discrete measurements of the surface and any values derived within a triangle of three lidar points are interpolated. As such, the user should not use the resultant lidar dataset for vertical placement of a planimetric feature such as a headwall, building footprint or any other planimetric feature unless there is an associated lidar point that can be reasonably located on this structure.

Consideration should be given by the end user of this dataset to the fact that this lidar dataset was developed differently and that previous lidar datasets that may be available for this geographic location. It is likely that the data in this project was created using different geodetic control, a different Geoid, newer lidar technology and more up-to-date processing techniques. As such, any direct comparative analysis performed between this dataset and previous datasets could result in misleading or inaccurate results. Users are encouraged to proceed with caution while performing this type of comparative analysis and to completely understand the variables that make each of these datasets unique and not corollary.

It is encouraged that the user refers to the full FGDC Metadata and project reports for a complete understanding on the content of this dataset.

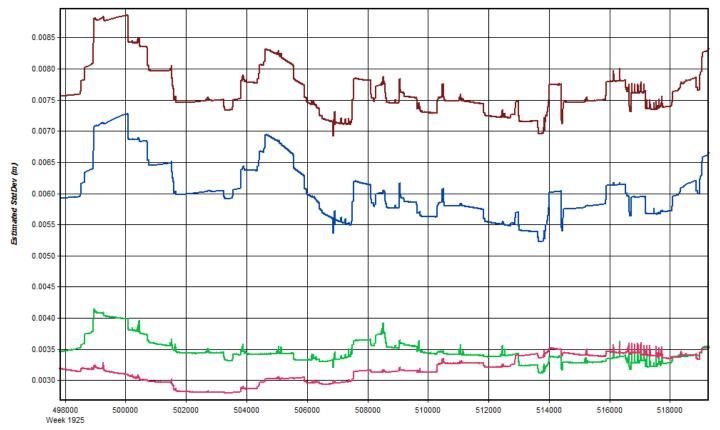
I, hereby, certify to the extent of my knowledge that the statements and statistics represented in this document are true and factual.

Brian J. Mayfield, ASPRS Certified Photogrammetrist #R1276

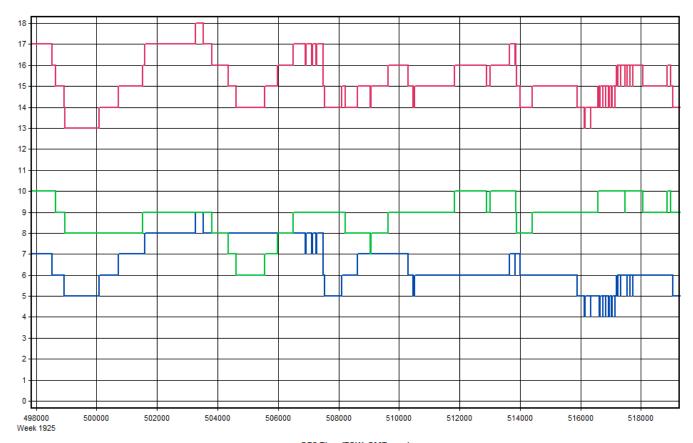

Section 5: GNSS Processing

Inertial Explorer version 8.60.6717

Plots by Mission: Coverage Map, Estimated Position Accuracy, Number of Satellites, Combined Separation, and PDOP.


	The Coverage Map plot shows the Aircraft GNSS-IMU Trajectory in reference to
Coverage Map	localized GNSS Reference Stations.
	The Estimated Position Accuracy plot shows the standard deviations of the east, north,
Estimated Position Accuracy	and up directions versus time for the solution. The total standard deviation with a
	distance dependent component is also plotted.
	Plots the number of satellites used in the solution as a function of time. The number of
Number of Satellites	GPS satellites, GLONASS satellites, and the total number of satellites are distinguished
	with separate lines.
	Plots the north, east, and height position difference between any two solutions loaded
	into the project. This is most often the forward and reverse processing results, unless
	other solutions have been loaded from the Combine Solutions dialog. Plotting the
	difference between forward and reverse solutions can be very helpful in quality
Combined Separation	checking. When processing both directions, no information is shared between forward
	and reverse processing. Thus both directions are processed independently of each
	other. When forward and reverse solutions agree closely, it helps provide confidence
	in the solution. To a lesser extent, this plot can also help gauge solution accuracy.
	PDOP is a unit less number which indicates how favorable the satellite geometry is to
	3D positioning accuracy. A strong satellite geometry, where the PDOP is low, occurs
	when satellites are well distributed in each direction (north, south, east and west) as
	well as directly overhead. Values in the range of 1-2 indicate very good satellite
PDOP	geometry, 2-3 are adequate in the sense that they do not generally, by themselves,
	limit positioning accuracy. Values between 3 and 4 are considered marginal, and
	values approaching or exceeding 5 can be considered poor. PDOP spikes can occur on
	aircraft turns were the antenna angle is unfavorable, these spikes while aesthetically
	unfavorable do not generally reduce the accuracy of the acquired data.
	dinavorable do not generally reduce the accuracy of the acquired data.

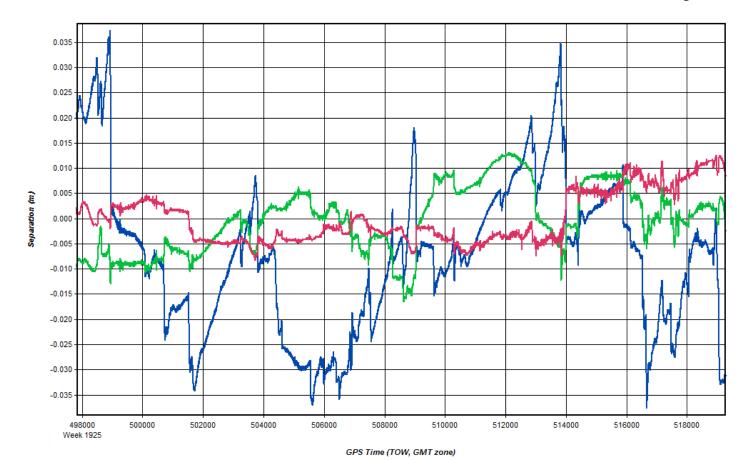
August 2017


GPS Time (TOW, GMT zone)

- East - North - Height - Trace

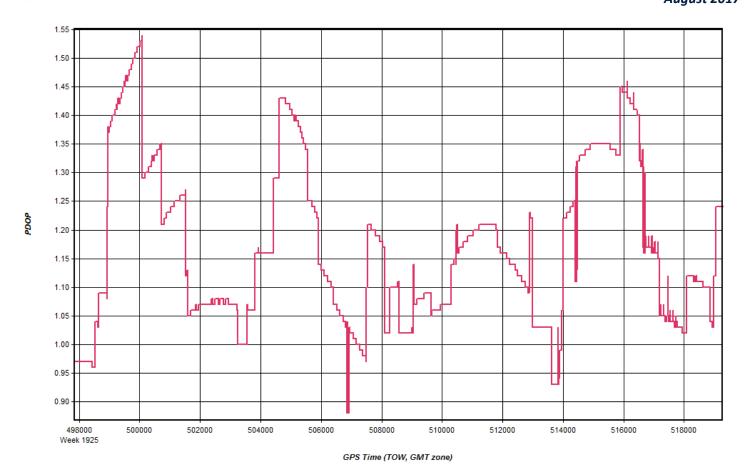
Num Sats

United States Geological Survey,2017 Alabama 25 Counties Lidar (Block 1) Aerial Lidar Report, 16113 August 2017

