2022 NOAA OCM Topobathy Lidar DEM: Northern Green Bay, WI | |
---|---|
(MI_Metadata) fileIdentifier: gov.noaa.nmfs.inport:71220 language: LanguageCode: eng characterSet: (MD_CharacterSetCode) UTF8 hierarchyLevel: (MD_ScopeCode) dataset hierarchyLevelName: Elevation contact: (CI_ResponsibleParty) organisationName: Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (missing) address: (CI_Address) role: (CI_RoleCode) resourceProvider contact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact dateStamp: DateTime: 2023-10-26T15:11:50 metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data metadataStandardVersion: ISO 19115-2:2009(E) return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) code: EPSG::6345 return to top referenceSystemInfo: (MD_ReferenceSystem) referenceSystemIdentifier: (RS_Identifier) code: EPSG::5703 return to top identificationInfo: (MD_DataIdentification) citation: (CI_Citation) title: 2022 NOAA OCM Topobathy Lidar DEM: Northern Green Bay, WI date: (CI_Date) date: 2022 dateType: (CI_DateTypeCode) creation date: (CI_Date) date: 2023 dateType: (CI_DateTypeCode) publication identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: Anchor: InPort Catalog ID 71220 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inport/item/71220 protocol: WWW:LINK-1.0-http--link name: Full Metadata Record description: View the complete metadata record on InPort for more information about this dataset. function: (CI_OnLineFunctionCode) information role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=9949/details/9949 protocol: WWW:LINK-1.0-http--link name: Custom Download description: Link to custom download, from the Data Access Viewer (DAV), the lidar point data from which these raster Digital Elevation Model (DEM) data were created. function: (CI_OnLineFunctionCode) download role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/9949/supplemental/GreenBay_Topobathy_Lidar_Project_Report_508OCM.pdf protocol: WWW:LINK-1.0-http--link name: Lidar Report description: Link to the Dewberry lidar report. function: (CI_OnLineFunctionCode) download role: (inapplicable) citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/ protocol: WWW:LINK-1.0-http--link name: NOAA's Office for Coastal Management (OCM) Data Access Viewer (DAV) description: The Data Access Viewer (DAV) allows a user to search for and download elevation, imagery, and land cover data for the coastal U.S. and its territories. The data, hosted by the NOAA Office for Coastal Management, can be customized and requested for free download through a checkout interface. An email provides a link to the customized data, while the original data set is available through a link within the viewer. function: (CI_OnLineFunctionCode) download role: (inapplicable) presentationForm: (unknown) abstract: These data were collected by Dewberry using a CZMIL Super Nova system. The data were acquired from 20220719 through 20220816. The data are rasterized topobathy lidar elevations at a 1 m grid spacing. This dataset consists of approximately 219 square miles of data along the shores of Green Bay and contains 2,630 500 m x 500 m GeoTiff files. In addition to these bare earth Digital Elevation Model (DEM) data, the lidar point data that these DEM data were created from are also available from the NOAA Digital Coast. A link to these data are provided in the URL section of this metadata record. purpose: This dataset has two primary goals to fill critical gaps in our understanding of benthic habitat within Lake Michigan and northern Green Bay. The first goal is the collection of new bathymetric lidar to support multiple agencies including NOAA; US Fish and Wildlife Service; state agencies with Michigan and Wisconsin; and other regional partners' mapping and modeling needs by expanding existing high resolution bathymetry coverage in northern Green Bay. The second goal is to use this bathymetry in the creation of new benthic mapping products using the Coastal and Marine Ecological Classification Standard (CMECS). credit: We request that you credit the National Oceanic and Atmospheric Administration (NOAA) when you use these data in a report, publication, or presentation: Department of Commerce (DOC), National Oceanic and Atmospheric Administration (NOAA) status: (MD_ProgressCode) completed pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) pointOfContact pointOfContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) custodian resourceMaintenance: (MD_MaintenanceInformation) maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) notPlanned graphicOverview: (MD_BrowseGraphic) fileName: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/9949/supplemental/wi2022_green_bay_m9949.kmz fileDescription: This graphic shows the lidar coverage for the 2022 topobathy lidar acquisition around Washington Island in northern Green Bay. fileType: kmz descriptiveKeywords: (MD_Keywords) keyword: EARTH SCIENCE > LAND SURFACE > TOPOGRAPHY > TERRAIN ELEVATION keyword: EARTH SCIENCE > LAND SURFACE > TOPOGRAPHY > TERRAIN ELEVATION > DIGITAL ELEVATION/TERRAIN MODEL (DEM) keyword: EARTH SCIENCE > OCEANS > BATHYMETRY/SEAFLOOR TOPOGRAPHY > BATHYMETRY > COASTAL BATHYMETRY keyword: EARTH SCIENCE > OCEANS > COASTAL PROCESSES > COASTAL ELEVATION type: (MD_KeywordTypeCode) theme thesaurusName: (CI_Citation) title: Global Change Master Directory (GCMD) Science Keywords date: (missing) edition: 12.3 descriptiveKeywords: (MD_Keywords) keyword: CONTINENT > NORTH AMERICA > UNITED STATES OF AMERICA keyword: CONTINENT > NORTH AMERICA > UNITED STATES OF AMERICA > GREAT LAKES keyword: CONTINENT > NORTH AMERICA > UNITED STATES OF AMERICA > WISCONSIN keyword: VERTICAL LOCATION > LAND SURFACE type: (MD_KeywordTypeCode) place thesaurusName: (CI_Citation) title: Global Change Master Directory (GCMD) Location Keywords date: (missing) edition: 12.3 descriptiveKeywords: (MD_Keywords) keyword: LIDAR > Light Detection and Ranging type: (MD_KeywordTypeCode) instrument thesaurusName: (CI_Citation) title: Global Change Master Directory (GCMD) Instrument Keywords date: (missing) edition: 14.9 descriptiveKeywords: (MD_Keywords) keyword: Airplane > Airplane type: (MD_KeywordTypeCode) platform thesaurusName: (CI_Citation) title: Global Change Master Directory (GCMD) Platform Keywords date: (missing) edition: 14.9 descriptiveKeywords: (MD_Keywords) keyword: DOC/NOAA/NOS/OCM > Office of Coastal Management, National Ocean Service, NOAA, U.S. Department of Commerce type: (MD_KeywordTypeCode) dataCentre thesaurusName: (CI_Citation) title: Global Change Master Directory (GCMD) Data Center Keywords date: (CI_Date) date: 2017-04-24 dateType: (CI_DateTypeCode) publication edition: 8.5 citedResponsibleParty: GCMD Landing Page descriptiveKeywords: (MD_Keywords) keyword: DEMs type: (MD_KeywordTypeCode) project thesaurusName: (CI_Citation) title: InPort date: (inapplicable) resourceConstraints: (MD_LegalConstraints) useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Cite As: Office for Coastal Management, [Date of Access]: 2022 NOAA OCM Topobathy Lidar DEM: Northern Green Bay, WI [Data Date Range], https://www.fisheries.noaa.gov/inport/item/71220. resourceConstraints: (MD_Constraints) useLimitation: NOAA provides no warranty, nor accepts any liability occurring from any incomplete, incorrect, or misleading data, or from any incorrect, incomplete, or misleading use of the data. It is the responsibility of the user to determine whether or not the data is suitable for the intended purpose. resourceConstraints: (MD_LegalConstraints) accessConstraints: (MD_RestrictionCode) otherRestrictions useConstraints: (MD_RestrictionCode) otherRestrictions otherConstraints: Access Constraints: None | Use Constraints: Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. | Distribution Liability: Any conclusions drawn from the analysis of this information are not the responsibility of NOAA, the Office for Coastal Management, or its partners. resourceConstraints: (MD_SecurityConstraints) classification: (MD_ClassificationCode) unclassified classificationSystem: (missing) handlingDescription: (missing) aggregationInfo: (MD_AggregateInformation) aggregateDataSetName: (CI_Citation) title: 2022 NOAA OCM Topobathy Lidar: Northern Green Bay, WI date: (unknown) identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: 71179 associationType: (DS_AssociationTypeCode) crossReference aggregationInfo: (MD_AggregateInformation) aggregateDataSetName: (CI_Citation) title: NOAA Data Management Plan (DMP) date: (unknown) identifier: (MD_Identifier) authority: (CI_Citation) title: NOAA/NMFS/EDM date: (inapplicable) code: 71220 citedResponsibleParty: (CI_ResponsibleParty) organisationName: (inapplicable) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.fisheries.noaa.gov/inportserve/waf/noaa/nos/ocm/dmp/pdf/71220.pdf