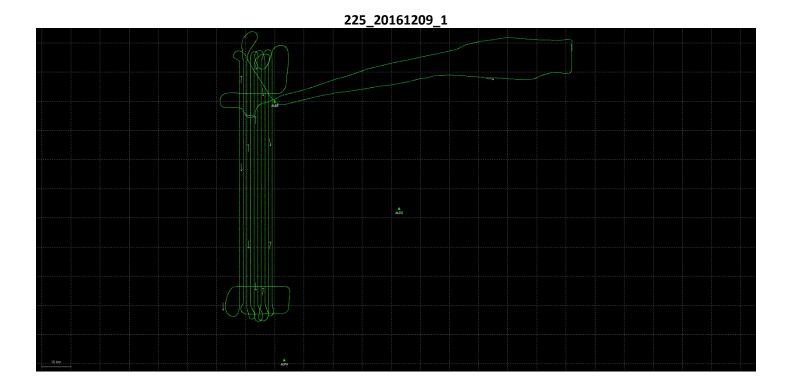


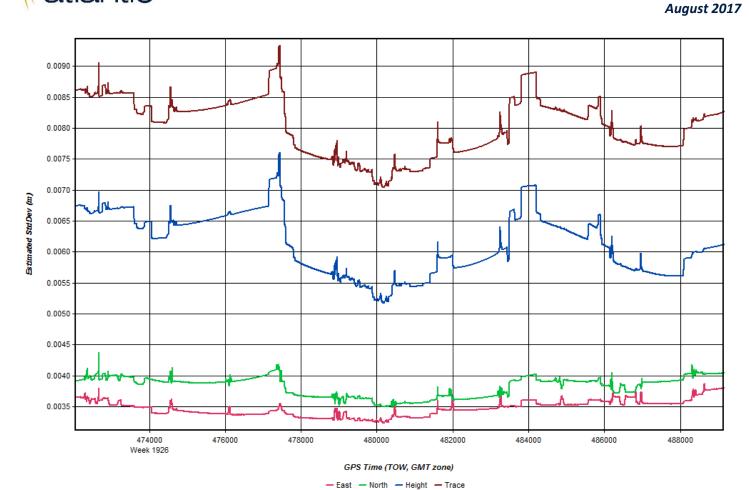
GPS Time (TOW, GMT zone)

— Num Sats — GPS — GLONASS — BeiDou

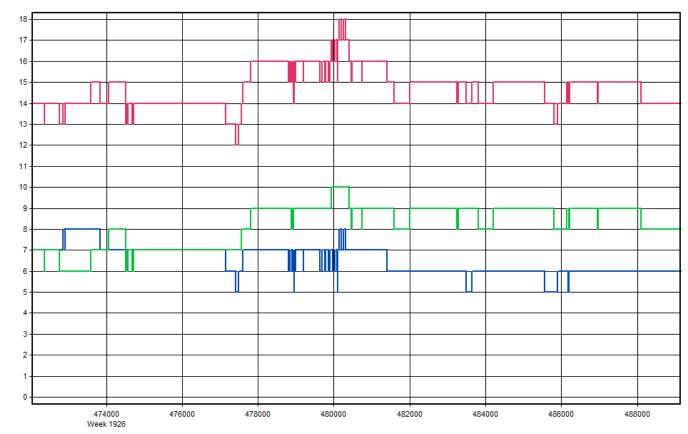


August 2017


- East - North - Up

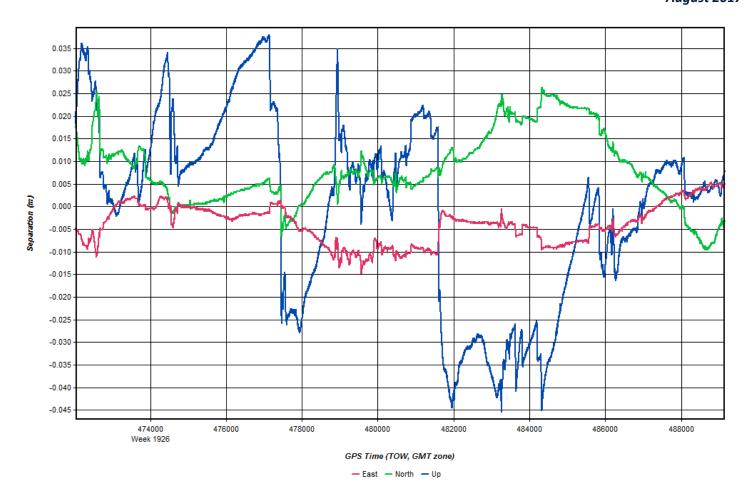


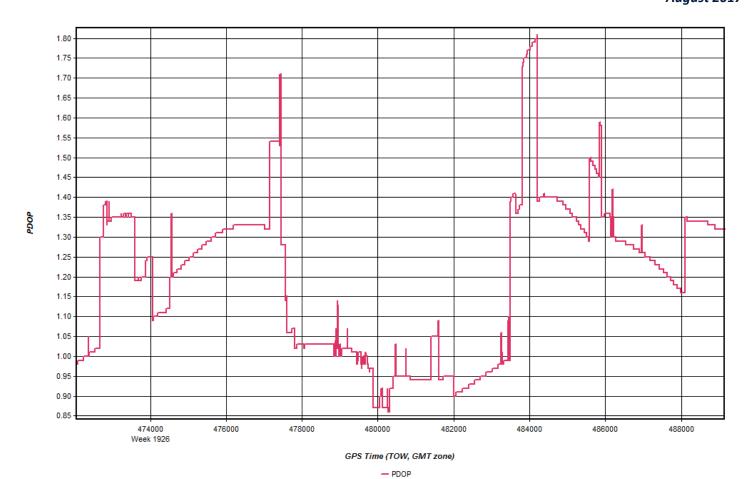
- PDOP



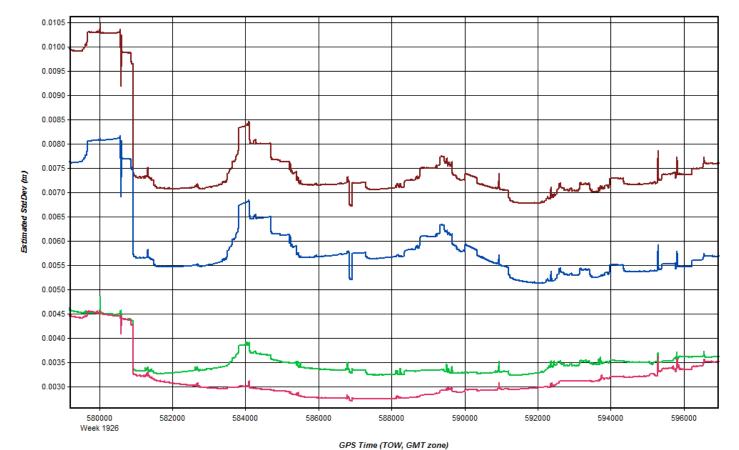
Num Sats

United States Geological Survey,2017 Alabama 25 Counties Lidar (Block 1) Aerial Lidar Report, 16113

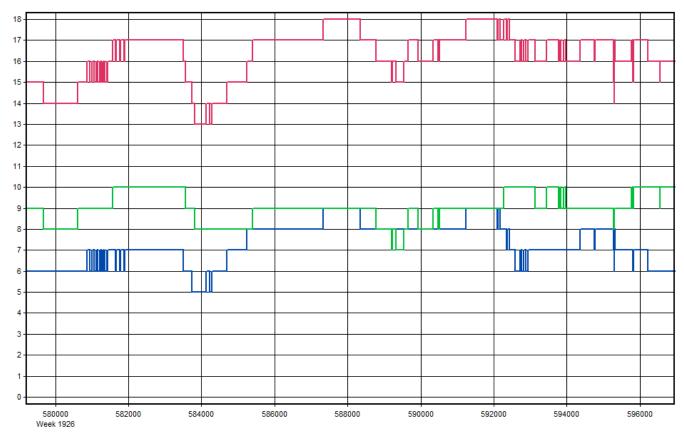



GPS Time (TOW, GMT zone)

- Num Sats - GPS - GLONASS - BeiDou



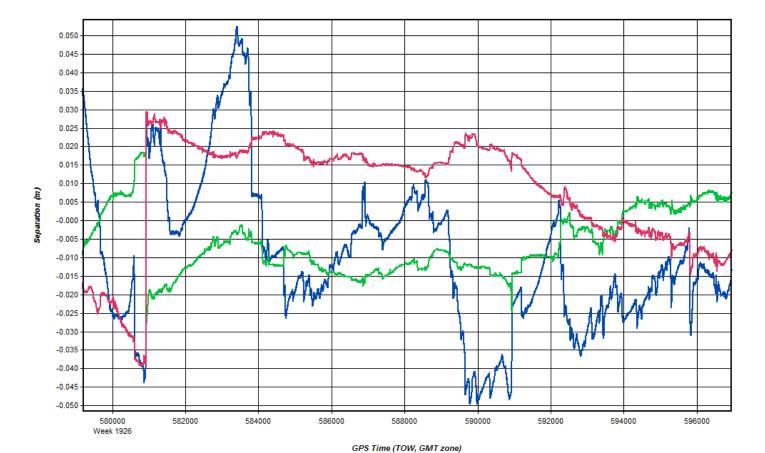
August 2017


er e rime (revi, em reme)

- East - North - Height - Trace

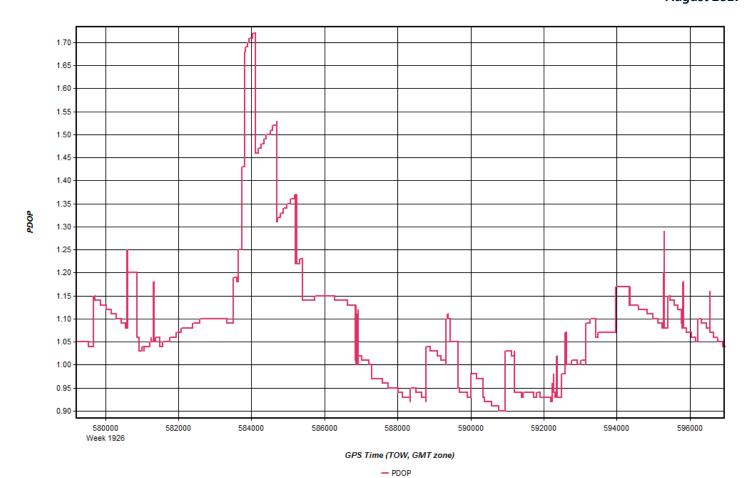
Num Sats

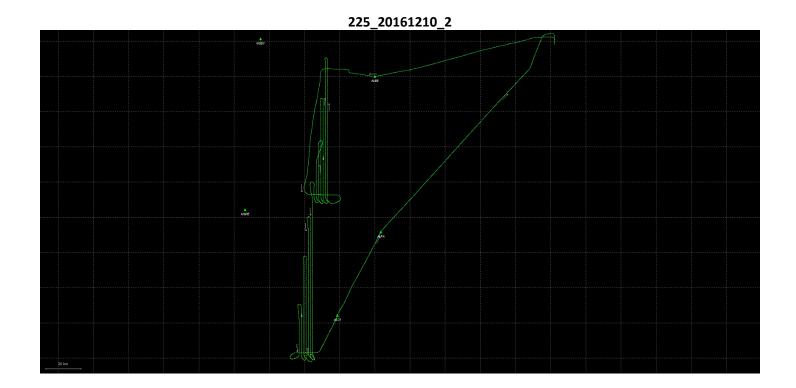
United States Geological Survey,2017 Alabama 25 Counties Lidar (Block 1) Aerial Lidar Report, 16113 August 2017



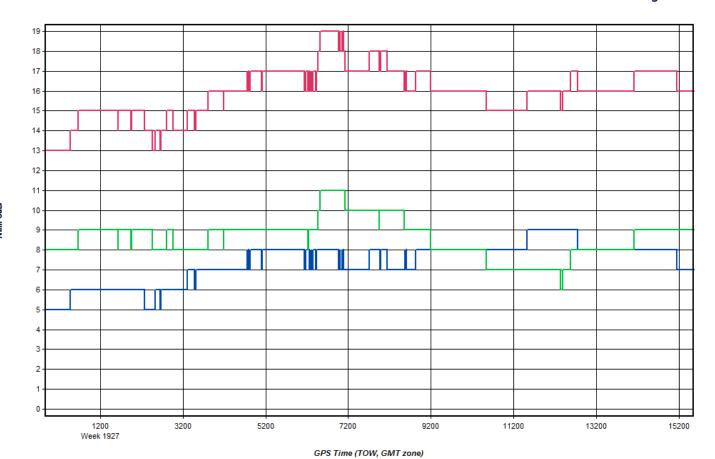
GPS Time (TOW, GMT zone)