protocol: WWW:LINK-1.0-http--link name: NOAA Data Management Plan (DMP) description: NOAA Data Management Plan for this record on InPort. function: (CI_OnLineFunctionCode) information role: (inapplicable) associationType: (DS_AssociationTypeCode) crossReference spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid language: eng; US topicCategory: (MD_TopicCategoryCode) elevation environmentDescription: OS Independent extent: (EX_Extent) geographicElement: (EX_GeographicBoundingBox) westBoundLongitude: -87.041476 eastBoundLongitude: -86.664068 southBoundLatitude: 45.131468 northBoundLatitude: 45.445808 temporalElement: (EX_TemporalExtent) extent: TimePeriod: description: | Currentness: Ground Condition beginPosition: 2022-07-19 endPosition: 2022-08-16 return to top distributionInfo: (MD_Distribution) distributionFormat: (MD_Format) name: GeoTIFF version: (missing) fileDecompressionTechnique: Zip distributionFormat: (MD_Format) name: GeoTIFF version: (missing) distributor: (MD_Distributor) distributorContact: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management contactInfo: (CI_Contact) phone: (CI_Telephone) voice: (843) 740-1202 address: (CI_Address) deliveryPoint: 2234 South Hobson Ave city: Charleston administrativeArea: SC postalCode: 29405-2413 country: (missing) electronicMailAddress: coastal.info@noaa.gov onlineResource: (CI_OnlineResource) linkage: https://coast.noaa.gov protocol: WWW:LINK-1.0-http--link name: NOAA Office for Coastal Management Website description: NOAA Office for Coastal Management Home Page function: (CI_OnLineFunctionCode) information role: (CI_RoleCode) distributor transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=9956/details/9956 protocol: WWW:LINK-1.0-http--link name: Customized Download description: Create custom data files by choosing data area, map projection, file format, etc. A new metadata will be produced to reflect your request using this record as a base. function: (CI_OnLineFunctionCode) download transferOptions: (MD_DigitalTransferOptions) onLine: (CI_OnlineResource) linkage: https://chs.coast.noaa.gov/htdata/raster5/elevation/OCM_GreenBay_Topobathy_DEM_2022_9956 protocol: WWW:LINK-1.0-http--link name: Bulk Download description: Bulk download of data files in the original coordinate system. function: (CI_OnLineFunctionCode) download return to top dataQualityInfo: (DQ_DataQuality) scope: (DQ_Scope) level: (MD_ScopeCode) dataset report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Horizontal Positional Accuracy evaluationMethodDescription: Only checkpoints photo-identifiable in the intensity imagery can be used to test the horizontal accuracy of the lidar. Photo-identifiable checkpoints in intensity imagery typically include checkpoints located at the ends of paint stripes on concrete or asphalt surfaces or checkpoints located at 90 degree corners of different reflectivity, e.g. a sidewalk corner adjoining a grass surface. The xy coordinates of checkpoints, as defined in the intensity imagery, are compared to surveyed xy coordinates for each photo-identifiable checkpoint. These differences are used to compute the tested horizontal accuracy of the lidar. As not all projects contain photo-identifiable checkpoints, the horizontal accuracy of the lidar cannot always be tested. result: (missing) report: (DQ_AbsoluteExternalPositionalAccuracy) nameOfMeasure: Vertical Positional Accuracy evaluationMethodDescription: The vertical accuracy of the classified lidar was tested by Dewberry with 46 independent survey checkpoints. The survey checkpoints are evenly distributed throughout the project area and are located in areas of non-vegetated terrain, including bare earth, open terrain, and urban terrain (22); vegetated terrain, including forest, brush, tall weeds, crops, and high grass (14); and submerged bottom areas (10). The vertical accuracy is tested by comparing survey checkpoints to a triangulated irregular network (TIN) that is created from the lidar ground and submerged bottom points. Checkpoints are always compared to interpolated surfaces created from the lidar point cloud because it is unlikely that a survey checkpoint will be located at the precise location of a discrete lidar point. All checkpoints located in non-vegetated terrain were used to compute the Non-vegetated Vertical Accuracy (NVA). Project specifications require a NVA of 19.6 cm at