— Num Sats — GPS — GLONASS — BeiDou

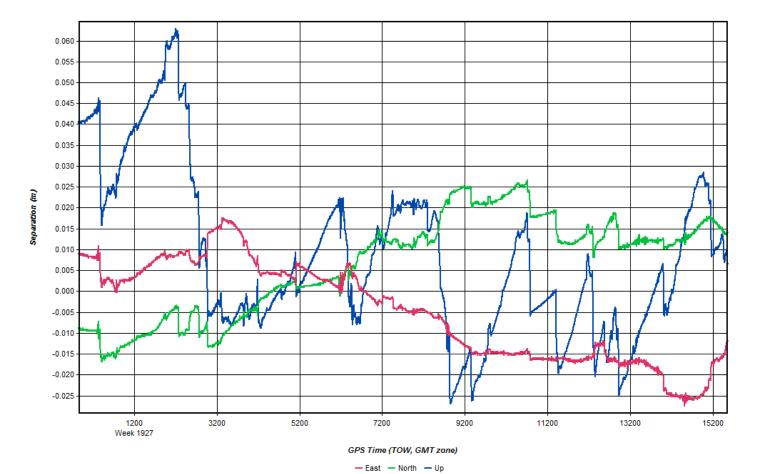


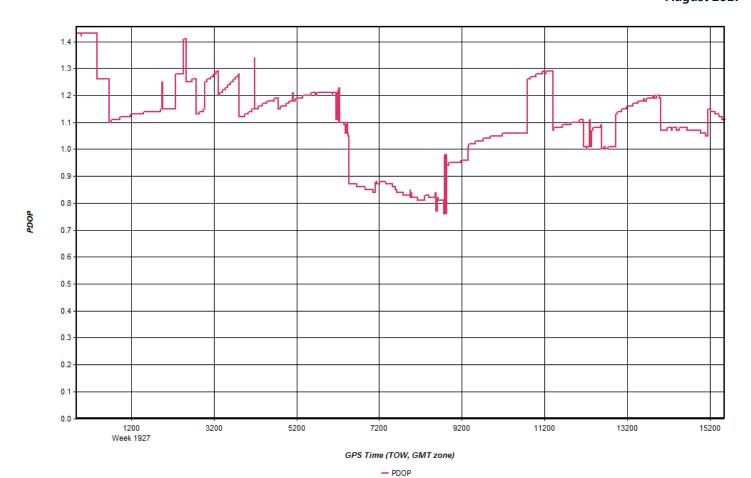


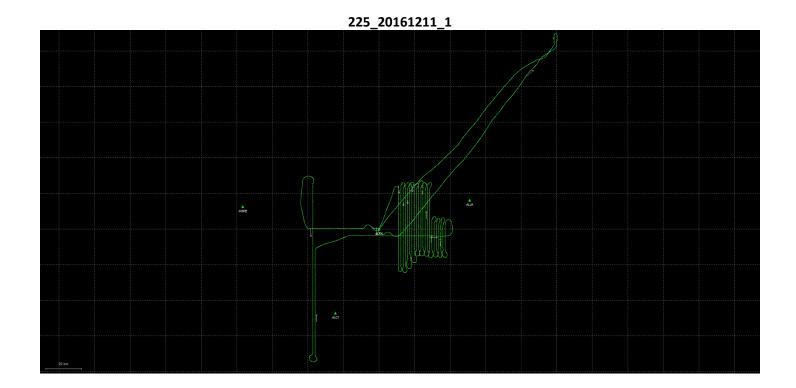
- East - North - Up

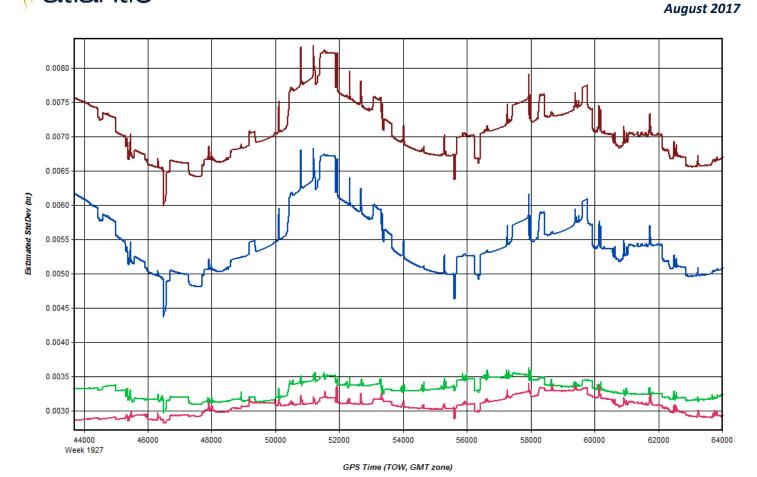


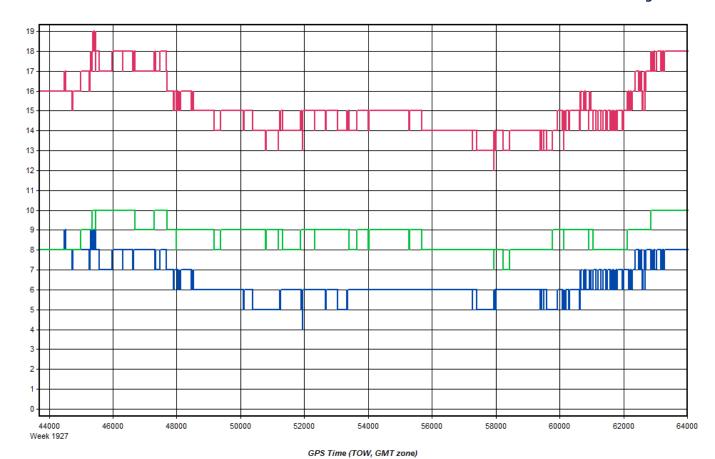
August 2017



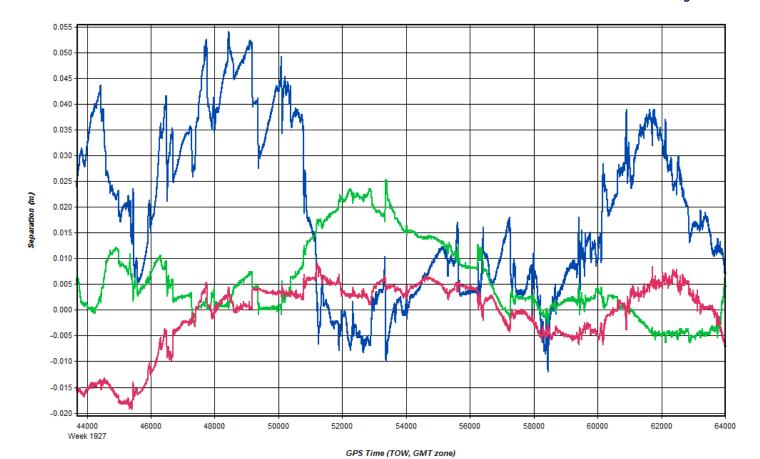




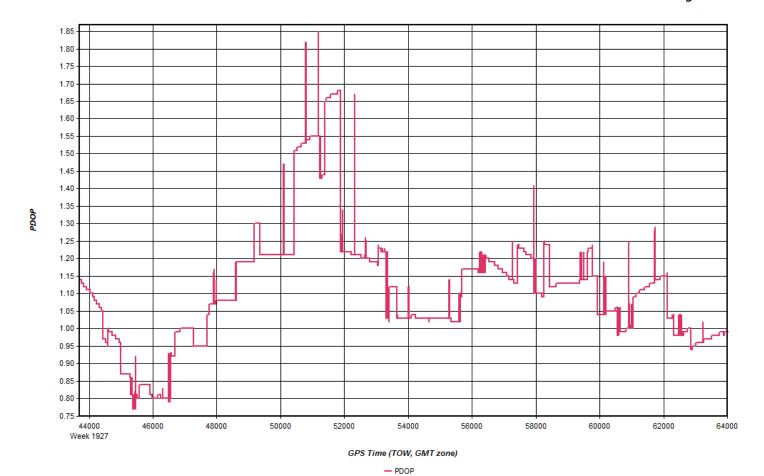




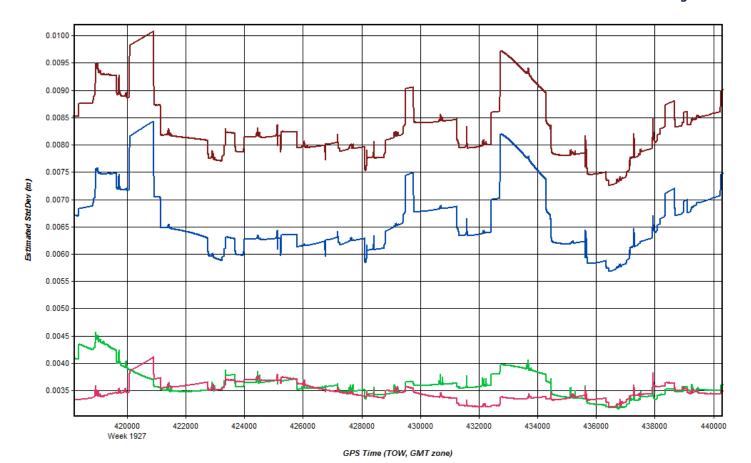
- East - North - Height - Trace

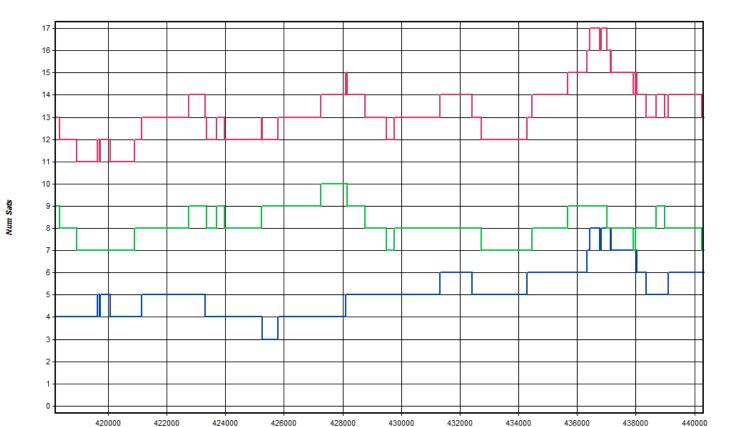


Num Sats



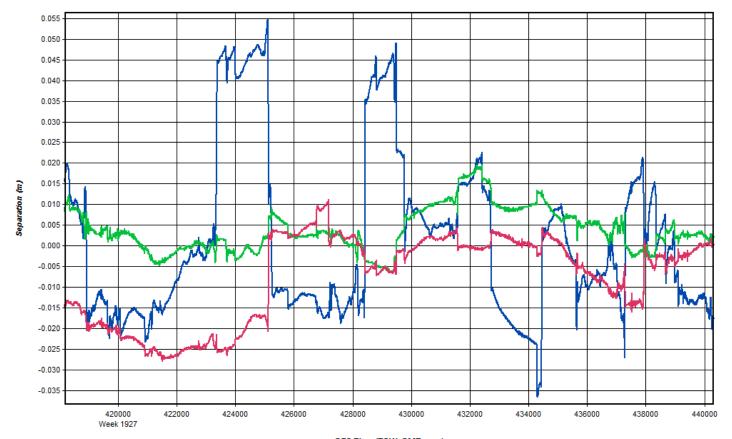
- East - North - Up





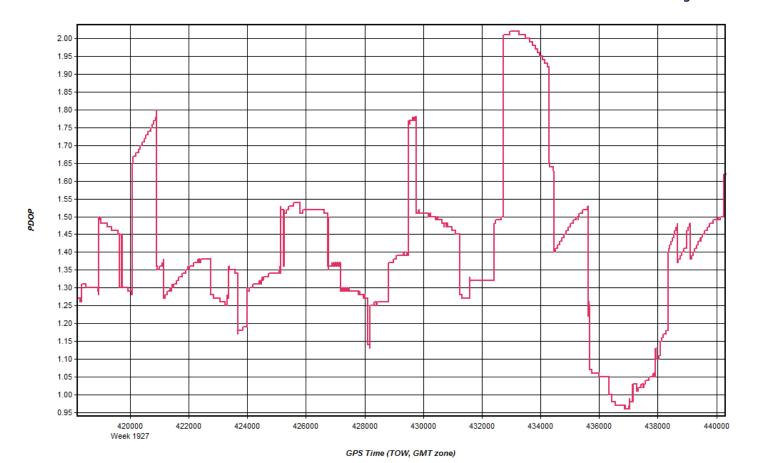
August 2017

- East - North - Height - Trace



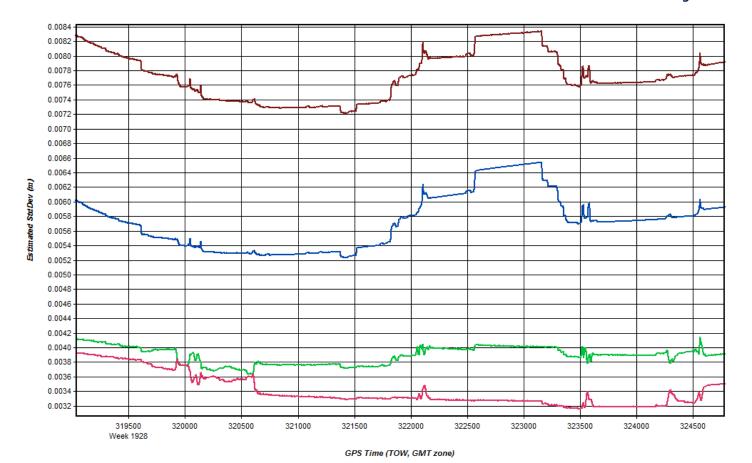
GPS Time (TOW, GMT zone)

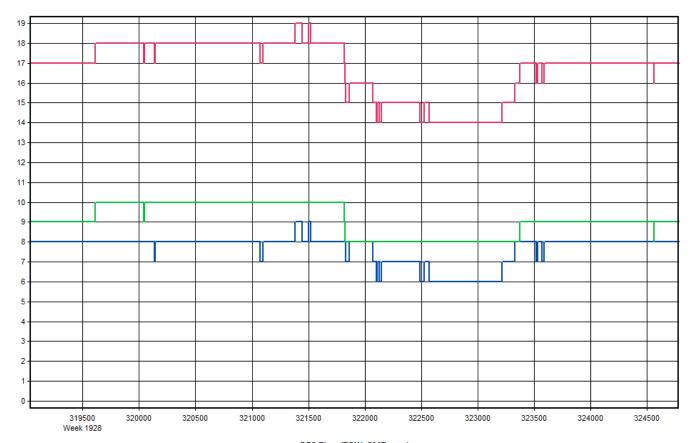
— Num Sats — GPS — GLONASS — BeiDou



GPS Time (TOW, GMT zone)

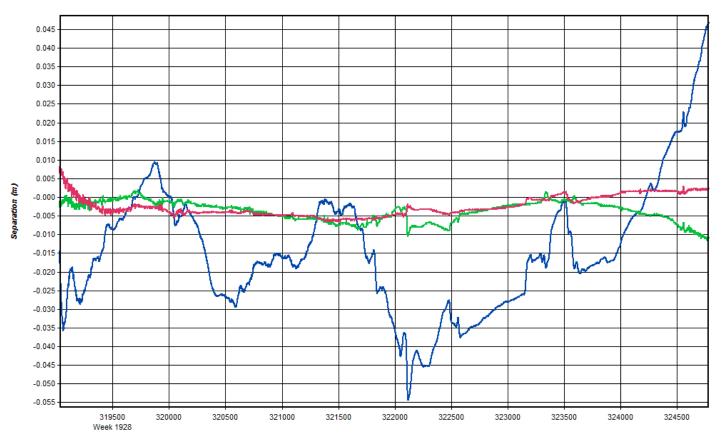
- East - North - Up

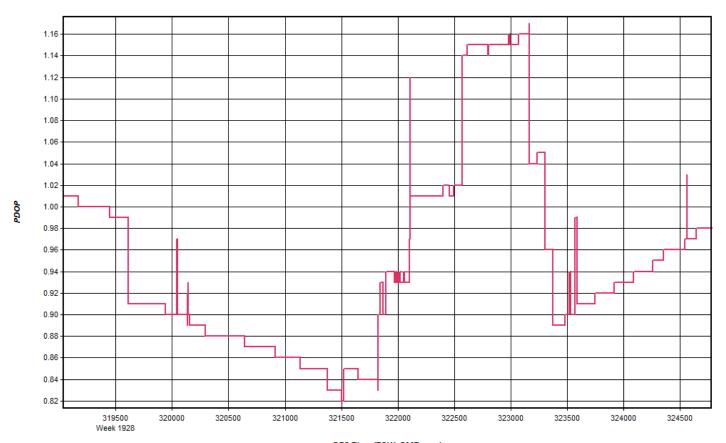

- PDOP



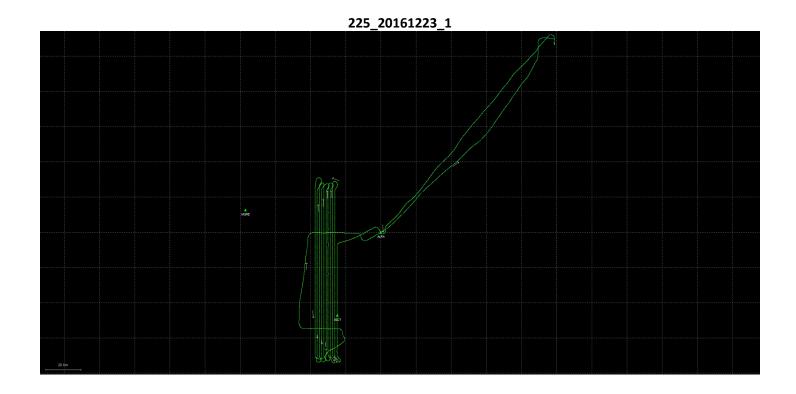
August 2017

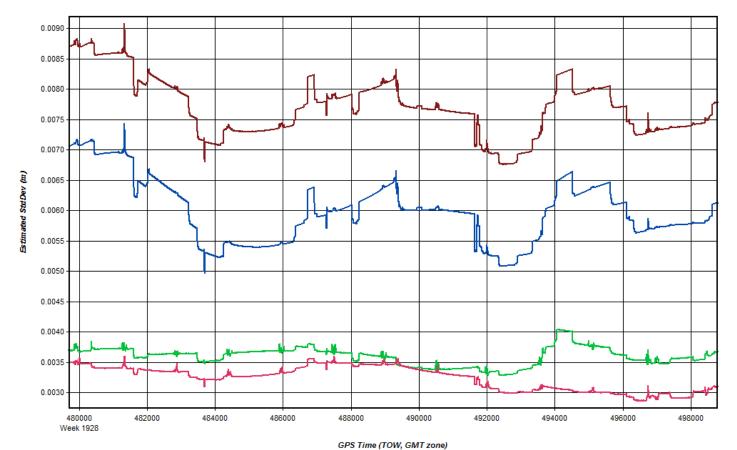
- East - North - Height - Trace




GPS Time (TOW, GMT zone)

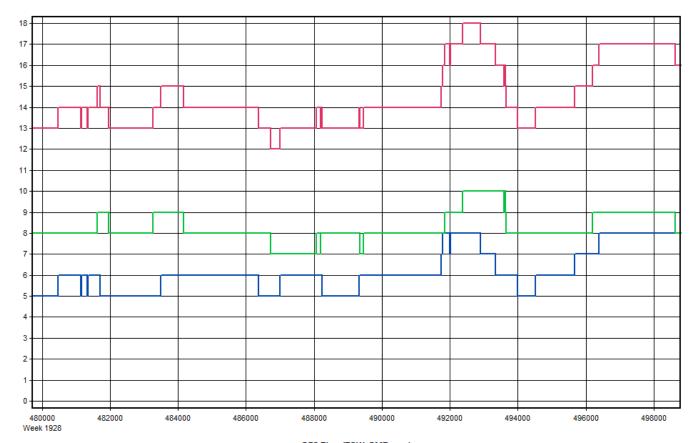
— Num Sats — GPS — GLONASS — BeiDou





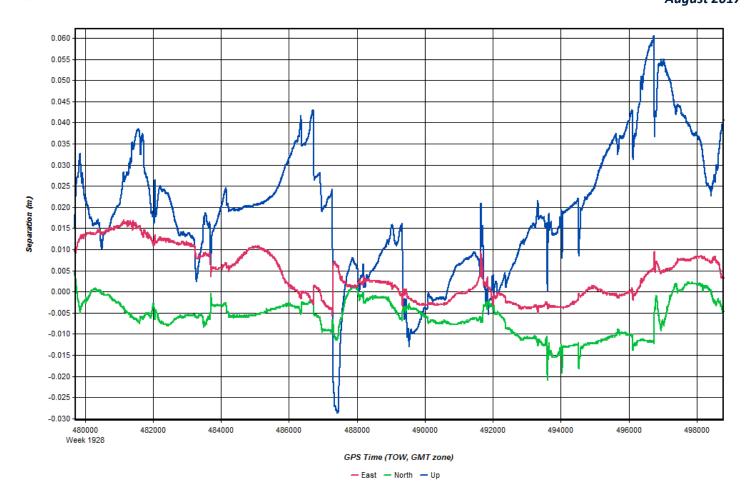
August 2017

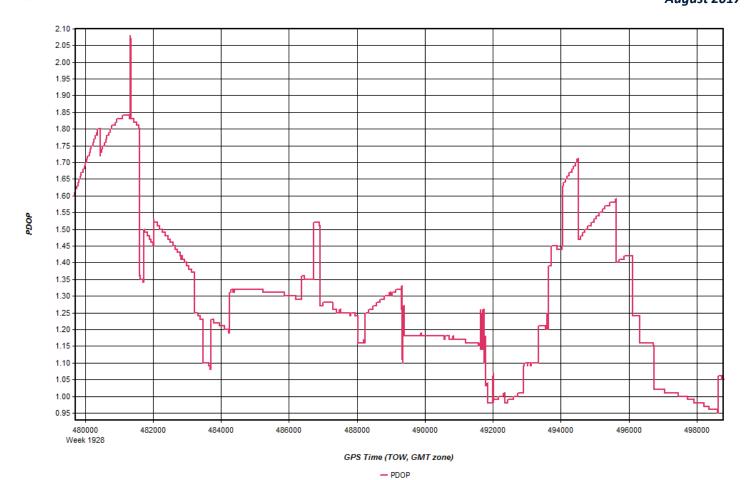
or o rime (row, own zone)