the 95% confidence level based on RMSEz (10 cm) x 1.9600. All checkpoints located in vegetated terrain were used to compute the Vegetated Vertical Accuracy (VVA). Project specifications require a VVA of 30.0 cm based on the 95th percentile. All checkpoints located in bathymetric areas were used to compute an accuracy value for the bathymetric data. Project specifications require the vertical accuracy for bathymetric data to be 29.4 cm or better at the 95% confidence level based on depth-dependent RMSEz (15.0 cm) x 1.9600. This DEM dataset was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 10 cm RMSEz Vertical Accuracy Class. Actual NVA accuracy was found to be RMSEz = 7.2 cm, equating to +/- 14.1 cm at 95% confidence level. This DEM dataset was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 10 cm RMSEz Vertical Accuracy Class. Actual VVA accuracy was found to be +/- 15.8 cm at the 95th percentile. The 5% outliers consisted of 1 checkpoint that is larger than the 95th percentile. This checkpoint has a DZ value of 17.5 cm. This DEM dataset was tested to meet ASPRS Positional Accuracy Standards for Digital Geospatial Data (2014) for a 15.0 cm RMSEz Vertical Accuracy Class. Actual Bathymetric accuracy was found to be RMSEz = 14.3 cm, equating to +/- 28.1 cm at 95% confidence level. result: (missing) report: (DQ_QuantitativeAttributeAccuracy) nameOfMeasure: Quantitation Limits evaluationMethodDescription: Data include all lidar returns. Outliers or false returns (e.g., returns from birds, atmospheric particles, and/or system noise) may be present in the data. An automated ground classification algorithm was used to determine bare earth point classification. It should be noted that not all returns were correctly classified; therefore the user should examine for acceptability. result: (missing) report: (DQ_CompletenessCommission) nameOfMeasure: Completeness Report evaluationMethodDescription: Data covers the project boundary. result: (missing) report: (DQ_ConceptualConsistency) nameOfMeasure: Conceptual Consistency evaluationMethodDescription: Not applicable result: (missing) lineage: (LI_Lineage) statement: This data was collected by Dewberry for the NOAA Office for Coastal Management (OCM). The data was provided to NOAA OCM where it was processed to the NOAA Digital Coast Data Access Viewer (DAV) to make the data available for custom and bulk download. processStep: (LI_ProcessStep) description: Data were processed to an initial LAS format using Teledyne CARIS software. CARIS was also utilized for GPS and inertial processing, and Terrasolid and LAStools were used for data visualization, 3D editing, and export to final LAS/LAZ. Data were processed using NAD83(2011) horizontal and vertical datums. The data are in UTM Zone 16 coordinates and NAVD88 elevations in meters. The data classifications are: unclassified (1); ground (2); noise (7); water surface (topographic sensor) (18); bathymetric bottom (40); water surface (41); derived water surface (42); submerged object, not otherwise specified (e.g., wreck, rock, submerged piling) (43); and no bottom found (bathymetric lidar point for which no detectable bottom return was received) (45). dateTime: DateTime: 2023-01-17T00:00:00 processStep: (LI_ProcessStep) description: The boresight for each lift was done individually as the solution may change slightly from lift to lift. The initial points for each mission calibration were inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the lidar unit or GPS. Roll, pitch and scanner scale were optimized during the calibration process until the relative accuracy was met. Dewberry utilized Bayesmap StripAlign for this alignment procedure. This alignment procedure corrected systematic issues globally, per aircraft lift, per flightline, and finally based on local errors along the flight trajectory. Error adjustments included internal sensor parameters. Due to the complex geometric relationship of the elliptical scan pattern the forward and reverse directions must be aligned independently. Additionally, since the green and NIR scanner map different surfaces, they were also aligned independently, then corrected to match each other. Difference rasters (DZ orthos) were generated, adjustment parameters were reviewed, and registration/match regions were reviewed to ensure data quality. A final vertical accuracy check of the boresighted flight lines was