- East - North - Height - Trace

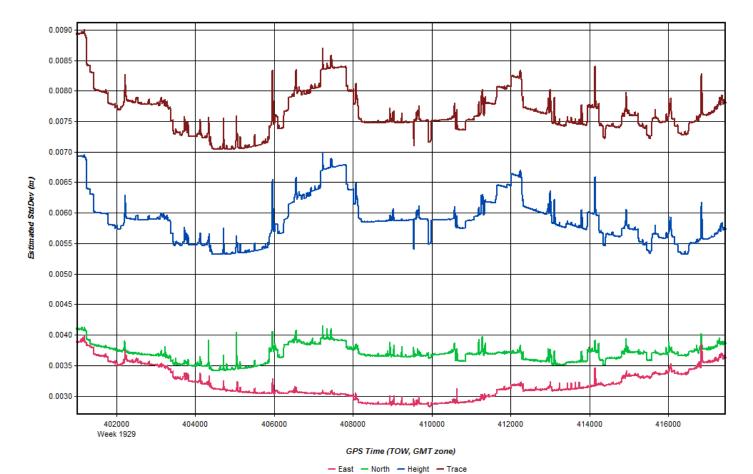
Num Sats

United States Geological Survey,2017 Alabama 25 Counties Lidar (Block 1) Aerial Lidar Report, 16113

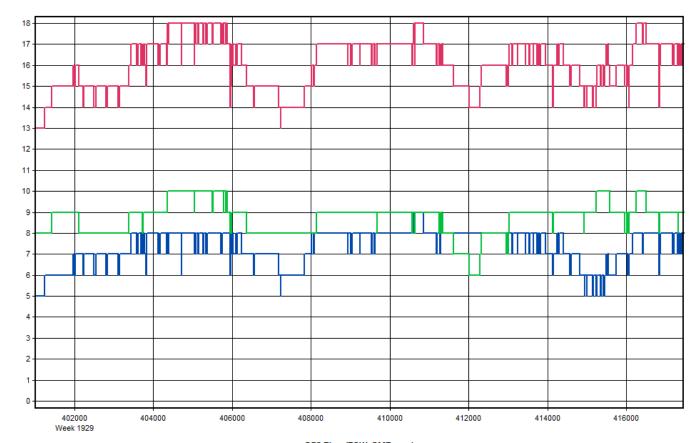



GPS Time (TOW, GMT zone)

- Num Sats - GPS - GLONASS - BeiDou

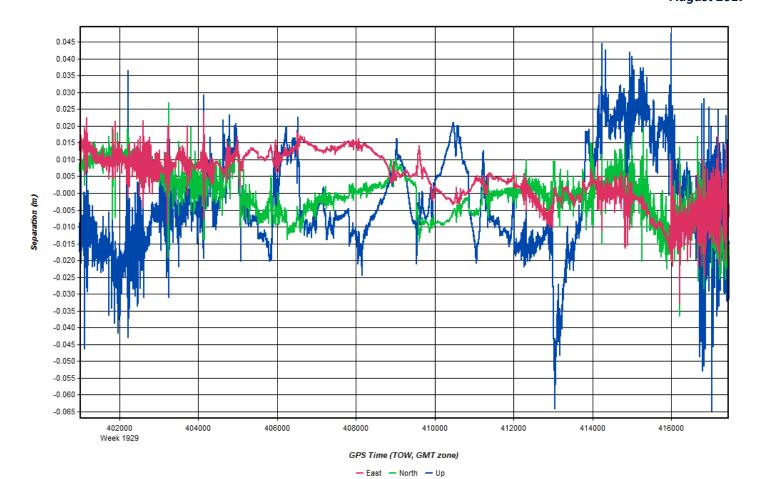


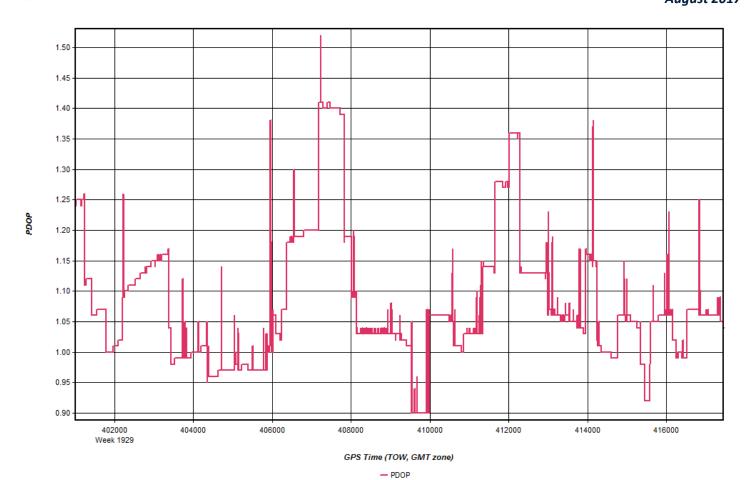
August 2017



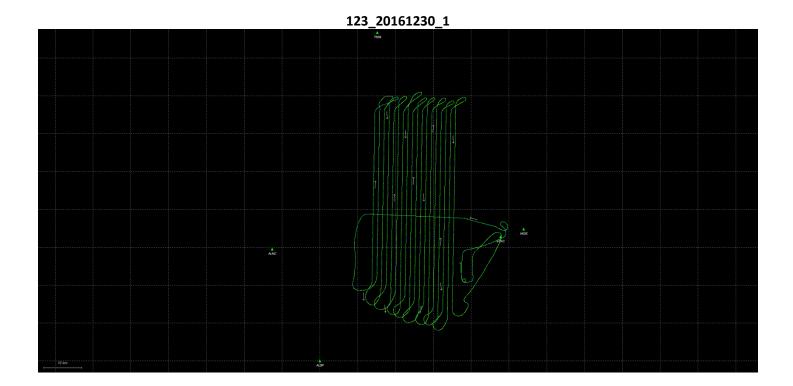
Num Sats

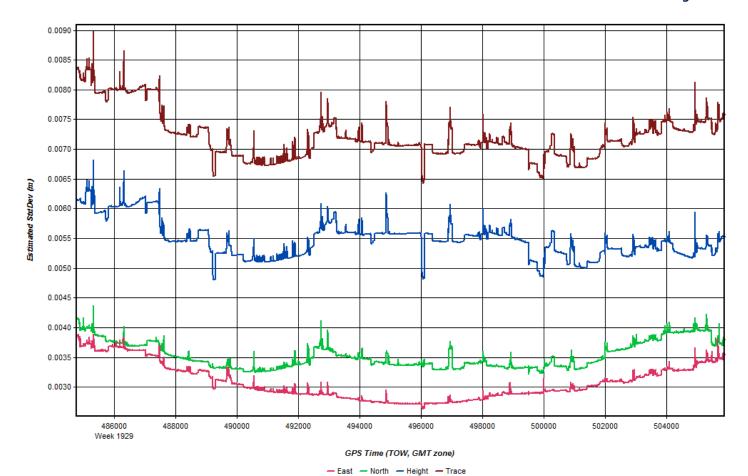
United States Geological Survey,2017 Alabama 25 Counties Lidar (Block 1) Aerial Lidar Report, 16113



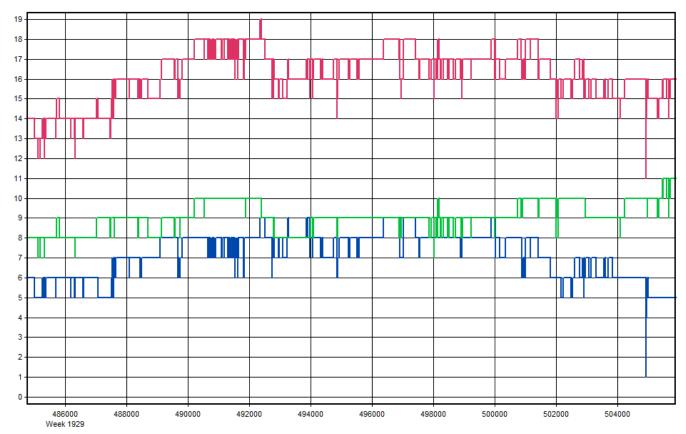

GPS Time (TOW, GMT zone)

- Num Sats - GPS - GLONASS - BeiDou



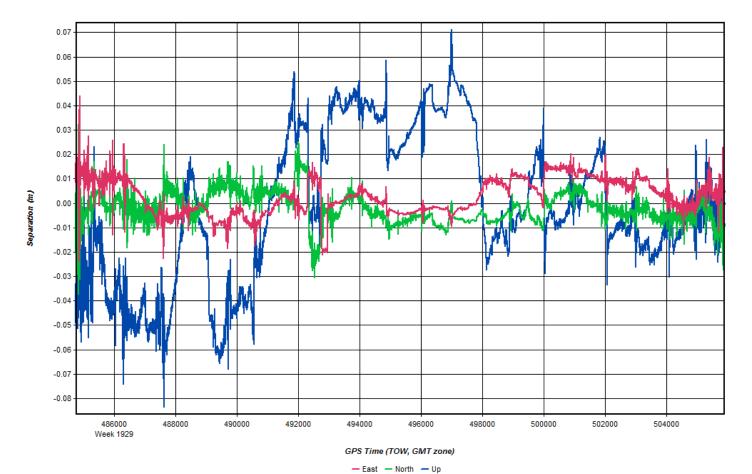


August 2017

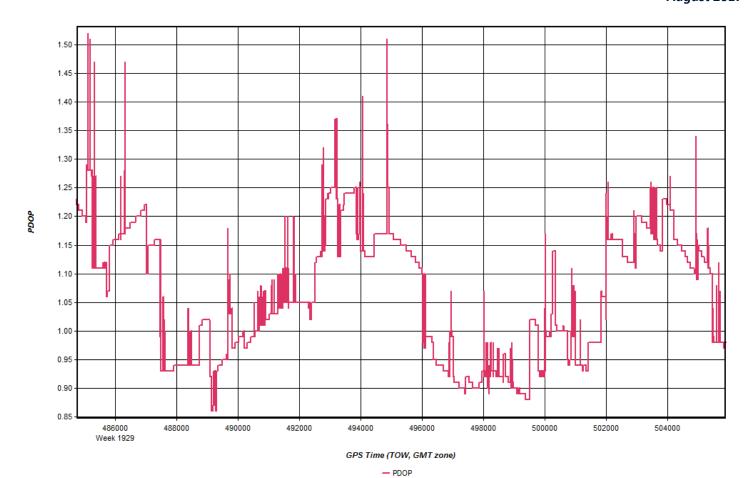


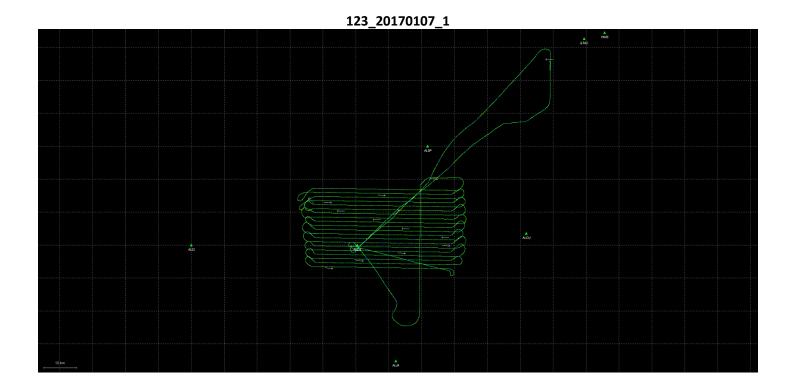
Num Sats

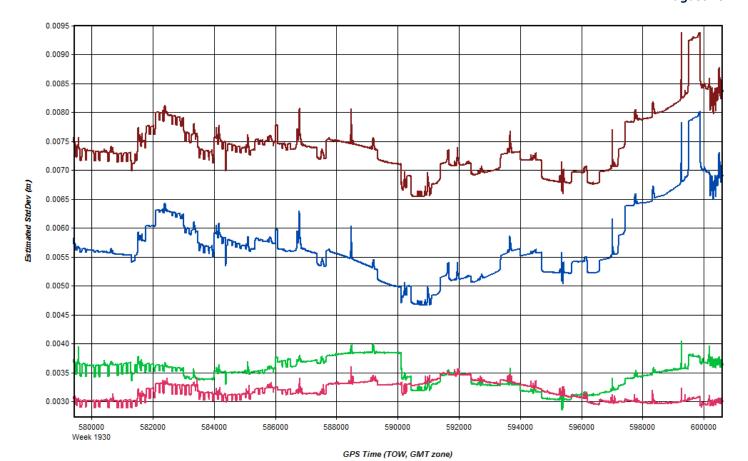
United States Geological Survey,2017 Alabama 25 Counties Lidar (Block 1) Aerial Lidar Report, 16113

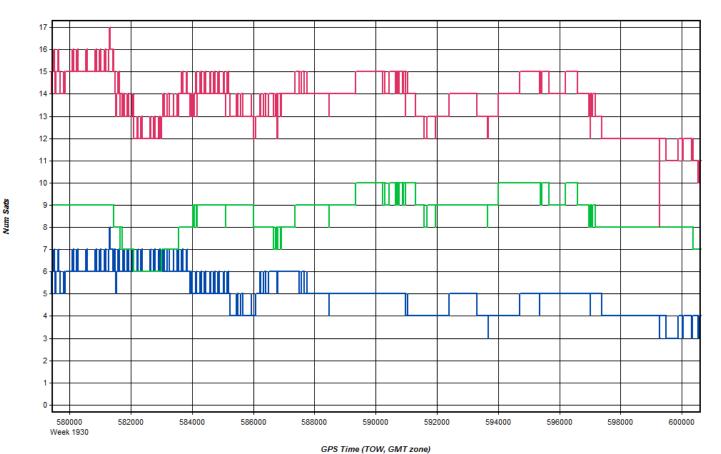


GPS Time (TOW, GMT zone)