completed against the surveyed check points after the z correction to ensure the requirement of NVA = 19.6 cm 95% Confidence Level was met. Point classification was performed according to USGS Lidar Base Specification 2.1. Bare earth DEMs were exported from the classified point cloud. Synthetic points generated by CZMIL refraciton correction algorithms are present in this dataset. Please see the final project report for more details on the synthetic points dateTime: DateTime: 2023-01-17T00:00:00 processStep: (LI_ProcessStep) description: Dewberry used algoritms in TerraScan to create the intial ground/submerged topography surface. Dewberry used rasterized aggregate extents of refracted points to create automated 2-D breaklines with LAStools and ArcGIS. Light travels at different speeds in air versus water and its speed and direction of travel change when it enters the water column. The refraction correction process accounts for this difference by adjusting the depth (distance traveled) and horizontal position (change of angle/direction) of the lidar points acquired within water. These breaklines delineate areas where the refraction correction was applied to the lidar data by CZMIL's automated refraction correction software based on the software's detection of water. The class 42 synthetic surface is generated by the software as a reference surface from which to perform the correction. Dewberry used the 2-D refraction extents and additional bathy features to classify the bathymetric bottom and ground points properly in TerraScan. Geometrically unused points at the edges of flight lines were flagged using the withheld bit. This includes synthetically generated class 42 (synthetic water surface) points at the edges of flight lines. All class 42 points were flagged using the synthetic bit. The withheld bit was set on class 7 and class 18 in TerraScan after all classification was complete. All lidar data was peer-reviewed. Dewberry's QAQC also included creating void polygons for use during review. All necessary edits were applied to the dataset. LASTools software was used to update LAS header information, including all projection and coordinate reference system information. The final lidar data are in LAS format 1.4 and point data record format 6. All data was then verified by an Independent QC department within Dewberry. The independent QC was performed by separate analysts who did not perform manual classification or editing. The independent QC involved quantitative and qualitative reviews. dateTime: DateTime: 2023-01-17T00:00:00 processStep: (LI_ProcessStep) description: Digital elevation models were created using only ground (2), submerged topography (40), and submerged object (43) lidar point data. A triangulated irregular network (TIN) was generated from these data and rasterized at a 1 m spatial resolution using the LAStools 'blast2dem' utility. Void polygons delineating areas of extremely sparse or non-existent bathymetric coverage were used in ArcGIS to clip large areas of interpolation in the DEM. The void polygon creation process is described in the void polygon metadata and final project report. Both tiled and merged DEMs are delivered for this project. dateTime: DateTime: 2023-01-18T00:00:00 processStep: (LI_ProcessStep) description: DEMs were reviewed using Global Mapper and ArcGIS to check for surface anomalies, incorrect elevations, and unacceptable voids in the data. dateTime: DateTime: 2023-01-18T00:00:00 processStep: (LI_ProcessStep) description: The NOAA Office for Coastal Management (OCM) received a total of 2630 files in GeoTiff format from Dewberry for the 2022 topobathy northern Green Bay project. The bare earth raster files were at a 1 m grid spacing. The data were in UTM Zone 16N NAD83 (2011), meters coordinates and NAVD88 (Geoid18) elevations in meters. OCM assigned the appropriate EPSG code (Vert - 5703) and copied the raster files to https for Digital Coast storage and provisioning purposes. dateTime: DateTime: 2023-10-25T00:00:00 processor: (CI_ResponsibleParty) organisationName: Office for Coastal Management role: (CI_RoleCode) processor source: (LI_Source) sourceCitation: (CI_Citation) title: DEM Files date: (CI_Date) date: 2023-10-24 dateType: (CI_DateTypeCode) publication citedResponsibleParty: (CI_ResponsibleParty) organisationName: NOAA Office for Coastal Management (OCM) role: (CI_RoleCode) originator |