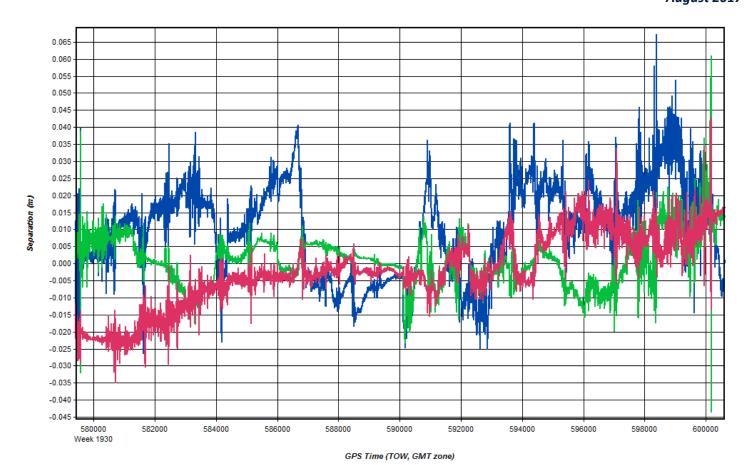

— Num Sats — GPS — GLONASS — BeiDou


August 2017



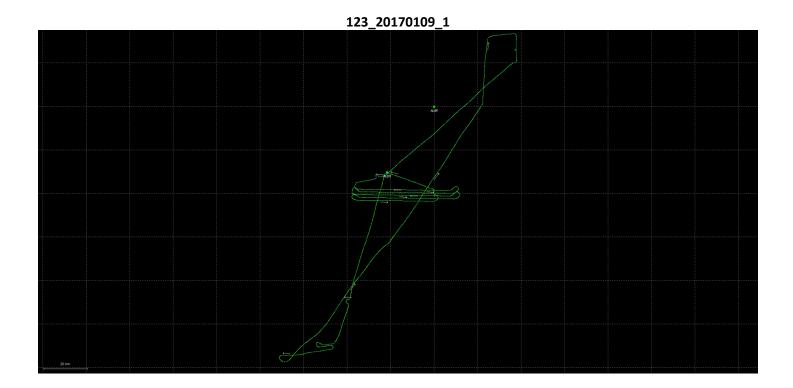

August 2017

- East - North - Height - Trace

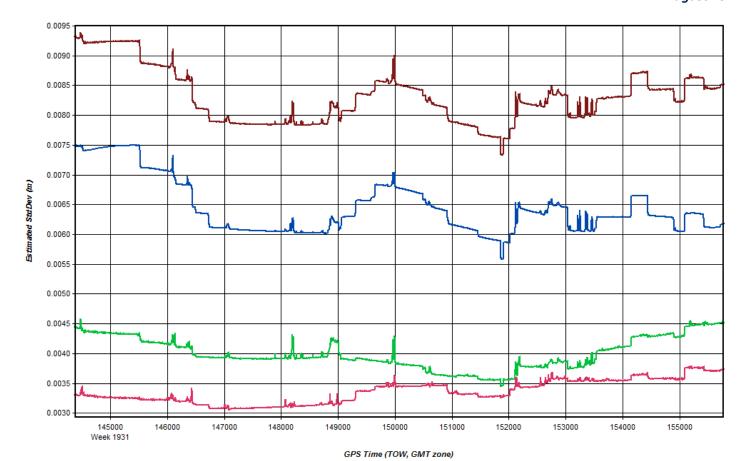


- Num Sats - GPS - GLONASS - BeiDou

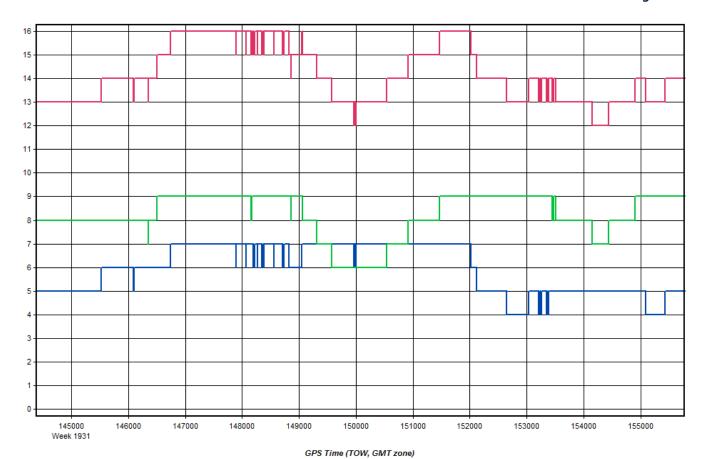
- East - North - Up



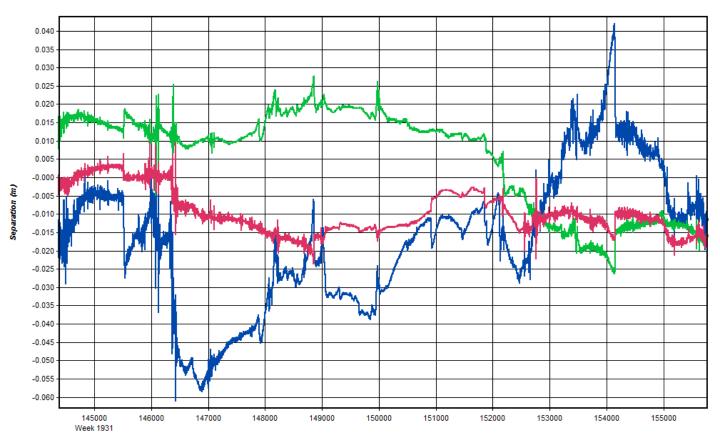
GPS Time (TOW, GMT zone)


- PDOP

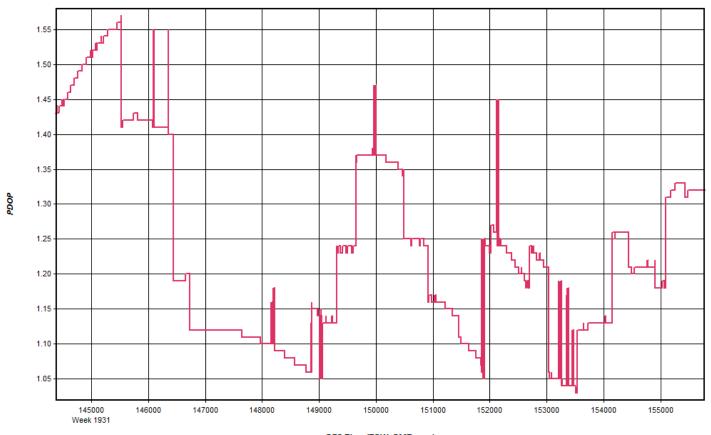
August 2017



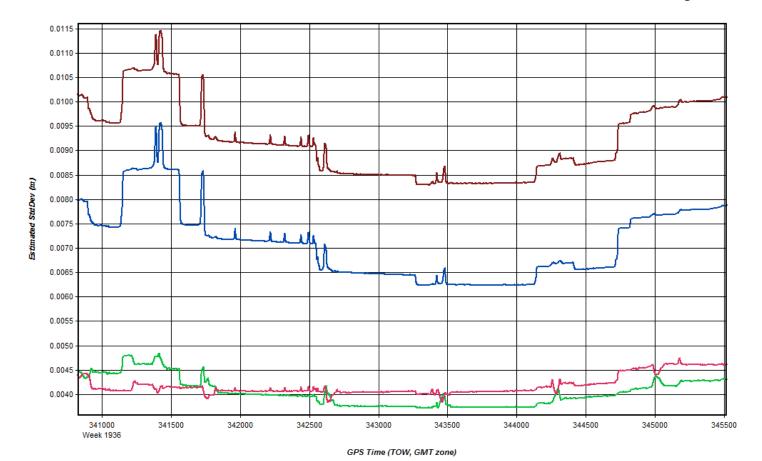
- East - North - Height - Trace

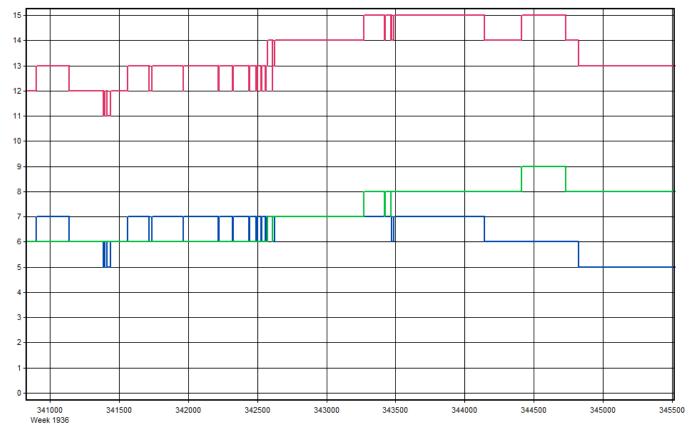

Num Sats

United States Geological Survey,2017 Alabama 25 Counties Lidar (Block 1) Aerial Lidar Report, 16113 August 2017



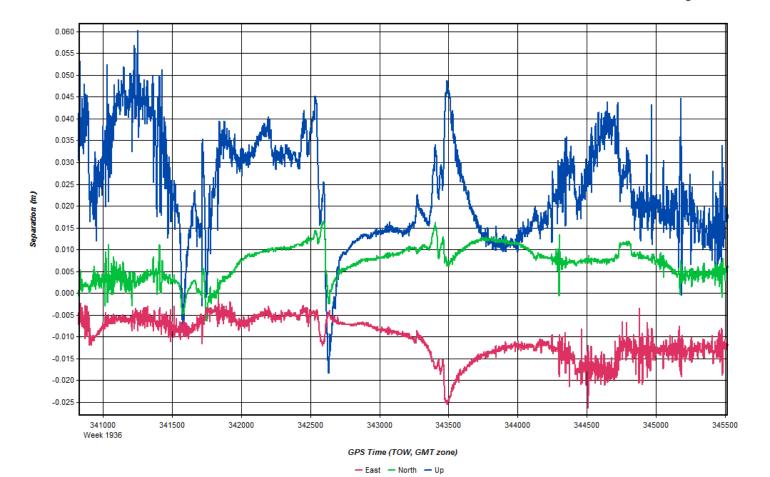
- Num Sats - GPS - GLONASS - BeiDou



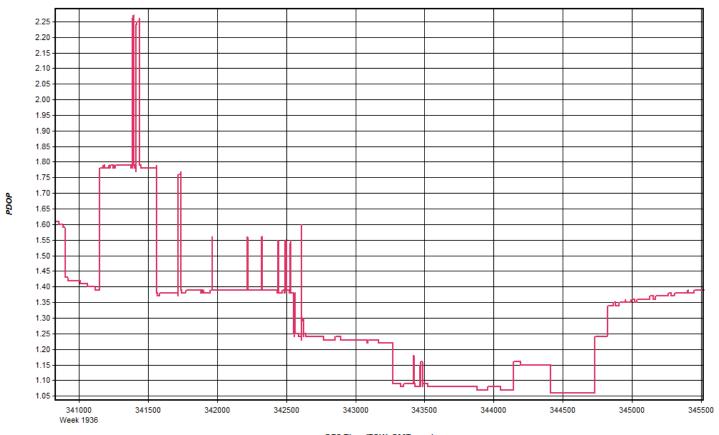

- East - North - Height - Trace

Num Sats

United States Geological Survey,2017 Alabama 25 Counties Lidar (Block 1) Aerial Lidar Report, 16113



GPS Time (TOW, GMT zone)


- Num Sats - GPS - GLONASS - BeiDou

